1
|
Dolique T, Baudet S, Charron F, Ferent J. A central role for Numb/Nbl in multiple Shh-mediated axon repulsion processes. iScience 2025; 28:112293. [PMID: 40276749 PMCID: PMC12018091 DOI: 10.1016/j.isci.2025.112293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/12/2025] [Accepted: 03/21/2025] [Indexed: 04/26/2025] Open
Abstract
Sonic hedgehog (Shh) is an axon guidance molecule that can act as either a chemorepellent or a chemoattractant, depending on the neuron type and their developmental stage. In the developing spinal cord, Shh initially attracts commissural axons to the floor plate and later repels them after they cross the midline. In the developing visual system, Shh repels ipsilateral retinal ganglion cell (iRGC) axons at the optic chiasm. Although Shh requires the endocytic adaptor Numb for attraction of spinal commissural axons, the molecular mechanisms underlying Shh dual function in attraction and repulsion are still unclear. In this study, we show that Numb is essential for two Shh-mediated repulsion processes: iRGC axon repulsion at the optic chiasm and antero-posterior commissural axon repulsion in the spinal cord. Therefore, Numb is required for Shh-mediated attraction and repulsion. These results position Numb as a central player in the non-canonical Shh signaling pathway mediating axon repulsion.
Collapse
Affiliation(s)
- Tiphaine Dolique
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada
- Department of Anatomy and Cell Biology, Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada
- Inovarion, 75005 Paris, France
| | - Sarah Baudet
- Institut du Fer à Moulin, Inserm, Sorbonne Université, Paris, France
- Sorbonne Université, CNRS, Inserm, Center of Neuroscience Neuro-SU, 75005 Paris, France
- Sorbonne Université, CNRS, Inserm, Institut de Biologie Paris-Seine, IBPS, 75005 Paris, France
| | - Frederic Charron
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada
- Department of Anatomy and Cell Biology, Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada
- Department of Medicine, University of Montreal, Montreal QC H3T 1J4, Canada
| | - Julien Ferent
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada
- Institut du Fer à Moulin, Inserm, Sorbonne Université, Paris, France
- Sorbonne Université, CNRS, Inserm, Center of Neuroscience Neuro-SU, 75005 Paris, France
- Sorbonne Université, CNRS, Inserm, Institut de Biologie Paris-Seine, IBPS, 75005 Paris, France
| |
Collapse
|
2
|
Negueruela S, Morenilla-Palao C, Sala S, Ordoño P, Herrera M, Coca Y, López-Cascales MT, Florez-Paz D, Gomis A, Herrera E. Proper Frequency of Perinatal Retinal Waves Is Essential for the Precise Wiring of Visual Axons in Nonimage-Forming Nuclei. J Neurosci 2024; 44:e1408232024. [PMID: 39151955 PMCID: PMC11450533 DOI: 10.1523/jneurosci.1408-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024] Open
Abstract
The development of the visual system is a complex and multistep process characterized by the precise wiring of retinal ganglion cell (RGC) axon terminals with their corresponding neurons in the visual nuclei of the brain. Upon reaching primary image-forming nuclei (IFN), such as the superior colliculus and the lateral geniculate nucleus, RGC axons undergo extensive arborization that refines over the first few postnatal weeks. The molecular mechanisms driving this activity-dependent remodeling process, which is influenced by waves of spontaneous activity in the developing retina, are still not well understood. In this study, by manipulating the activity of RGCs in mice from either sex and analyzing their transcriptomic profiles before eye-opening, we identified the Type I membrane protein synaptotagmin 13 (Syt13) as involved in spontaneous activity-dependent remodeling. Using these mice, we also explored the impact of spontaneous retinal activity on the development of other RGC recipient targets such as nonimage-forming (NIF) nuclei and demonstrated that proper frequency and duration of retinal waves occurring prior to visual experience are essential for shaping the connectivity of the NIF circuit. Together, these findings contribute to a deeper understanding of the molecular and physiological mechanisms governing activity-dependent axon refinement during the assembly of the visual circuit.
