1
|
Biedenbänder T, Bensons ER, Corzilius B. Serial Polarization Transfer by Combination of Cross-Relaxation and Rotational Resonance for Sensitivity-Enhanced Solid-State NMR. Chemphyschem 2023; 24:e202300206. [PMID: 37306393 DOI: 10.1002/cphc.202300206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/04/2023] [Accepted: 06/12/2023] [Indexed: 06/13/2023]
Abstract
Methods which induce site-specificity and sensitivity enhancement in solid-state magic-angle spinning NMR spectroscopy become more important for structural biology due to the increasing size of molecules under investigation. Recently, several strategies have been developed to increase site specificity and thus reduce signal overlap. Under dynamic nuclear polarization (DNP) for NMR signal enhancement, it is possible to use cross-relaxation transfer induced by select dynamic groups within the molecules which is exploited by SCREAM-DNP (Specific Cross Relaxation Enhancement by Active Motions under DNP). Here, we present an approach where we additionally reintroduce the homonuclear dipolar coupling with rotational resonance (R2 ) during SCREAM-DNP to further boost the selectivity of the experiment. Detailed analysis of the polarization buildup dynamics of 13 C-methyl polarization source and 13 C-carbonyl target in 2-13 C-ethyl 1-13 C-acetate provides information about the sought-after and spurious transfer pathways. We show that dipolar-recoupled transfer rates greatly exceed the DNP buildup dynamics in our model system, indicating that significantly larger distances can be selectively and efficiently hyperpolarized.
Collapse
Affiliation(s)
- Thomas Biedenbänder
- Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, 18059, Rostock, Germany
- Department Life, Light & Matter, University of Rostock, Albert-Einstein-Str. 25, 18059, Rostock, Germany
| | - Edvards R Bensons
- Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, 18059, Rostock, Germany
- Department Life, Light & Matter, University of Rostock, Albert-Einstein-Str. 25, 18059, Rostock, Germany
| | - Björn Corzilius
- Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, 18059, Rostock, Germany
- Department Life, Light & Matter, University of Rostock, Albert-Einstein-Str. 25, 18059, Rostock, Germany
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29, 18059, Rostock, Germany
| |
Collapse
|
2
|
Aladin V, Sreemantula AK, Biedenbänder T, Marchanka A, Corzilius B. Specific Signal Enhancement on an RNA-Protein Interface by Dynamic Nuclear Polarization. Chemistry 2023; 29:e202203443. [PMID: 36533705 DOI: 10.1002/chem.202203443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/23/2022]
Abstract
Sensitivity and specificity are both crucial for the efficient solid-state NMR structure determination of large biomolecules. We present an approach that features both advantages by site-specific enhancement of NMR spectroscopic signals from the protein-RNA binding site within a ribonucleoprotein (RNP) by dynamic nuclear polarization (DNP). This approach uses modern biochemical techniques for sparse isotope labeling and exploits the molecular dynamics of 13 C-labeled methyl groups exclusively present in the protein. These dynamics drive heteronuclear cross relaxation and thus allow specific hyperpolarization transfer across the biomolecular complex's interface. For the example of the L7Ae protein in complex with a 26mer guide RNA minimal construct from the box C/D complex in archaea, we demonstrate that a single methyl-nucleotide contact is responsible for most of the polarization transfer to the RNA, and that this specific transfer can be used to boost both NMR spectral sensitivity and specificity by DNP.
