1
|
Li Y, Xiong X, Liu X, Wu Y, Li X, Liu B, Lin B, Li Y, Xu B. An interpretable deep learning model for detecting BRCA pathogenic variants of breast cancer from hematoxylin and eosin-stained pathological images. PeerJ 2024; 12:e18098. [PMID: 39484212 PMCID: PMC11526788 DOI: 10.7717/peerj.18098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/26/2024] [Indexed: 11/03/2024] Open
Abstract
Background Determining the status of breast cancer susceptibility genes (BRCA) is crucial for guiding breast cancer treatment. Nevertheless, the need for BRCA genetic testing among breast cancer patients remains unmet due to high costs and limited resources. This study aimed to develop a Bi-directional Self-Attention Multiple Instance Learning (BiAMIL) algorithm to detect BRCA status from hematoxylin and eosin (H&E) pathological images. Methods A total of 319 histopathological slides from 254 breast cancer patients were included, comprising two dependent cohorts. Following image pre-processing, 633,484 tumor tiles from the training dataset were employed to train the self-developed deep-learning model. The performance of the network was evaluated in the internal and external test sets. Results BiAMIL achieved AUC values of 0.819 (95% CI [0.673-0.965]) in the internal test set, and 0.817 (95% CI [0.712-0.923]) in the external test set. To explore the relationship between BRCA status and interpretable morphological features in pathological images, we utilized Class Activation Mapping (CAM) technique and cluster analysis to investigate the connections between BRCA gene mutation status and tissue and cell features. Significantly, we observed that tumor-infiltrating lymphocytes and the morphological characteristics of tumor cells appeared to be potential features associated with BRCA status. Conclusions An interpretable deep neural network model based on the attention mechanism was developed to predict the BRCA status in breast cancer. Keywords: Breast cancer, BRCA, deep learning, self-attention, interpretability.
Collapse
Affiliation(s)
- Yi Li
- School of Medicine, Chongqing University, Chongqing, China
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiaomin Xiong
- School of Medicine, Chongqing University, Chongqing, China
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiaohua Liu
- Bioengineering College of Chongqing University, Chongqing, China
| | - Yihan Wu
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiaoju Li
- Department of Pathology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Bo Liu
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer, Chongqing University Cancer Hospital, Chongqing, China
| | - Bo Lin
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer, Chongqing University Cancer Hospital, Chongqing, China
| | - Yu Li
- Department of Pathology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Bo Xu
- School of Medicine, Chongqing University, Chongqing, China
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
2
|
Han Z, Wang Y, Wang W, Zhang T, Wang J, Ma X, Men K, Shi A, Gao Y, Bi N. Artificial intelligence-assisted delineation for postoperative radiotherapy in patients with lung cancer: a prospective, multi-center, cohort study. Front Oncol 2024; 14:1388297. [PMID: 39575415 PMCID: PMC11579590 DOI: 10.3389/fonc.2024.1388297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/07/2024] [Indexed: 11/24/2024] Open
Abstract
Background Postoperative radiotherapy (PORT) is an important treatment for lung cancer patients with poor prognostic features, but accurate delineation of the clinical target volume (CTV) and organs at risk (OARs) is challenging and time-consuming. Recently, deep learning-based artificial intelligent (AI) algorithms have shown promise in automating this process. Objective To evaluate the clinical utility of a deep learning-based auto-segmentation model for AI-assisted delineating CTV and OARs in patients undergoing PORT, and to compare its accuracy and efficiency with manual delineation by radiation oncology residents from different levels of medical institutions. Methods We previously developed an AI auto-segmentation model in 664 patients and validated its contouring performance in 149 patients. In this multi-center, validation trial, we prospectively involved 55 patients and compared the accuracy and efficiency of 3 contouring methods: (i) unmodified AI auto-segmentation, (ii) fully manual delineation by junior radiation oncology residents from different medical centers, and (iii) manual modifications based on AI segmentation model (AI-assisted delineation). The ground truth of CTV and OARs was delineated by 3 senior radiation oncologists. Contouring accuracy was evaluated by Dice similarity coefficient (DSC), Hausdorff distance (HD), and mean distance of agreement (MDA). Inter-observer consistency was assessed by volume and coefficient of variation (CV). Results AI-assisted delineation achieved significantly higher accuracy compared to unmodified AI auto-contouring and fully manual delineation by radiation oncologists, with median HD, MDA, and DCS values of 20.03 vs. 21.55 mm, 2.57 vs. 3.06 mm, 0.745 vs. 0.703 (all P<0.05) for CTV, respectively. The results of OARs contours were similar. CV for OARs was reduced by approximately 50%. In addition to better contouring accuracy, the AI-assisted delineation significantly decreased the consuming time and improved the efficiency. Conclusion AI-assisted CTV and OARs delineation for PORT significantly improves the accuracy and efficiency in the real-world setting, compared with pure AI auto-segmentation or fully manual delineation by junior oncologists. AI-assisted approach has promising clinical potential to enhance the quality of radiotherapy planning and further improve treatment outcomes of patients with lung cancer.