Collapse
Affiliation(s)
- Santiago Negueruela
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), San Juan de Alicante 03550, Spain
| | - Cruz Morenilla-Palao
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), San Juan de Alicante 03550, Spain
| | - Salvador Sala
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), San Juan de Alicante 03550, Spain
| | - Patricia Ordoño
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), San Juan de Alicante 03550, Spain
| | - Macarena Herrera
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), San Juan de Alicante 03550, Spain
| | - Yaiza Coca
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), San Juan de Alicante 03550, Spain
| | - Maria Teresa López-Cascales
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), San Juan de Alicante 03550, Spain
| | - Danny Florez-Paz
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), San Juan de Alicante 03550, Spain
| | - Ana Gomis
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), San Juan de Alicante 03550, Spain
| | - Eloísa Herrera
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), San Juan de Alicante 03550, Spain
| |
Collapse
|
3
|
Sun C, Zheng S, Perry JSA, Norris GT, Cheng M, Kong F, Skyberg R, Cang J, Erisir A, Kipnis J, Hill DL. Maternal diet during early gestation influences postnatal taste activity-dependent pruning by microglia. J Exp Med 2023; 220:e20212476. [PMID: 37733279 PMCID: PMC10512853 DOI: 10.1084/jem.20212476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/08/2023] [Accepted: 08/02/2023] [Indexed: 09/22/2023] Open
Abstract
A key process in central sensory circuit development involves activity-dependent pruning of exuberant terminals. Here, we studied gustatory terminal field maturation in the postnatal mouse nucleus of the solitary tract (NST) during normal development and in mice where their mothers were fed a low NaCl diet for a limited period soon after conception. Pruning of terminal fields of gustatory nerves in controls involved the complement system and is likely driven by NaCl-elicited taste activity. In contrast, offspring of mothers with an early dietary manipulation failed to prune gustatory terminal fields even though peripheral taste activity developed normally. The ability to prune in these mice was rescued by activating myeloid cells postnatally, and conversely, pruning was arrested in controls with the loss of myeloid cell function. The altered pruning and myeloid cell function appear to be programmed before the peripheral gustatory system is assembled and corresponds to the embryonic period when microglia progenitors derived from the yolk sac migrate to and colonize the brain.
Collapse
Affiliation(s)
- Chengsan Sun
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Shuqiu Zheng
- Division of Nephrology, University School of Medicine, Charlottesville, VA, USA
| | - Justin S A Perry
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center , New York, NY, USA
| | - Geoffrey T Norris
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Mei Cheng
- Department of Health and Disease Management, Binzhou Medical University, Yantai, China
| | - Fanzhen Kong
- Department of Anatomy, Binzhou Medical University, Yantai, China
| | - Rolf Skyberg
- Institute of Neuroscience, University of Oregon , Eugene, OR, USA
| | - Jianhua Cang
- Departments of Psychology and Biology, University of Virginia, Charlottesville, VA, USA
| | - Alev Erisir
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Jonathan Kipnis
- Department of Pathology and Immunology, Washington University, St. Louis, MO, USA
| | - David L Hill
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
4
|
Tzeng CP, Whitwam T, Boxer LD, Li E, Silberfeld A, Trowbridge S, Mei K, Lin C, Shamah R, Griffith EC, Renthal W, Chen C, Greenberg ME. Activity-induced MeCP2 phosphorylation regulates retinogeniculate synapse refinement. Proc Natl Acad Sci U S A 2023; 120:e2310344120. [PMID: 37871205 PMCID: PMC10623012 DOI: 10.1073/pnas.2310344120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/25/2023] [Indexed: 10/25/2023] Open
Abstract
Mutations in MECP2 give rise to Rett syndrome (RTT), an X-linked neurodevelopmental disorder that results in broad cognitive impairments in females. While the exact etiology of RTT symptoms remains unknown, one possible explanation for its clinical presentation is that loss of MECP2 causes miswiring of neural circuits due to defects in the brain's capacity to respond to changes in neuronal activity and sensory experience. Here, we show that MeCP2 is phosphorylated at four residues in the mouse brain (S86, S274, T308, and S421) in response to neuronal activity, and we generate a quadruple knock-in (QKI) mouse line in which all four activity-dependent sites are mutated to alanines to prevent phosphorylation. QKI mice do not display overt RTT phenotypes or detectable gene expression changes in two brain regions. However, electrophysiological recordings from the retinogeniculate synapse of QKI mice reveal that while synapse elimination is initially normal at P14, it is significantly compromised at P20. Notably, this phenotype is distinct from the synapse refinement defect previously reported for Mecp2 null mice, where synapses initially refine but then regress after the third postnatal week. We thus propose a model in which activity-induced phosphorylation of MeCP2 is critical for the proper timing of retinogeniculate synapse maturation specifically during the early postnatal period.