Collapse
Affiliation(s)
- Victoria Aladin
- Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, 18059, Rostock, Germany
- Department Life, Light & Matter, University of Rostock, Albert-Einstein-Str. 25, 18059, Rostock, Germany
| | - Arun K Sreemantula
- Institute for Organic Chemistry and, Centre of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Schneiderberg 38, 30167, Hannover, Germany
| | - Thomas Biedenbänder
- Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, 18059, Rostock, Germany
- Department Life, Light & Matter, University of Rostock, Albert-Einstein-Str. 25, 18059, Rostock, Germany
| | - Alexander Marchanka
- Institute for Organic Chemistry and, Centre of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Schneiderberg 38, 30167, Hannover, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstr. 1, 69117, Heidelberg, Germany
| | - Björn Corzilius
- Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, 18059, Rostock, Germany
- Department Life, Light & Matter, University of Rostock, Albert-Einstein-Str. 25, 18059, Rostock, Germany
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29, 18059, Rostock, Germany
| |
Collapse
|
3
|
Döller SC, Gutmann T, Hoffmann M, Buntkowsky G. A case study on the influence of hydrophilicity on the signal enhancement by dynamic nuclear polarization. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2022; 122:101829. [PMID: 36116176 DOI: 10.1016/j.ssnmr.2022.101829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/25/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
In this work, the behavior of four different commercially available polarizing agents is investigated employing the non-ionic model surfactant 1-octanol as analyte. A relative method for the comparison of the proportion of the direct and indirect polarization transfer pathways is established, allowing a direct comparison of the polarization efficacy for different radicals and different parts of the 1-octanol molecule despite differences in radical concentration or sample amount. With this approach, it could be demonstrated that the hydrophilicity is a key factor in the way polarization is transferred from the polarizing agent to the analyte. These findings are confirmed by the determination of buildup times Tb, illustrating that the choice of polarizing agent plays an essential role in ensuring an optimal polarization transfer and therefore the maximum amount of enhancement possible for DNP enhanced NMR measurements.
Collapse
Affiliation(s)
- Sonja C Döller
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, D-64287, Darmstadt, Germany
| | - Torsten Gutmann
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, D-64287, Darmstadt, Germany
| | - Markus Hoffmann
- Department of Chemistry and Biochemistry, State University of New York College at Brockport, Brockport, NY, 14420, USA
| | - Gerd Buntkowsky
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, D-64287, Darmstadt, Germany.
| |
Collapse
|
4
|
Asanbaeva NB, Gurskaya LY, Polienko YF, Rybalova TV, Kazantsev MS, Dmitriev AA, Gritsan NP, Haro-Mares N, Gutmann T, Buntkowsky G, Tretyakov EV, Bagryanskaya EG. Effects of Spiro-Cyclohexane Substitution of Nitroxyl Biradicals on Dynamic Nuclear Polarization. Molecules 2022; 27:3252. [PMID: 35630726 PMCID: PMC9143461 DOI: 10.3390/molecules27103252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 11/20/2022] Open
Abstract
Spiro-substituted nitroxyl biradicals are widely used as reagents for dynamic nuclear polarization (DNP), which is especially important for biopolymer research. The main criterion for their applicability as polarizing agents is the value of the spin-spin exchange interaction parameter (J), which can vary considerably when different couplers are employed that link the radical moieties. This paper describes a study on biradicals, with a ferrocene-1,1'-diyl-substituted 1,3-diazetidine-2,4-diimine coupler, that have never been used before as DNP agents. We observed a substantial difference in the temperature dependence between Electron Paramagnetic Resonance (EPR) spectra of biradicals carrying either methyl or spirocyclohexane substituents and explain the difference using Density Functional Theory (DFT) calculation results. It was shown that the replacement of methyl groups by spirocycles near the N-O group leads to an increase in the contribution of conformers having J ≈ 0. The DNP gain observed for the biradicals with methyl substituents is three times higher than that for the spiro-substituted nitroxyl biradicals and is inversely proportional to the contribution of biradicals manifesting the negligible exchange interaction. The effects of nucleophiles and substituents in the nitroxide biradicals on the ring-opening reaction of 1,3-diazetidine and the influence of the ring opening on the exchange interaction were also investigated. It was found that in contrast to the methyl-substituted nitroxide biradical (where we observed the ring-opening reaction upon the addition of amines), the ring opening does not occur in the spiro-substituted biradical owing to a steric barrier created by the bulky cyclohexyl substituents.