Collapse
Affiliation(s)
- Ziming Han
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenqing Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Zhang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianyang Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangyu Ma
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kuo Men
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Anhui Shi
- Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yuyan Gao
- Department of Radiation Therapy, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| | - Nan Bi
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Bonada M, Rossi LF, Carone G, Panico F, Cofano F, Fiaschi P, Garbossa D, Di Meco F, Bianconi A. Deep Learning for MRI Segmentation and Molecular Subtyping in Glioblastoma: Critical Aspects from an Emerging Field. Biomedicines 2024; 12:1878. [PMID: 39200342 PMCID: PMC11352020 DOI: 10.3390/biomedicines12081878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/02/2024] Open
Abstract
Deep learning (DL) has been applied to glioblastoma (GBM) magnetic resonance imaging (MRI) assessment for tumor segmentation and inference of molecular, diagnostic, and prognostic information. We comprehensively overviewed the currently available DL applications, critically examining the limitations that hinder their broader adoption in clinical practice and molecular research. Technical limitations to the routine application of DL include the qualitative heterogeneity of MRI, related to different machinery and protocols, and the absence of informative sequences, possibly compensated by artificial image synthesis. Moreover, taking advantage from the available benchmarks of MRI, algorithms should be trained on large amounts of data. Additionally, the segmentation of postoperative imaging should be further addressed to limit the inaccuracies previously observed for this task. Indeed, molecular information has been promisingly integrated in the most recent DL tools, providing useful prognostic and therapeutic information. Finally, ethical concerns should be carefully addressed and standardized to allow for data protection. DL has provided reliable results for GBM assessment concerning MRI analysis and segmentation, but the routine clinical application is still limited. The current limitations could be prospectively addressed, giving particular attention to data collection, introducing new technical advancements, and carefully regulating ethical issues.
Collapse
Affiliation(s)
- Marta Bonada
- Neurosurgery Unit, Department of Neuroscience, University of Turin, Via Cherasco 15, 10126 Turin, Italy; (M.B.); (F.C.); (D.G.)
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (G.C.)
| | - Luca Francesco Rossi
- Department of Informatics, Polytechnic University of Turin, Corso Castelfidardo 39, 10129 Turin, Italy;
| | - Giovanni Carone
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (G.C.)
| | - Flavio Panico
- Neurosurgery Unit, Department of Neuroscience, University of Turin, Via Cherasco 15, 10126 Turin, Italy; (M.B.); (F.C.); (D.G.)
| | - Fabio Cofano
- Neurosurgery Unit, Department of Neuroscience, University of Turin, Via Cherasco 15, 10126 Turin, Italy; (M.B.); (F.C.); (D.G.)
