1
|
Landheer K, Treacy M, Instrella R, Chioma Igwe K, Döring A, Kreis R, Juchem C. synMARSS-An End-To-End Platform for the Parametric Generation of Synthetic In Vivo Magnetic Resonance Spectra. NMR IN BIOMEDICINE 2025; 38:e70013. [PMID: 39948757 DOI: 10.1002/nbm.70013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/20/2025] [Accepted: 02/01/2025] [Indexed: 05/09/2025]
Abstract
Synthetic magnetic resonance spectra (MRS) are mathematically generated spectra which can be used to investigate the assumptions of data analysis strategies, optimize experimental design, and as training data for the development and validation of machine learning tools. In this work, we extend Magnetic Resonance Spectrum Simulator (MARSS), a popular MRS basis set simulation tool, to be able to generate synthetic spectra for an arbitrary MRS sequence. The extension, referred to as synMARSS, converts a basis set as well as a set of NMR, tissue-related and additional sequence parameters into high-quality synthetic spectra via a parametric model. synMARSS is highly versatile, incorporating T1 and T2 relaxation, arbitrary line shape distortions and diffusion, while also quickly generating the large amount of training data needed for machine learning applications. Additionally, we extend MARSS to non-1H nuclei, such as 2H, 13C, and 31P. We use synthetic spectra to investigate the effects of approximating 14N heteronuclear coupling as weak homonuclear coupling, which was found to have small effects on the quantified concentrations for major metabolites for the implementation of PRESS at short echo time, but these effects increased at longer echo times.
Collapse
Affiliation(s)
- Karl Landheer
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
- Regeneron Genetics Center, Tarrytown, New York, USA
| | - Michael Treacy
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ronald Instrella
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Kay Chioma Igwe
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - André Döring
- CIBM Center for Biomedical Imaging, EPFL CIBM-AIT, EPFL Lausanne, Lausanne, Switzerland
| | - Roland Kreis
- MR Methodology, Department for Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine (sitem-insel), Bern, Switzerland
| | - Christoph Juchem
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
- Department of Radiology, Columbia University, New York, New York, USA
- High Field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
He X, Auerbach EJ, Garwood M, Kobayashi N, Wu X, Metzger GJ. Parallel transmit optimized 3D composite adiabatic spectral-spatial pulse for spectroscopy. Magn Reson Med 2021; 86:17-32. [PMID: 33497006 PMCID: PMC8545499 DOI: 10.1002/mrm.28682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 01/05/2023]
Abstract
PURPOSE To develop a 3D composite adiabatic spectral-spatial pulse for refocusing in spin-echo spectroscopy acquisitions and to compare its performance against standard acquisition methods. METHODS A 3D composite adiabatic pulse was designed by modulating a train of parallel transmit-optimized 2D subpulses with an adiabatic envelope. The spatial and spectral profiles were simulated and validated by experiments to demonstrate the feasibility of the design in both single and double spin-echo spectroscopy acquisitions. Phantom and in vivo studies were performed to evaluate the pulse performance and compared with semi-LASER with respect to localization performance, sequence timing, signal suppression, and specific absorption rate. RESULTS Simultaneous 2D spatial localization with water and lipid suppression was achieved with the designed refocusing pulse, allowing high-quality spectra to be acquired with shorter minimum TE/TR, reduced SAR, as well as adaptation to spatially varying B0 and B 1 + field inhomogeneities in both prostate and brain studies. CONCLUSION The proposed composite pulse can serve as a more SAR efficient alternative to conventional localization methods such as semi-LASER at ultrahigh field for spin echo-based spectroscopy studies. Subpulse parallel-transmit optimization provides the flexibility to manage the tradeoff among multiple design criteria to accommodate different field strengths and applications.
Collapse
Affiliation(s)
- Xiaoxuan He
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, United States
| | - Edward J. Auerbach
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, United States
| | - Michael Garwood
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, United States
| | - Naoharu Kobayashi
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, United States
| | - Xiaoping Wu
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, United States
| | - Gregory J. Metzger
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|