Collapse
Affiliation(s)
| | - Tess Whitwam
- Department of Neurobiology, Harvard Medical School, Boston, MA02115
- Program in Neuroscience, Harvard Medical School, Boston, MA02115
| | - Lisa D. Boxer
- Department of Neurobiology, Harvard Medical School, Boston, MA02115
| | - Emmy Li
- Department of Neurobiology, Harvard Medical School, Boston, MA02115
| | | | - Sara Trowbridge
- Department of Neurobiology, Harvard Medical School, Boston, MA02115
| | - Kevin Mei
- Department of Neurobiology, Harvard Medical School, Boston, MA02115
| | - Cindy Lin
- Department of Neurobiology, Harvard Medical School, Boston, MA02115
| | - Rebecca Shamah
- Department of Neurobiology, Harvard Medical School, Boston, MA02115
| | - Eric C. Griffith
- Department of Neurobiology, Harvard Medical School, Boston, MA02115
| | - William Renthal
- Department of Neurobiology, Harvard Medical School, Boston, MA02115
| | - Chinfei Chen
- Department of Neurology, F.M. Kirby Neurobiology Center, Children’s Hospital, Boston, MA02115
| | | |
Collapse
|
5
|
Li H, Zhou Q, Chen Y, Hu H, Gao L, Takahata T. Three-dimensional topography of eye-specific domains in the lateral geniculate nucleus of pigmented and albino rats. Cereb Cortex 2023; 33:9599-9615. [PMID: 37415460 DOI: 10.1093/cercor/bhad229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 07/08/2023] Open
Abstract
We previously revealed the presence of ocular dominance columns (ODCs) in the primary visual cortex (V1) of pigmented rats. On the other hand, previous studies have shown that the ipsilateral-eye domains of the dorsal lateral geniculate nucleus (dLGN) are segregated into a handful of patches in pigmented rats. To investigate the three-dimensional (3D) topography of the eye-specific patches of the dLGN and its relationship with ODCs, we injected different tracers into the right and left eyes and examined strain difference, development, and plasticity of the patches. Furthermore, we applied the tissue clearing technique to reveal the 3D morphology of the LGN and were able to observe entire retinotopic map of the rat dLGN at a certain angle. Our results show that the ipsilateral domains of the dLGN appear mesh-like at any angle and are developed at around time of eye-opening. Their development was moderately affected by abnormal visual experience, but the patch formation was not disrupted. In albino Wistar rats, ipsilateral patches were observed in the dLGN, but they were much fewer, especially near the central visual field. These results provide insights into how ipsilateral patches of the dLGN arise, and how the geniculo-cortical arrangement is different between rodents and primates.
Collapse
Affiliation(s)
- Hangqi Li
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310029, P. R. China
- Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310029, P. R. China
| | - Qiuying Zhou
- Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310029, P. R. China
- Department of Neurology and Ophthalmology of the Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310029, P. R. China
| | - Yanlu Chen
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, P.R. China
| | - Huijie Hu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, P.R. China
| | - Liang Gao
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, P.R. China
| | - Toru Takahata
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310029, P. R. China
- Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310029, P. R. China
- Department of Neurology and Ophthalmology of the Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310029, P. R. China
| |
Collapse
|
6
|
Tzeng CP, Whitwam T, Boxer LD, Li E, Silberfeld A, Trowbridge S, Mei K, Lin C, Shamah R, Griffith EC, Renthal W, Chen C, Greenberg ME. Activity-Induced MeCP2 Phosphorylation Regulates Retinogeniculate Synapse Refinement. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.03.547549. [PMID: 37461668 PMCID: PMC10349931 DOI: 10.1101/2023.07.03.547549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Mutations in MECP2 give rise to Rett syndrome (RTT), an X-linked neurodevelopmental disorder that results in broad cognitive impairments in females. While the exact etiology of RTT symptoms remains unknown, one possible explanation for its clinical presentation is that loss of MeCP2 causes miswiring of neural circuits due to defects in the brain's capacity to respond to changes in neuronal activity and sensory experience. Here we show that MeCP2 is phosphorylated at four residues in the brain (S86, S274, T308, and S421) in response to neuronal activity, and we generate a quadruple knock-in (QKI) mouse line in which all four activity-dependent sites are mutated to alanines to prevent phosphorylation. QKI mice do not display overt RTT phenotypes or detectable gene expression changes in two brain regions. However, electrophysiological recordings from the retinogeniculate synapse of QKI mice reveal that while synapse elimination is initially normal at P14, it is significantly compromised at P20. Notably, this phenotype is distinct from that previously reported for Mecp2 null mice, where synapses initially refine but then regress after the third postnatal week. We thus propose a model in which activity-induced phosphorylation of MeCP2 is critical for the proper timing of retinogeniculate synapse maturation specifically during the early postnatal period. SIGNIFICANCE STATEMENT Rett syndrome (RTT) is an X-linked neurodevelopmental disorder that predominantly affects girls. RTT is caused by loss of function mutations in a single gene MeCP2. Girls with RTT develop normally during their first year of life, but then experience neurological abnormalities including breathing and movement difficulties, loss of speech, and seizures. This study investigates the function of the MeCP2 protein in the brain, and how MeCP2 activity is modulated by sensory experience in early life. Evidence is presented that sensory experience affects MeCP2 function, and that this is required for synaptic pruning in the brain. These findings provide insight into MeCP2 function, and clues as to what goes awry in the brain when the function of MeCP2 is disrupted.