| | - Pietro Fiaschi
- Division of Neurosurgery, Ospedale Policlinico San Martino, IRCCS for Oncology and Neurosciences, Largo Rosanna Benzi 10, 16132 Genoa, Italy;
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genoa, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Diego Garbossa
- Neurosurgery Unit, Department of Neuroscience, University of Turin, Via Cherasco 15, 10126 Turin, Italy; (M.B.); (F.C.); (D.G.)
| | - Francesco Di Meco
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (G.C.)
| | - Andrea Bianconi
- Neurosurgery Unit, Department of Neuroscience, University of Turin, Via Cherasco 15, 10126 Turin, Italy; (M.B.); (F.C.); (D.G.)
- Division of Neurosurgery, Ospedale Policlinico San Martino, IRCCS for Oncology and Neurosciences, Largo Rosanna Benzi 10, 16132 Genoa, Italy;
| |
Collapse
|
4
|
Li M, Xiong X, Xu B, Dickson C. Chinese Oncologists' Perspectives on Integrating AI into Clinical Practice: Cross-Sectional Survey Study. JMIR Form Res 2024; 8:e53918. [PMID: 38838307 PMCID: PMC11187515 DOI: 10.2196/53918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/21/2024] [Accepted: 04/03/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND The rapid development of artificial intelligence (AI) has brought significant interest to its potential applications in oncology. Although AI-powered tools are already being implemented in some Chinese hospitals, their integration into clinical practice raises several concerns for Chinese oncologists. OBJECTIVE This study aims to explore the concerns of Chinese oncologists regarding the integration of AI into clinical practice and to identify the factors influencing these concerns. METHODS A total of 228 Chinese oncologists participated in a cross-sectional web-based survey from April to June in 2023 in mainland China. The survey gauged their worries about AI with multiple-choice questions. The survey evaluated their views on the statements of "The impact of AI on the doctor-patient relationship" and "AI will replace doctors." The data were analyzed using descriptive statistics, and variate analyses were used to find correlations between the oncologists' backgrounds and their concerns. RESULTS The study revealed that the most prominent concerns were the potential for AI to mislead diagnosis and treatment (163/228, 71.5%); an overreliance on AI (162/228, 71%); data and algorithm bias (123/228, 54%); issues with data security and patient privacy (123/228, 54%); and a lag in the adaptation of laws, regulations, and policies in keeping up with AI's development (115/228, 50.4%). Oncologists with a bachelor's degree expressed heightened concerns related to data and algorithm bias (34/49, 69%; P=.03) and the lagging nature of legal, regulatory, and policy issues (32/49, 65%; P=.046). Regarding AI's impact on doctor-patient relationships, 53.1% (121/228) saw a positive impact, whereas 35.5% (81/228) found it difficult to judge, 9.2% (21/228) feared increased disputes, and 2.2% (5/228) believed that there is no impact. Although sex differences were not significant (P=.08), perceptions varied-male oncologists tended to be more positive than female oncologists (74/135, 54.8% vs 47/93, 50%). Oncologists with a bachelor's degree (26/49, 53%; P=.03) and experienced clinicians (≥21 years; 28/56, 50%; P=.054). found it the hardest to judge. Those with IT experience were significantly more positive (25/35, 71%) than those without (96/193, 49.7%; P=.02). Opinions regarding the possibility of AI replacing doctors were diverse, with 23.2% (53/228) strongly disagreeing, 14% (32/228) disagreeing, 29.8% (68/228) being neutral, 16.2% (37/228) agreeing, and 16.7% (38/228) strongly agreeing. There were no significant correlations with demographic and professional factors (all P>.05). CONCLUSIONS Addressing oncologists' concerns about AI requires collaborative efforts from policy makers, developers, health care professionals, and legal experts. Emphasizing transparency, human-centered design, bias mitigation, and education about AI's potential and limitations is crucial. Through close collaboration and a multidisciplinary strategy, AI can be effectively integrated into oncology, balancing benefits with ethical considerations and enhancing patient care.
