1
|
Liang H, Li H, Li F, Xiong X, Gao Y. Amiodarone Advances the Apoptosis of Cardiomyocytes by Repressing Sigmar1 Expression and Blocking KCNH2-related Potassium Channels. Curr Mol Med 2025; 25:69-78. [PMID: 38204277 DOI: 10.2174/0115665240265771231129105108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Heart failure (HF) is the ultimate transformation result of various cardiovascular diseases. Mitochondria-mediated cardiomyocyte apoptosis has been uncovered to be associated with this disorder. OBJECTIVE This study mainly delves into the mechanism of the anti-arrhythmic drug amiodarone on mitochondrial toxicity of cardiomyocytes. METHODS The viability of H9c2 cells treated with amiodarone at 0.5, 1, 2, 3, and 4 μM was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and Sigmar1 expression was examined by quantitative real-time PCR (qRTPCR). After transfection, the viability, apoptosis, reactive oxygen species (ROS) level, mitochondrial membrane potential (MMP), and potassium voltage-gated channel subfamily H member 2 (KCNH2) expression in H9c2 cells were assessed by MTT, flow cytometry, ROS assay kit, mitochondria staining kit, and Western blot. RESULTS Amiodarone at 1-4 μM notably weakened H9c2 cell viability with IC50 value of 2.62 ± 0.43 μM. Amiodarone at 0.5-4 μM also evidently suppressed the Sigmar1 level in H9c2 cells. Amiodarone repressed H9c2 cell viability and KCNH2 level and triggered apoptosis, ROS production and mitochondrial depolarization, while Sigmar1 upregulation reversed its effects. Moreover, KCNH2 silencing neutralized the effect of Sigmar1 up-regulation on H9c2 cell viability, apoptosis, and ROS production. CONCLUSION Amiodarone facilitates the apoptosis of H9c2 cells by restraining Sigmar1 expression and blocking KCNH2-related potassium channels.
Collapse
Affiliation(s)
- Huiqing Liang
- Department of Cardiology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Huixian Li
- Department of Cardiology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Fangjiang Li
- Department of Cardiology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Xiaobo Xiong
- Department of Cardiology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Yang Gao
- Department of Cardiology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| |
Collapse
|
2
|
Oba M, Taguchi M, Kudo Y, Yamashita K, Yasui H, Matsumoto S, Kirilyuk IA, Inanami O, Hirata H. Partial Acquisition of Spectral Projections Accelerates Four-dimensional Spectral-spatial EPR Imaging for Mouse Tumor Models: A Feasibility Study. Mol Imaging Biol 2024; 26:459-472. [PMID: 38811467 DOI: 10.1007/s11307-024-01924-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
PURPOSE Our study aimed to accelerate the acquisition of four-dimensional (4D) spectral-spatial electron paramagnetic resonance (EPR) imaging for mouse tumor models. This advancement in EPR imaging should reduce the acquisition time of spectroscopic mapping while reducing quality degradation for mouse tumor models. PROCEDURES EPR spectra under magnetic field gradients, called spectral projections, were partially measured. Additional spectral projections were later computationally synthesized from the measured spectral projections. Four-dimensional spectral-spatial images were reconstructed from the post-processed spectral projections using the algebraic reconstruction technique (ART) and assessed in terms of their image qualities. We applied this approach to a sample solution and a mouse Hs766T xenograft model of human-derived pancreatic ductal adenocarcinoma cells to demonstrate the feasibility of our concept. The nitroxyl radical imaging agent 2H,15N-DCP was exogenously infused into the mouse xenograft model. RESULTS The computation code of 4D spectral-spatial imaging was tested with numerically generated spectral projections. In the linewidth mapping of the sample solution, we achieved a relative standard uncertainty (standard deviation/| mean |) of 0.76 μT/45.38 μT = 0.017 on the peak-to-peak first-derivative EPR linewidth. The qualities of the linewidth maps and the effect of computational synthesis of spectral projections were examined. Finally, we obtained the three-dimensional linewidth map of 2H,15N-DCP in a Hs766T tumor-bearing leg in vivo. CONCLUSION We achieved a 46.7% reduction in the acquisition time of 4D spectral-spatial EPR imaging without significantly degrading the image quality. A combination of ART and partial acquisition in three-dimensional raster magnetic field gradient settings in orthogonal coordinates is a novel approach. Our approach to 4D spectral-spatial EPR imaging can be applied to any subject, especially for samples with less variation in one direction.