Collapse
|
7
|
Li T, Luo R, Schmidt R, D'Alessandro N, Kishore P, Zhu B, Yu D, Piao X. GPR56 S4 variant is required for microglia-mediated synaptic pruning. Glia 2023; 71:560-570. [PMID: 36336959 DOI: 10.1002/glia.24293] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022]
Abstract
ADGRG1 (also called GPR56) plays critical roles in brain development and wiring, including cortical lamination, central nervous system (CNS) myelination, and developmental synaptic refinement. However, the underlying mechanism(s) in mediating such diverse functions is not fully understood. Here, we investigate the function of one specific alternative splicing isoform, the GPR56 splice variant 4 (S4), to test the hypothesis that alternative splicing variants of GPR56 in part support its different functions. We created a new transgenic mouse line, Gpr56∆S4 , using CRISPR/Cas9, in which GPR56 S4 was deleted. Detailed phenotype analyses show that Gpr56∆S4 mice manifest no deficits in cortical architecture and CNS myelination compared to controls. Excitingly, they present significantly increased synapse densities, decreased synapse engulfment by microglia, and impaired eye-segregation. Taken together, our findings support that the GPR56 S4 variant is dispensable for cortical development and CNS myelination but is essential for microglia-mediated synaptic pruning.
Collapse
Affiliation(s)
- Tao Li
- Weill Institute for Neurosciences, University of California, San Francisco (UCSF), San Francisco, California, USA.,Newborn Brain Research Institute, University of California, San Francisco (UCSF), San Francisco, California, USA
| | - Rong Luo
- Sanofi, Framingham, Massachusetts, USA
| | - Rachael Schmidt
- Weill Institute for Neurosciences, University of California, San Francisco (UCSF), San Francisco, California, USA.,Newborn Brain Research Institute, University of California, San Francisco (UCSF), San Francisco, California, USA
| | - Nicholas D'Alessandro
- Weill Institute for Neurosciences, University of California, San Francisco (UCSF), San Francisco, California, USA.,Newborn Brain Research Institute, University of California, San Francisco (UCSF), San Francisco, California, USA
| | - Priya Kishore
- Weill Institute for Neurosciences, University of California, San Francisco (UCSF), San Francisco, California, USA.,Newborn Brain Research Institute, University of California, San Francisco (UCSF), San Francisco, California, USA
| | - Beika Zhu
- Weill Institute for Neurosciences, University of California, San Francisco (UCSF), San Francisco, California, USA.,Newborn Brain Research Institute, University of California, San Francisco (UCSF), San Francisco, California, USA
| | - Diankun Yu
- Weill Institute for Neurosciences, University of California, San Francisco (UCSF), San Francisco, California, USA.,Newborn Brain Research Institute, University of California, San Francisco (UCSF), San Francisco, California, USA
| | - Xianhua Piao
- Weill Institute for Neurosciences, University of California, San Francisco (UCSF), San Francisco, California, USA.,Newborn Brain Research Institute, University of California, San Francisco (UCSF), San Francisco, California, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco (UCSF), San Francisco, California, USA.,Division of Neonatology, Department of Pediatrics, University of California, San Francisco (UCSF), San Francisco, California, USA
| |
Collapse
|
8
|
Hetsch F, Wang D, Chen X, Zhang J, Aslam M, Kegel M, Tonner H, Grus F, von Engelhardt J. CKAMP44 controls synaptic function and strength of relay neurons during early development of the dLGN. J Physiol 2022; 600:3549-3565. [PMID: 35770953 DOI: 10.1113/jp283172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/27/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Expression of CKAMP44 starts early during development of the dLGN and remains stable in relay neurons and interneurons. Genetic deletion of CKAMP44 decreases synaptic strength and increases silent synapse number in dLGN relay neurons. Genetic deletion of CKAMP44 increases the rate of recovery from desensitisation of AMPA receptors in dLGN relay neurons. Genetic deletion of CKAMP44 reduces synaptic short-term depression in retinogeniculate synapses. The probability to induce plateau potentials is elevated in relay neurons of CKAMP44-/- mice. Eye-specific input segregation is unaffected in the dLGN of CKAMP44-/- mice. Deletion of CKAMP44 mildly affects dendritic arborisation of relay neurons in the dLGN. ABSTRACT Relay neurons of the dorsal lateral geniculate nucleus (dLGN) receive inputs from retinal