Collapse
Affiliation(s)
- Nargiz B. Asanbaeva
- N.N. Vorozhtsov Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), 9 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia; (N.B.A.); (L.Y.G.); (Y.F.P.); (T.V.R.); (M.S.K.)
| | - Larisa Yu. Gurskaya
- N.N. Vorozhtsov Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), 9 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia; (N.B.A.); (L.Y.G.); (Y.F.P.); (T.V.R.); (M.S.K.)
| | - Yuliya F. Polienko
- N.N. Vorozhtsov Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), 9 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia; (N.B.A.); (L.Y.G.); (Y.F.P.); (T.V.R.); (M.S.K.)
| | - Tatyana V. Rybalova
- N.N. Vorozhtsov Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), 9 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia; (N.B.A.); (L.Y.G.); (Y.F.P.); (T.V.R.); (M.S.K.)
| | - Maxim S. Kazantsev
- N.N. Vorozhtsov Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), 9 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia; (N.B.A.); (L.Y.G.); (Y.F.P.); (T.V.R.); (M.S.K.)
| | - Alexey A. Dmitriev
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion, SB RAS, 3 Institutskaya Str., Novosibirsk 630090, Russia; (A.A.D.); (N.P.G.)
| | - Nina P. Gritsan
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion, SB RAS, 3 Institutskaya Str., Novosibirsk 630090, Russia; (A.A.D.); (N.P.G.)
| | - Nadia Haro-Mares
- TU Darmstadt, Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany; (N.H.-M.); (T.G.); (G.B.)
| | - Torsten Gutmann
- TU Darmstadt, Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany; (N.H.-M.); (T.G.); (G.B.)
| | - Gerd Buntkowsky
- TU Darmstadt, Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany; (N.H.-M.); (T.G.); (G.B.)
| | - Evgeny V. Tretyakov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., Moscow 119991, Russia;
| | - Elena G. Bagryanskaya
- N.N. Vorozhtsov Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), 9 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia; (N.B.A.); (L.Y.G.); (Y.F.P.); (T.V.R.); (M.S.K.)
| |
Collapse
|
5
|
Chow WY, De Paëpe G, Hediger S. Biomolecular and Biological Applications of Solid-State NMR with Dynamic Nuclear Polarization Enhancement. Chem Rev 2022; 122:9795-9847. [PMID: 35446555 DOI: 10.1021/acs.chemrev.1c01043] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Solid-state NMR spectroscopy (ssNMR) with magic-angle spinning (MAS) enables the investigation of biological systems within their native context, such as lipid membranes, viral capsid assemblies, and cells. However, such ambitious investigations often suffer from low sensitivity due to the presence of significant amounts of other molecular species, which reduces the effective concentration of the biomolecule or interaction of interest. Certain investigations requiring the detection of very low concentration species remain unfeasible even with increasing experimental time for signal averaging. By applying dynamic nuclear polarization (DNP) to overcome the sensitivity challenge, the experimental time required can be reduced by orders of magnitude, broadening the feasible scope of applications for biological solid-state NMR. In this review, we outline strategies commonly adopted for biological applications of DNP, indicate ongoing challenges, and present a comprehensive overview of biological investigations where MAS-DNP has led to unique insights.