Collapse
Affiliation(s)
- Misa Oba
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, North 14, West 9, Kita-ku, Sapporo, 060-0814, Japan
| | - Mai Taguchi
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, North 14, West 9, Kita-ku, Sapporo, 060-0814, Japan
| | - Yohei Kudo
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, North 14, West 9, Kita-ku, Sapporo, 060-0814, Japan
| | - Koya Yamashita
- Laboratory of Radiation Biology, Graduate School of Veterinary Medicine, Hokkaido University, North 18, West 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Hironobu Yasui
- Laboratory of Radiation Biology, Faculty of Veterinary Medicine, Hokkaido University, North 18, West 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Shingo Matsumoto
- Division of Bioengineering and Bioinformatics, Faculty of Information Science and Technology, Hokkaido University, North 14, West 9, Kita-ku, Sapporo, 060-0814, Japan
| | - Igor A Kirilyuk
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, 9, Ac. Lavrentieva Ave, Novosibirsk, 630090, Russia
| | - Osamu Inanami
- Laboratory of Radiation Biology, Faculty of Veterinary Medicine, Hokkaido University, North 18, West 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Hiroshi Hirata
- Division of Bioengineering and Bioinformatics, Faculty of Information Science and Technology, Hokkaido University, North 14, West 9, Kita-ku, Sapporo, 060-0814, Japan.
| |
Collapse
|
3
|
Boussâa M, Abergel R, Durand S, Frapart YM. Ultrafast multiple paramagnetic species EPR imaging using a total variation based model. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 357:107583. [PMID: 37989061 DOI: 10.1016/j.jmr.2023.107583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/23/2023]
Abstract
An EPR spectrum or an EPR sinogram for imaging contains information about all the paramagnetic species that are in the analyzed sample. When only one species is present, an image of its spatial repartition can be reconstructed from the sinogram by using the well-known Filtered Back-Projection (FBP). However, in the case of several species, the FBP does not allow the reconstruction of the images of each species from a standard acquisition. One has to use for this spectral-spatial imaging whose acquisition can be very long. A new approach, based on Total Variation minimization, is proposed in order to efficiently extract the spatial repartitions of all the species present in a sample from standard imaging data and therefore drastically reduce the acquisition time. Experiments have been carried out on Tetrathiatriarylmethyl, nitroxide and DPPH.
Collapse
Affiliation(s)
- Mehdi Boussâa
- Université Paris Cité, CNRS, MAP5, F-75006 Paris, France; Université Paris Cité, CNRS, LCBPT, F-75006 Paris, France
| | - Rémy Abergel
- Université Paris Cité, CNRS, MAP5, F-75006 Paris, France
| | - Sylvain Durand
- Université Paris Cité, CNRS, MAP5, F-75006 Paris, France
| | | |
Collapse
|
4
|
Naryzhnaya NV, Mukhomedzyanov AV, Sirotina M, Maslov LN, Kurbatov BK, Gorbunov AS, Kilin M, Kan A, Krylatov AV, Podoksenov YK, Logvinov SV. δ-Opioid Receptor as a Molecular Target for Increasing Cardiac Resistance to Reperfusion in Drug Development. Biomedicines 2023; 11:1887. [PMID: 37509526 PMCID: PMC10377504 DOI: 10.3390/biomedicines11071887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/24/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
An analysis of published data and the results of our own studies reveal that the activation of a peripheral δ2-opioid receptor (δ2-OR) increases the cardiac tolerance to reperfusion. It has been found that this δ2-OR is localized in cardiomyocytes. Endogenous opioids are not involved in the regulation of cardiac resistance to reperfusion. The infarct-limiting effect of the δ2-OR agonist deltorphin II depends on the activation of several protein kinases, including PKCδ, ERK1/2, PI3K, and PKG. Hypothetical end-effectors of the cardioprotective effect of deltorphin II are the sarcolemmal KATP channels and the MPT pore.
