1
|
Alshahrani AA, Alqarni LS, Alghamdi MD, Alotaibi NF, Moustafa SM, Nassar AM. Phytosynthesis via wasted onion peel extract of samarium oxide/silver core/shell nanoparticles for excellent inhibition of microbes. Heliyon 2024; 10:e24815. [PMID: 38322933 PMCID: PMC10845252 DOI: 10.1016/j.heliyon.2024.e24815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 02/08/2024] Open
Abstract
The aqueous onion peel extract (OPE) was used to synthesize silver nanoparticles (Ag-onion), samarium oxide nanoparticles (Sm2O3-onion), and silver/samarium oxide core/shell nanoparticles (Ag@Sm2O3-onion). The produced nanoparticles were characterized by thermal gravimetric analysis (TGA), infrared spectra (FT-IR), absorption spectra (UV-Vis), energy band gap, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), zeta potential, and transmission electron microscopy (TEM). OPE and NPs were tested for the disinfection of some water microbes. XRD analysis exhibited an amorphous structure of samarium oxide in both Sm2O3-onion and Ag@ Sm2O3-onion. The isolated bacteria from the water sample were Bacillus subtilis (OQ073500) and Escherichia coli (MW534699), while the isolated fungi were Alternaria brassicae (MZ266540), Aspergillus flavus (MT550030), Aspergillus penicillioides (MW957971), Pythium ultimum (MW830915), Verticillium dahlia (MW830379), Fusarium acuminatum (MZ266538), Candida albicans (MW534712), and Candida parapsilosis (MW960416). High levels of antimicrobial activity were seen in both the nanoparticles and the aqueous onion peel extract. Based on experimental results, Ag@Sm2O3 demonstrated the highest activity as an effective disinfectant, indicating the effectiveness of the modification process.
Collapse
Affiliation(s)
- Aisha A. Alshahrani
- Department of Chemistry, Faculty of Science, Al‐Baha University, P.O. Box 1988, Al‐Baha, 65799, Saudi Arabia
| | - Laila S. Alqarni
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Maha D. Alghamdi
- Department of Chemistry, Faculty of Science, Al‐Baha University, P.O. Box 1988, Al‐Baha, 65799, Saudi Arabia
| | - Nasser F. Alotaibi
- Chemistry Department, College of Science, Jouf University, Sakaka, Saudi Arabia
| | | | - Amr M. Nassar
- Chemistry Department, College of Science, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
2
|
Alaithan F, Khalaf MM, Gouda M, Yousef TA, Kenawy SH, Abou-Krisha MM, Abou Taleb MF, Shaaban S, Alkars AM, Abd El-Lateef HM. Improving the Durability of Chitosan Films through Incorporation of Magnesium, Tungsten, and Graphene Oxides for Biomedical Applications. Chem Biodivers 2023; 20:e202301018. [PMID: 37695826 DOI: 10.1002/cbdv.202301018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/02/2023] [Accepted: 09/10/2023] [Indexed: 09/13/2023]
Abstract
Bacterial infections that cause chronic wounds provide a challenge to healthcare worldwide because they frequently impede healing and cause a variety of problems. In this study, loaded with tungsten oxide (WO3 ), Magnesium oxide (MgO), and graphene oxide (GO) on chitosan (CS) membrane, an inexpensive polymer casting method was successfully prepared for wound healing applications. All fabricated composites were characterized by X-ray powder diffraction (XRD), Fourier transforms infrared spectroscopy (FT-IR), and thermogravimetric analysis (TGA). A scanning electron microscope (SEM) was used to study the synthesized film samples' morphology as well as their microstructure. The formed WO3/MgO@CS shows a great enhancement in the UV/VIS analysis with a highly intense peak at 401 nm and a narrow band gap (3.69 eV) compared to pure CS. The enhanced electron-hole pair separation rate is responsible for the WO3/MgO/GO@CS scaffold's antibacterial activity. Additionally, human lung cells were used to determine the average cell viability of nanocomposite scaffolds and reached 121 % of WO3 /MgO/GO@CS nanocomposite, and the IC50 value was found to be 1654 μg/mL. The ability of the scaffold to inhibit the bacteria has been tested against both E. coli and S. aureus. The 4th sample showed an inhibition zone of 11.5±0.5 mm and 13.5±0.5 mm, respectively. These findings demonstrate the enormous potential for WO3 /MgO/GO@CS membrane as wound dressings in the clinical management of bacterially infected wounds.