Collapse
Affiliation(s)
- Wing Ying Chow
- Univ. Grenoble Alpes, CEA, CNRS, Interdisciplinary Research Institute of Grenoble (IRIG), Modeling and Exploration of Materials Laboratory (MEM), 38054 Grenoble, France.,Univ. Grenoble Alpes, CEA, CNRS, Inst. Biol. Struct. IBS, 38044 Grenoble, France
| | - Gaël De Paëpe
- Univ. Grenoble Alpes, CEA, CNRS, Interdisciplinary Research Institute of Grenoble (IRIG), Modeling and Exploration of Materials Laboratory (MEM), 38054 Grenoble, France
| | - Sabine Hediger
- Univ. Grenoble Alpes, CEA, CNRS, Interdisciplinary Research Institute of Grenoble (IRIG), Modeling and Exploration of Materials Laboratory (MEM), 38054 Grenoble, France
| |
Collapse
|
6
|
Biedenbänder T, Aladin V, Saeidpour S, Corzilius B. Dynamic Nuclear Polarization for Sensitivity Enhancement in Biomolecular Solid-State NMR. Chem Rev 2022; 122:9738-9794. [PMID: 35099939 DOI: 10.1021/acs.chemrev.1c00776] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Solid-state NMR with magic-angle spinning (MAS) is an important method in structural biology. While NMR can provide invaluable information about local geometry on an atomic scale even for large biomolecular assemblies lacking long-range order, it is often limited by low sensitivity due to small nuclear spin polarization in thermal equilibrium. Dynamic nuclear polarization (DNP) has evolved during the last decades to become a powerful method capable of increasing this sensitivity by two to three orders of magnitude, thereby reducing the valuable experimental time from weeks or months to just hours or days; in many cases, this allows experiments that would be otherwise completely unfeasible. In this review, we give an overview of the developments that have opened the field for DNP-enhanced biomolecular solid-state NMR including state-of-the-art applications at fast MAS and high magnetic field. We present DNP mechanisms, polarizing agents, and sample constitution methods suitable for biomolecules. A wide field of biomolecular NMR applications is covered including membrane proteins, amyloid fibrils, large biomolecular assemblies, and biomaterials. Finally, we present perspectives and recent developments that may shape the field of biomolecular DNP in the future.
Collapse
Affiliation(s)
- Thomas Biedenbänder
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Victoria Aladin
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Siavash Saeidpour
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Björn Corzilius
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| |
Collapse
|
7
|
Buntkowsky G, Döller S, Haro-Mares N, Gutmann T, Hoffmann M. Solid-state NMR studies of non-ionic surfactants confined in mesoporous silica. Z PHYS CHEM 2021. [DOI: 10.1515/zpch-2021-3132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Abstract
This review gives an overview of current trends in the investigation of confined molecules such as higher alcohols, ethylene glycol and polyethylene glycol as guest molecules in neat and functionalized mesoporous silica materials. All these molecules have both hydrophobic and hydrophilic parts. They are characteristic role-models for the investigation of confined surfactants. Their properties are studied by a combination of solid-state NMR and relaxometry with other physicochemical techniques and molecular dynamics techniques. It is shown that this combination delivers unique insights into the structure, arrangement, dynamical properties and the guest-host interactions inside the confinement.
Collapse
Affiliation(s)
- Gerd Buntkowsky
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie , Technische Universität Darmstadt , Alarich-Weiss-Str. 8 , D-64287 Darmstadt , Germany
| | - Sonja Döller
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie , Technische Universität Darmstadt , Alarich-Weiss-Str. 8 , D-64287 Darmstadt , Germany
| | - Nadia Haro-Mares
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie , Technische Universität Darmstadt , Alarich-Weiss-Str. 8 , D-64287 Darmstadt , Germany
| | - Torsten Gutmann
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie , Technische Universität Darmstadt , Alarich-Weiss-Str. 8 , D-64287 Darmstadt , Germany
| | - Markus Hoffmann
- Department of Chemistry and Biochemistry , State University of New York College at Brockport , Brockport , NY , 14420 , USA
| |
Collapse
|
8
|
Heteronuclear Cross-Relaxation under Dynamic Nuclear Polarization in Nicotine and Caffeine. EXPERIMENTAL RESULTS 2020. [DOI: 10.1017/exp.2020.17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
AbstractDynamic nuclear polarization (DNP) is a technique in magic-angle spinning (MAS) nuclear magnetic resonance (NMR) which leads to sensitivity enhancement and helps to overcome the issue of low polarization in detected nuclei. Recent research showed, that methyl groups, which show active reorientation dynamics and cause heteronuclear cross relaxation at typical DNP temperatures around 100 K, may be used as a pinpoint source of polarization for selective and site-specific probing. In this study, we investigated the cross-relaxation behavior of methyl groups in nicotine and caffeine under DNP. These effects could be useful for investigating receptor/ligand binding.
Collapse
|