Collapse
Affiliation(s)
- Natalia V Naryzhnaya
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Science, Tomsk 634021, Russia
| | - Alexander V Mukhomedzyanov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Science, Tomsk 634021, Russia
| | - Maria Sirotina
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Science, Tomsk 634021, Russia
| | - Leonid N Maslov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Science, Tomsk 634021, Russia
| | - Boris K Kurbatov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Science, Tomsk 634021, Russia
| | - Alexander S Gorbunov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Science, Tomsk 634021, Russia
| | - Mikhail Kilin
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Science, Tomsk 634021, Russia
| | - Artur Kan
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Science, Tomsk 634021, Russia
| | - Andrey V Krylatov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Science, Tomsk 634021, Russia
| | - Yuri K Podoksenov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Science, Tomsk 634021, Russia
| | - Sergey V Logvinov
- Department of Histology, Embryology and Cytology, Siberian State Medical University, Tomsk 634050, Russia
| |
Collapse
|
5
|
Nakaoka R, Kato K, Yamamoto K, Yasui H, Matsumoto S, Kirilyuk IA, Khramtsov VV, Inanami O, Hirata H. Electron Paramagnetic Resonance Implemented with Multiple Harmonic Detections Successfully Maps Extracellular pH In Vivo. Anal Chem 2023; 95:3940-3950. [PMID: 36725678 PMCID: PMC9979135 DOI: 10.1021/acs.analchem.2c03194] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Extracellular acidification indicates a metabolic shift in cancer cells and is, along with tissue hypoxia, a hallmark of tumor malignancy. Thus, non-invasive mapping of extracellular pH (pHe) is essential for researchers to understand the tumor microenvironment and to monitor tumor response to metabolism-targeting drugs. While electron paramagnetic resonance (EPR) has been successfully used to map pHe in mouse xenograft models, this method is not sensitive enough to map pHe with a moderate amount of exogenous pH-sensitive probes. Here, we show that a modified EPR system achieves twofold higher sensitivity by using the multiple harmonic detection (MHD) method and improves the robustness of pHe mapping in mouse xenograft models. Our results demonstrate that treatment of a mouse xenograft model of human-derived pancreatic ductal adenocarcinoma cells with the carbonic anhydrase IX (CAIX) inhibitor U-104 delays tumor growth with a concurrent tendency toward further extracellular acidification. We anticipate that EPR-based pHe mapping can be expanded to monitor the response of other metabolism-targeting drugs. Furthermore, pHe monitoring can also be used for the development of improved metabolism-targeting cancer treatments.
Collapse
Affiliation(s)
- Ririko Nakaoka
- Division
of Bioengineering and Bioinformatics, Graduate School of Information
Science and Technology, Hokkaido University, North 14, West 9, Kita-ku, Sapporo060-0814, Japan
| | - Kazuhiro Kato
- Laboratory
of Radiation Biology, Graduate School of Veterinary Medicine, Hokkaido University, North 18, West 9, Kita-ku, Sapporo060-0818, Japan
| | - Kumiko Yamamoto
- Laboratory
of Radiation Biology, Graduate School of Veterinary Medicine, Hokkaido University, North 18, West 9, Kita-ku, Sapporo060-0818, Japan
| | - Hironobu Yasui
- Laboratory
of Radiation Biology, Faculty of Veterinary Medicine, Hokkaido University, North 18, West 9, Kita-ku, Sapporo060-0818, Japan
| | - Shingo Matsumoto
- Division
of Bioengineering and Bioinformatics, Faculty of Information Science
and Technology, Hokkaido University, North 14, West 9, Kita-ku, Sapporo060-0814, Japan
| | - Igor A. Kirilyuk
- N.N.