Collapse
Affiliation(s)
- Fatimah Alaithan
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Mai M Khalaf
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Chemistry Department, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Mohamed Gouda
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - T A Yousef
- College of Science, Chemistry Department, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, KSA
- Department of Toxic and Narcotic Drug, Forensic Medicine, Mansoura Laboratory, Medicolegal organization, Ministry of Justice, Egypt
| | - Sayed H Kenawy
- College of Science, Chemistry Department, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, KSA
- Refractories, Ceramics and Building Materials Department, National Research Center, El-Buhouth St., Dokki, 12622, Giza, Egypt
| | - Mortaga M Abou-Krisha
- College of Science, Chemistry Department, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, KSA
- Department of Chemistry, South Valley University, Qena, 83523, Egypt
| | - Manal F Abou Taleb
- Department of Chemistry, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-kharj, 11942, Saudi Arabia
| | - Saad Shaaban
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Department of Chemistry, Faculty of Science, Mansoura University, 35516, Mansoura, Egypt
| | - Abdullah M Alkars
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Hany M Abd El-Lateef
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Chemistry Department, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| |
Collapse
|
3
|
Taher FA, Gouda M, Khalaf MM, Shaaban S, Al Bosager AYA, Algafly DAA, Mahfouz MK, Abou Taleb MF, Abd El-Lateef HM. Magnesium Ortho-Vanadate/Magnesium Oxide/Graphene Oxide Embedded through Cellulose Acetate-Based Films for Wound Healing Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3009. [PMID: 37109845 PMCID: PMC10143651 DOI: 10.3390/ma16083009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 06/19/2023]
Abstract
A multifunctional nano-films of cellulose acetate (CA)/magnesium ortho-vanadate (MOV)/magnesium oxide/graphene oxide wound coverage was fabricated. Through fabrication, different weights of the previously mentioned ingredients were selected to receive a certain morphological appearance. The composition was confirmed by XRD, FTIR, and EDX techniques. SEM micrograph of Mg3(VO4)2/MgO/GO@CA film depicted that there was a porous surface with flattened rounded MgO grains with an average size of 0.31 µm was observed. Regarding wettability, the binary composition of Mg3(VO4)2@CA occupied the lowest contact angle of 30.15 ± 0.8o, while pure CA represents the highest one at 47.35 ± 0.4°. The cell viability % amongst the usage of 4.9 µg/mL of Mg3(VO4)2/MgO/GO@CA is 95.77 ± 3.2%, while 2.4 µg/mL showed 101.54 ± 2.9%. The higher concentration of 5000 µg/mL exhibited a viability of 19.23%. According to optical results, the refractive index jumped from 1.73 for CA to 1.81 for Mg3(VO4)2/MgO/GO@CA film. The thermogravimetric analysis showed three main stages of degradation. The initial temperature started from room temperature to 289 °C with a weight loss of 13%. On the other hand, the second stage started from the final temperature of the first stage and end at 375 °C with a weight loss of 52%. Finally, the last stage was from 375 to 472 °C with 19% weight loss. The obtained results, such as high hydrophilic behavior, high cell viability, surface roughness, and porosity due to the addition of nanoparticles to the CA membrane, all played a significant role in enhancing the biocompatibility and biological activity of the CA membrane. The enhancements in the CA membrane suggest that it can be utilized in drug delivery and wound healing applications.
Collapse
Affiliation(s)
- Fatemah A. Taher
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (F.A.T.); (M.M.K.); (S.S.)
| | - Mohamed Gouda
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (F.A.T.); (M.M.K.); (S.S.)
| | - Mai M. Khalaf
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (F.A.T.); (M.M.K.); (S.S.)
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Saad Shaaban
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (F.A.T.); (M.M.K.); (S.S.)
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | | | - Dania A. A. Algafly
- Alkifah Academy Private School, Al-Ahsa 31982, Saudi Arabia; (A.Y.A.A.B.); (D.A.A.A.)
| | - Metwally K. Mahfouz
- Department of Biochemistry, Animal Health Research Institute, Sohag Branch, Agriculture Research Center, Sohag 82524, Egypt
| | - Manal F. Abou Taleb
- Department of Chemistry, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Hany M. Abd El-Lateef
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (F.A.T.); (M.M.K.); (S.S.)
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| |
Collapse
|