Jandaliyeva A, Puchnin V, Shchelokova A. Volumetric wireless coils for breast MRI: A comparative analysis of metamaterial-inspired coil, Helmholtz coil, ceramic coil, and solenoid.
JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024;
359:107627. [PMID:
38280267 DOI:
10.1016/j.jmr.2024.107627]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
This study comprehensively assesses radiofrequency (RF) volumetric wireless coils utilizing artificial materials for clinical breast MRI. In particular, we evaluated the transmit efficiency, RF safety, and homogeneity of magnetic field amplitude distribution for four structures electromagnetically coupled with a whole-body birdcage coil: extremely high permittivity ceramic coil, solenoid coil, Helmholtz coil, and metamaterial-inspired coil based on periodically coupled split-loop resonators. These coils exhibit favorable attributes, including lightweight construction, compactness, cost-effectiveness, and ease of manufacturing. The results of this study demonstrated that the metamaterial-inspired coil outperforms other wireless coils considered for addressing a specific problem in terms of the set of characteristics. In particular, the metamaterial-inspired coil achieved 85% and 88% homogeneity in magnetic field amplitude distribution at 3 T and 1.5 T MRI, respectively. Also, the 1.5 T metamaterial-inspired coil demonstrated the best performance, increasing the efficiency gain of the birdcage coil by 4.93 times and improving RF safety by 2.96 times. This research explains the limitations and peculiarity of utilizing the volumetric wireless coils in 1.5 and 3 T MRI systems.
Collapse