ganglion cells via retinogeniculate synapses. These connections undergo pruning in the first two weeks after eye opening. The remaining connections are strengthened several-fold by the insertion of AMPA receptors (AMPARs) into weak or silent synapses. In this study, we found that the AMPAR auxiliary subunit CKAMP44 is required for receptor insertion and function of retinogeniculate synapses during development. Genetic deletion of CKAMP44 resulted in decreased synaptic strength and a higher number of silent synapses in young (P9-11) mice. Recovery from desensitisation of AMPA receptors was faster in CKAMP44 knockout (CKAMP44-/- ) than in wildtype mice. Moreover, loss of CKAMP44 increased the probability to induce plateau potentials, which are known to be important for eye-specific input segregation and retinogeniculate synapse maturation. The anatomy of relay neurons in the dLGN was changed in young CKAMP44-/- mice showing a transient increase in dendritic branching that normalised during later development (P26-33). Interestingly, input segregation in young CKAMP44-/- mice was not affected when compared to wildtype mice. These results demonstrate that CKAMP44 promotes maturation and modulates function of retinogeniculate synapses during early development of the visual system without affecting input segregation. Abstract figure legend AMPA receptor auxiliary subunit CKAMP44 influences synaptic function in retinogeniculate synapses of young mice. CKAMP44 unsilences synapses by recruiting AMPA receptors to the synapse. Furthermore, genetic deletion of CKAMP44 reduces short-term depression and increases the probability to elicit L-type Ca2+ channel-mediated plateau potentials. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Florian Hetsch
- Institute of Pathophysiology, Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Danni Wang
- Institute of Pathophysiology, Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Xufeng Chen
- Institute of Pathophysiology, Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Jiong Zhang
- Institute of Pathophysiology, Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Muhammad Aslam
- Institute of Pathophysiology, Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Marcel Kegel
- Institute of Pathophysiology, Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Henrik Tonner
- Experimental Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Franz Grus
- Experimental Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Jakob von Engelhardt
- Institute of Pathophysiology, Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany
| |
Collapse
|
9
|
Lin D, Wang Z, Chen W, Shen T, Qiu X, Wei K, Li J, Yang D, Wang P, Li X, Yan J, Tang Z. Regional Downregulation of Dopamine Receptor D1 in Bilateral Dorsal Lateral Geniculate Nucleus of Monocular Form-Deprived Amblyopia Models. Front Neurosci 2022; 16:861529. [PMID: 35757538 PMCID: PMC9213678 DOI: 10.3389/fnins.2022.861529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Amblyopia is a common eye disease characterized by impaired best-corrected visual acuity. It starts in early childhood and leads to permanent vision reduction if left untreated. Even though many young patients with amblyopia are well treated in clinical practice, the underlying mechanism remains to be elucidated, which limits not only our understanding of this disease but also the therapeutic approach. To investigate the molecular mechanism of amblyopia, primate and rodent models of monocular-deprived amblyopia were created for mRNA screening and confirmation. We obtained 818 differentially expressed genes from the dorsal lateral geniculate nucleus (dLGN) of a primate model of amblyopia. After Gene Ontology and kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses, the main enriched pathways were related to neural development. Interestingly, a particular neurotransmitter pathway, the dopaminergic pathway, was identified. The downregulation of dopamine receptor D1 (DRD1) was confirmed in both monkey and mouse samples. Furthermore, the immunofluorescence staining indicated that DRD1 expression was downregulated in both ventrolateral region of the contralateral dLGN and the dorsomedial region of the ipsilateral dLGN in the mouse model. The regions with downregulated expression of DRD1 were the downstream targets of the visual projection from the amblyopic eye. This study suggested that the downregulation of DRD1 in the LGN may be a cause for amblyopia. This may also be a reason for the failure of some clinical cases of levodopa combined with carbidopa applied to amblyopes.
