1
|
Sguizzato M, Martini P, Ferrara F, Marvelli L, Drechsler M, Reale G, Calderoni F, Illuminati F, Porto F, Speltri G, Uccelli L, Giganti M, Boschi A, Cortesi R. Manganese-Loaded Liposomes: An In Vitro Study for Possible Diagnostic Application. Molecules 2024; 29:3407. [PMID: 39064985 PMCID: PMC11280348 DOI: 10.3390/molecules29143407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/27/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The present study investigates the possible use of manganese (Mn)-based liposomal formulations for diagnostic applications in imaging techniques such as magnetic resonance imaging (MRI), with the aim of overcoming the toxicity limitations associated with the use of free Mn2+. Specifically, anionic liposomes carrying two model Mn(II)-based compounds, MnCl2 (MC) and Mn(HMTA) (MH), were prepared and characterised in terms of morphology, size, loading capacity, and in vitro activity. Homogeneous dispersions characterised mainly by unilamellar vesicles were obtained; furthermore, no differences in size and morphology were detected between unloaded and Mn-loaded vesicles. The encapsulation efficiency of MC and MH was evaluated on extruded liposomes by means of ICP-OES analysis. The obtained results showed that both MC and MH are almost completely retained by the lipid portion of liposomes (LPs), with encapsulation efficiencies of 99.7% for MC and 98.8% for MH. The magnetic imaging properties of the produced liposomal formulations were investigated for application in a potential preclinical scenario by collecting magnetic resonance images of a phantom designed to compare the paramagnetic contrast properties of free MC and MH compounds and the corresponding manganese-containing liposome dispersions. It was found that both LP-MC and LP-MH at low concentrations (0.5 mM) show better contrast (contrast-to-noise ratios of 194 and 209, respectively) than solutions containing free Mn at the same concentrations (117 and 134, respectively) and are safe to use on human cells at the selected dose. Taken together, the results of this comparative analysis suggest that these liposome-containing Mn compounds might be suitable for diagnostic purposes.
Collapse
Affiliation(s)
- Maddalena Sguizzato
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, 44121 Ferrara, Italy; (M.S.); (F.F.); (L.M.); (G.S.); (R.C.)
- Biotechnology Inter University Consortium (C.I.B.), Ferrara Section, University of Ferrara, 44121 Ferrara, Italy
| | - Petra Martini
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, 44121 Ferrara, Italy; (M.S.); (F.F.); (L.M.); (G.S.); (R.C.)
| | - Lorenza Marvelli
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, 44121 Ferrara, Italy; (M.S.); (F.F.); (L.M.); (G.S.); (R.C.)
| | - Markus Drechsler
- Bavarian Polymer Institute Keylab “Electron and Optical Microscopy”, University of Bayreuth, 95447 Bayreuth, Germany;
| | - Giovanni Reale
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (G.R.); (F.P.); (L.U.); (M.G.)
| | | | | | - Francesca Porto
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (G.R.); (F.P.); (L.U.); (M.G.)
| | - Giorgia Speltri
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, 44121 Ferrara, Italy; (M.S.); (F.F.); (L.M.); (G.S.); (R.C.)
| | - Licia Uccelli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (G.R.); (F.P.); (L.U.); (M.G.)
| | - Melchiore Giganti
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (G.R.); (F.P.); (L.U.); (M.G.)
| | - Alessandra Boschi
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, 44121 Ferrara, Italy; (M.S.); (F.F.); (L.M.); (G.S.); (R.C.)
| | - Rita Cortesi
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, 44121 Ferrara, Italy; (M.S.); (F.F.); (L.M.); (G.S.); (R.C.)
- Biotechnology Inter University Consortium (C.I.B.), Ferrara Section, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
2
|
Phua CS, Moffat B, Paul E, Ang M, Law M, Bertram K, Hutton E. Quantitative analysis of MR T2 relaxation times in neck muscles. Magn Reson Imaging 2023; 103:156-161. [PMID: 37517766 DOI: 10.1016/j.mri.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
T2 relaxation times (T2 times) are different between resting and exercised muscles and between muscles of healthy subjects and subjects with muscle pathology. However, studies specifically focusing on neck muscles are lacking. Furthermore, normative neck muscle T2 times are not well defined and methodology used to analyse T2 times in neck muscles is not robust. We analysed T2 times in key neck muscles and explored factors affecting variability between muscles. 20 healthy subjects were recruited. Two circular regions of interest (ROIs) were drawn in two mutually exclusive regions within neck muscles on T2 weighted images and values averaged. ROI measurements were performed by a co-investigator, supervised by a neuro-radiologist. For the first ten subjects, measurements were done from C1-T1. For the remaining subjects, ROIs were drawn at two pre-determined levels. Two MRIs were repeated at 31 degrees acquisition to evaluate the effect of muscle fibre orientation. ROI values were translated into T2 times. Results showed semispinalis capitis had the longest T2 times (range 46.88-51.42 ms), followed by splenius capitis (range 47.37-48.33 ms), trapezius (range 45.27-47.46 ms), levator scapulae (range 43.17-45.63 ms) and sternocleidomastoid (range 38.45-42.91 ms). T2 times did not vary along length of muscles and were unaffected by muscle fibre orientation (P > 0.05). T2 times of splenius capitis correlated significantly with age at C2/C3 and C5/C6 levels and trapezius at C7/T1 level. Gender did not influence relaxation times (P > 0.05). In conclusion, results of normative neck muscle T2 time values and factors influencing the T2 times could serve as a reference for future MR analysis of neck muscles. The methodology used may also be useful for related studies of neck muscles.