Vorozhtsov Novosibirsk Institute of Organic Chemistry, 9, Ac. Lavrentieva Ave., Novosibirsk630090, Russia
| | - Valery V. Khramtsov
- Department
of Biochemistry and Molecular Medicine, and In Vivo Multifunctional
Magnetic Resonance Center, West Virginia
University Robert C. Byrd Health Sciences Center, 1 Medical Center Drive, Morgantown, West Virginia26506, United States
| | - Osamu Inanami
- Laboratory
of Radiation Biology, Faculty of Veterinary Medicine, Hokkaido University, North 18, West 9, Kita-ku, Sapporo060-0818, Japan
| | - Hiroshi Hirata
- Division
of Bioengineering and Bioinformatics, Faculty of Information Science
and Technology, Hokkaido University, North 14, West 9, Kita-ku, Sapporo060-0814, Japan,
| |
Collapse
|
6
|
Pozo-Martínez J, Vázquez-Rodríguez S, Olea-Azar C, Moncada-Basualto M. Evaluation of ORAC methodologies in determination of antioxidant capacity of binary combinations of quercetin and 3-(3,4,5-trihydroxybenzoyl) coumarin derivatives. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
7
|
Mignion L, Desmet CM, Harkemanne E, Tromme I, Joudiou N, Wehbi M, Baurain JF, Gallez B. Noninvasive detection of the endogenous free radical melanin in human skin melanomas using electron paramagnetic resonance (EPR). Free Radic Biol Med 2022; 190:226-233. [PMID: 35987421 DOI: 10.1016/j.freeradbiomed.2022.08.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 11/20/2022]
Abstract
We explored the capability of low-frequency Electron Paramagnetic Resonance (EPR) to noninvasively detect melanin (a stable semiquinone free radical) in the human skin. As previous in vitro studies on biopsies suggested that the EPR signal from melanin was different when measured in skin melanomas or benign nevi, we conducted a prospective first-in-man clinical EPR study in patients with skin lesions suspicious of melanoma. EPR spectra were obtained using a spectrometer operating at 1 GHz, with a surface coil placed over the area of interest. Two clinical studies were carried out: 1) healthy volunteers (n = 45) presenting different skin phototypes; 2) patients (n = 88) with skin lesions suspicious of melanoma (n = 100) requiring surgical resection. EPR data obtained before surgery were compared with histopathology results. The method was not sensitive enough to measure differences in melanin content due to changes in skin pigmentation. In patients, 92% of the spectra were analyzable. The EPR signal of melanin was significantly higher (p < 0.0001) in melanoma lesions (n = 26) than that in benign atypical nevi (n = 62). A trend toward a higher signal intensity (though not significant) was observed in high Breslow depth melanomas (a marker of skin invasion) than in low Breslow lesions. To date, no naturally occurring free radicals have been detected by low-frequency EPR systems adapted for clinical studies. Here, we demonstrated for the first time the ability of this technology to detect an endogenous free radical, opening new avenues for evaluating clinical EPR as a potential aid in the diagnosis of pigmented skin lesions.
Collapse
Affiliation(s)
- Lionel Mignion
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Université Catholique de Louvain (UCLouvain), Brussels, Belgium; Louvain Drug Research Institute, Nuclear and Electron Spin Technologies Platform, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Celine M Desmet
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Evelyne Harkemanne
- Dermatology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Isabelle Tromme
- Dermatology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Nicolas Joudiou
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Université Catholique de Louvain (UCLouvain), Brussels, Belgium; Louvain Drug Research Institute, Nuclear and Electron Spin Technologies Platform, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Mohammad Wehbi
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | | | - Bernard Gallez
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Université Catholique de Louvain (UCLouvain), Brussels, Belgium.
| |
Collapse
|