Collapse
Affiliation(s)
- Ming Li
- Department of Health Policy Management, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - XiaoMin Xiong
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital, Chongqing University School of Medicine, Chongqing, China
| | - Bo Xu
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital, Chongqing University School of Medicine, Chongqing, China
- Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Cancer Research Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Conan Dickson
- Department of Health Policy Management, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
5
|
Giannitto C, Carnicelli G, Lusi S, Ammirabile A, Casiraghi E, De Virgilio A, Esposito AA, Farina D, Ferreli F, Franzese C, Frigerio GM, Lo Casto A, Malvezzi L, Lorini L, Othman AE, Preda L, Scorsetti M, Bossi P, Mercante G, Spriano G, Balzarini L, Francone M. The Use of Artificial Intelligence in Head and Neck Cancers: A Multidisciplinary Survey. J Pers Med 2024; 14:341. [PMID: 38672968 PMCID: PMC11050769 DOI: 10.3390/jpm14040341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Artificial intelligence (AI) approaches have been introduced in various disciplines but remain rather unused in head and neck (H&N) cancers. This survey aimed to infer the current applications of and attitudes toward AI in the multidisciplinary care of H&N cancers. From November 2020 to June 2022, a web-based questionnaire examining the relationship between AI usage and professionals' demographics and attitudes was delivered to different professionals involved in H&N cancers through social media and mailing lists. A total of 139 professionals completed the questionnaire. Only 49.7% of the respondents reported having experience with AI. The most frequent AI users were radiologists (66.2%). Significant predictors of AI use were primary specialty (V = 0.455; p < 0.001), academic qualification and age. AI's potential was seen in the improvement of diagnostic accuracy (72%), surgical planning (64.7%), treatment selection (57.6%), risk assessment (50.4%) and the prediction of complications (45.3%). Among participants, 42.7% had significant concerns over AI use, with the most frequent being the 'loss of control' (27.6%) and 'diagnostic errors' (57.0%). This survey reveals limited engagement with AI in multidisciplinary H&N cancer care, highlighting the need for broader implementation and further studies to explore its acceptance and benefits.
Collapse
Affiliation(s)
- Caterina Giannitto
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy (G.M.F.); (L.L.); (P.B.)
- Department of Diagnostic and Interventional Radiology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
| | - Giorgia Carnicelli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy (G.M.F.); (L.L.); (P.B.)
- Department of Diagnostic and Interventional Radiology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
| | - Stefano Lusi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy (G.M.F.); (L.L.); (P.B.)
- Department of Diagnostic and Interventional Radiology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
| | - Angela Ammirabile
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy (G.M.F.); (L.L.); (P.B.)
- Department of Diagnostic and Interventional Radiology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
| | - Elena Casiraghi
- Department of Computer Science “Giovanni degli Antoni”, University of Milan, Via Celoria 18, 20133 Milan, Italy;
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 717 Potter Street, Berkeley, CA 94710, USA
| | - Armando De Virgilio
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy (G.M.F.); (L.L.); (P.B.)
- Otorhinolaryngology Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
| | | | - Davide Farina
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia ASST Spedali Civili of Brescia, 25123 Brescia, Italy;
| | - Fabio Ferreli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy (G.M.F.); (L.L.); (P.B.)
- Otorhinolaryngology Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
| | - Ciro Franzese
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy (G.M.F.); (L.L.); (P.B.)
- Department of Radiotherapy and Radiosurgery IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
| | - Gian Marco Frigerio
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy (G.M.F.); (L.L.); (P.B.)
- Department of Diagnostic and Interventional Radiology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
| | - Antonio Lo Casto
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University Hospital of Palermo, 90127 Palermo, Italy;
| | - Luca Malvezzi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy (G.M.F.); (L.L.); (P.B.)
- Otorhinolaryngology Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
| | - Luigi Lorini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy (G.M.F.); (L.L.); (P.B.)