Collapse
Affiliation(s)
- Chun Seng Phua
- Alfred Health, Department of Neurology, Melbourne, Australia; Monash University, Department of Neurosciences, Melbourne, Australia; Universiti Teknologi Mara, Selangor, Malaysia.
| | - Bradford Moffat
- Melbourne Brain Centre Imaging Unit, University of Melbourne, Melbourne, Australia
| | - Eldho Paul
- Alfred Health, Department of Neurology, Melbourne, Australia; Monash University, School of Public Health and Preventive Medicine, Melbourne, Australia
| | - Megan Ang
- Alfred Health, Department of Radiology, Melbourne, Australia
| | - Meng Law
- Monash University, Department of Neurosciences, Melbourne, Australia; Alfred Health, Department of Radiology, Melbourne, Australia
| | - Kelly Bertram
- Alfred Health, Department of Neurology, Melbourne, Australia; Monash University, Department of Neurosciences, Melbourne, Australia
| | - Elspeth Hutton
- Alfred Health, Department of Neurology, Melbourne, Australia; Monash University, Department of Neurosciences, Melbourne, Australia
| |
Collapse
|
3
|
Reale G, Calderoni F, Ghirardi T, Porto F, Illuminati F, Marvelli L, Martini P, Uccelli L, Tonini E, Del Bianco L, Spizzo F, Capozza M, Cazzola E, Carnevale A, Giganti M, Turra A, Esposito J, Boschi A. Development and Evaluation of the Magnetic Properties of a New Manganese (II) Complex: A Potential MRI Contrast Agent. Int J Mol Sci 2023; 24:ijms24043461. [PMID: 36834877 PMCID: PMC9965609 DOI: 10.3390/ijms24043461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Magnetic resonance imaging (MRI) is a non-invasive powerful modern clinical technique that is extensively used for the high-resolution imaging of soft tissues. To obtain high-definition pictures of tissues or of the whole organism this technique is enhanced by the use of contrast agents. Gadolinium-based contrast agents have an excellent safety profile. However, over the last two decades, some specific concerns have surfaced. Mn(II) has different favorable physicochemical characteristics and a good toxicity profile, which makes it a good alternative to the Gd(III)-based MRI contrast agents currently used in clinics. Mn(II)-disubstituted symmetrical complexes containing dithiocarbamates ligands were prepared under a nitrogen atmosphere. The magnetic measurements on Mn complexes were carried out with MRI phantom measurements at 1.5 T with a clinical magnetic resonance. Relaxivity values, contrast, and stability were evaluated by appropriate sequences. Studies conducted to evaluate the properties of paramagnetic imaging in water using a clinical magnetic resonance showed that the contrast, produced by the complex [Mn(II)(L')2] × 2H2O (L' = 1.4-dioxa-8-azaspiro[4.5]decane-8-carbodithioate), is comparable to that produced by gadolinium complexes currently used in medicine as a paramagnetic contrast agent.
Collapse
Affiliation(s)
- Giovanni Reale
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | | | - Teresa Ghirardi
- Legnaro National Laboratories (LNL-INFN), National Institute of Nuclear Physics, 35020 Padua, Italy
| | - Francesca Porto
- Department of Chemical, Pharmaceutical and Agricultural Sciences , University of Ferrara, 44121 Ferrara, Italy
| | | | - Lorenza Marvelli
- Department of Chemical, Pharmaceutical and Agricultural Sciences , University of Ferrara, 44121 Ferrara, Italy
| | - Petra Martini
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Licia Uccelli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Eugenia Tonini
- Medical Physics Unit, University Hospital of Ferrara, 44124 Cona, Italy
| | - Lucia Del Bianco
- Department of Physics and Earth Science, University of Ferrara, 44122 Ferrara, Italy
| | - Federico Spizzo
- Department of Physics and Earth Science, University of Ferrara, 44122 Ferrara, Italy
| | - Martina Capozza
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Emiliano Cazzola
- IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella (VR), 37024 Negrar, Italy
| | - Aldo Carnevale
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Melchiore Giganti
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Alessandro Turra
- Medical Physics Unit, University Hospital of Ferrara, 44124 Cona, Italy
| | - Juan Esposito
- Legnaro National Laboratories (LNL-INFN), National Institute of Nuclear Physics, 35020 Padua, Italy
| | - Alessandra Boschi
- Department of Chemical, Pharmaceutical and Agricultural Sciences , University of Ferrara, 44121 Ferrara, Italy
- Correspondence: ; Tel.: +39-0532-455354
| |
Collapse
|