- Medical Oncology and Hematology Unit IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
| | - Ahmed E. Othman
- Department of Neuroradiology, University Medical Center Mainz, 55131 Mainz, Germany;
| | - Lorenzo Preda
- Radiology Unit, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Marta Scorsetti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy (G.M.F.); (L.L.); (P.B.)
- Department of Radiotherapy and Radiosurgery IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
| | - Paolo Bossi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy (G.M.F.); (L.L.); (P.B.)
- Otorhinolaryngology Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
| | - Giuseppe Mercante
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy (G.M.F.); (L.L.); (P.B.)
- Otorhinolaryngology Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
| | - Giuseppe Spriano
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy (G.M.F.); (L.L.); (P.B.)
- Otorhinolaryngology Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
| | - Luca Balzarini
- Department of Diagnostic and Interventional Radiology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
| | - Marco Francone
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy (G.M.F.); (L.L.); (P.B.)
- Department of Diagnostic and Interventional Radiology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
| |
Collapse
|
6
|
Hosseini MS. Febrile neutropenia: Clinical approach to a controversial presentation of the COVID-19 era. JOURNAL OF THE NATIONAL CANCER CENTER 2023; 3:251-253. [PMID: 39036663 PMCID: PMC11256527 DOI: 10.1016/j.jncc.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 03/09/2024] Open
Affiliation(s)
- Mohammad-Salar Hosseini
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Evidence-Based Medicine, Iranian EBM Center: A JBI Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Ibrahim M, Muhammad Q, Zamarud A, Eiman H, Fazal F. Navigating Glioblastoma Diagnosis and Care: Transformative Pathway of Artificial Intelligence in Integrative Oncology. Cureus 2023; 15:e44214. [PMID: 37645667 PMCID: PMC10461885 DOI: 10.7759/cureus.44214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2023] [Indexed: 08/31/2023] Open
Abstract
Glioblastoma multiforme (GBM), an aggressive brain tumor with high recurrence rates and limited survival, presents a pressing need for accurate and timely diagnosis. The interpretation of MRI can be complex and subjective. Artificial Intelligence (AI) has emerged as a promising solution, leveraging its potential to revolutionize diagnostic imaging. Radiomics treats images as numerical data and extracts intricate features from images, including subtle patterns that elude human observation. By integrating radiomics with genetics through radiogenomics, AI aids in tumor classification, identifying specific mutations and genetic traits. Furthermore, AI's impact extends to treatment planning. GBM's heterogeneity and infiltrative growth complicate delineation for treatment purposes. AI-driven segmentation techniques provide accurate 2D and 3D delineations, optimizing surgical and radiotherapeutic planning. Predictive features like angiogenesis and tumor volumes enable AI models to anticipate postop complications and survival rates. It can also aid in distinguishing posttreatment radiation effects from tumor recurrence. Despite these merits, concerns linger. The quality of medical data, transparency of AI techniques, and ethical considerations require thorough addressing. Collaborative efforts between neurosurgeons, data scientists, ethicists, and regulatory bodies are imperative for AI's ethical development and implementation. Transparent communication and patient consent are vital, fostering trust and understanding in AI-augmented medical care. In conclusion, AI holds immense promise in diagnosing and managing aggressive brain tumors like GBM. Its ability to analyze complex radiological data, integrate genetics, and aid in treatment planning underscores its potential to transform patient care. However, carefully considering ethical, technical, and regulatory aspects is crucial for realizing AI's full potential in oncology.
Collapse
Affiliation(s)
- Muhammad Ibrahim
- Department of Medicine, Rawalpindi Medical University, Rawalpindi, PAK
| | | | - Aroosa Zamarud
- Department of Neurosurgery, Stanford Health Care, Palo Alto, USA
| | - Hadia Eiman
- Department of Medicine, Rawalpindi Medical University, Rawalpindi, PAK
| | - Faizan Fazal
- Department of Medicine, Rawalpindi Medical University, Rawalpindi, PAK
| |
Collapse
|