Collapse
Affiliation(s)
- Dongyue Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China
| | - Zhonghao Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China
| | - Wei Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China
| | - Tao Shen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China
| | - Xuan Qiu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China
| | - Kun Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China
| | - Jiahui Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China
| | - Dongsheng Yang
- Jinan Purui Eye Hospital, Children's Eye Disease and Ocular Motor Institute of Purui Jinan, Jinan, China
| | - Ping Wang
- Jinan Purui Eye Hospital, Children's Eye Disease and Ocular Motor Institute of Purui Jinan, Jinan, China
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China
| | - Jianhua Yan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China
| | - Zhongshu Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
Weakley JM, Kavusak EK, Carroll JB, Gabriele ML. Segregation of Multimodal Inputs Into Discrete Midbrain Compartments During an Early Critical Period. Front Neural Circuits 2022; 16:882485. [PMID: 35463204 PMCID: PMC9021614 DOI: 10.3389/fncir.2022.882485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/18/2022] [Indexed: 11/28/2022] Open
Abstract
The lateral cortex of the inferior colliculus (LCIC) is a multimodal subdivision of the midbrain inferior colliculus (IC) that plays a key role in sensory integration. The LCIC is compartmentally-organized, exhibiting a series of discontinuous patches or modules surrounded by an extramodular matrix. In adult mice, somatosensory afferents target LCIC modular zones, while auditory afferents terminate throughout the encompassing matrix. Recently, we defined an early LCIC critical period (birth: postnatal day 0 to P12) based upon the concurrent emergence of its neurochemical compartments (modules: glutamic acid decarboxylase, GAD+; matrix: calretinin, CR+), matching Eph-ephrin guidance patterns, and specificity of auditory inputs for its matrix. Currently lacking are analogous experiments that address somatosensory afferent shaping and the construction of discrete LCIC multisensory maps. Combining living slice tract-tracing and immunocytochemical approaches in a developmental series of GAD67-GFP knock-in mice, the present study characterizes: (1) the targeting of somatosensory terminals for emerging LCIC modular fields; and (2) the relative separation of somatosensory and auditory inputs over the course of its established critical period. Results indicate a similar time course and progression of LCIC projection shaping for both somatosensory (corticocollicular) and auditory (intracollicular) inputs. While somewhat sparse and intermingling at birth, modality-specific projection patterns soon emerge (P4–P8), coincident with peak guidance expression and the appearance of LCIC compartments. By P12, an adult-like arrangement is in place, with fully segregated multimodal afferent arrays. Quantitative measures confirm increasingly distinct input maps, exhibiting less projection overlap with age. Potential mechanisms whereby multisensory LCIC afferent systems recognize and interface with its emerging modular-matrix framework are discussed.
Collapse
|
11
|
Cong Q, Soteros BM, Huo A, Li Y, Tenner AJ, Sia GM. C1q and SRPX2 regulate microglia mediated synapse elimination during early development in the visual thalamus but not the visual cortex. Glia 2022; 70:451-465. [PMID: 34762332 PMCID: PMC8732326 DOI: 10.1002/glia.24114] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/06/2021] [Accepted: 10/25/2021] [Indexed: 12/16/2022]
Abstract
The classical complement cascade mediates synapse elimination in the visual thalamus during early brain development. However, whether the primary visual cortex also undergoes complement-mediated synapse elimination during early visual system development remains unknown. Here, we examined microglia-mediated synapse elimination in the visual thalamus and the primary visual cortex of early postnatal C1q and SRPX2 knockout mice. In the lateral geniculate nucleus, deletion of C1q caused a persistent decrease in synapse elimination and microglial synapse engulfment, while deletion of SRPX2 caused a transient increase in the same readouts. In the C1q-SRPX2 double knockout mice, the C1q knockout phenotypes were dominant over the SRPX2 knockout phenotypes, a result which is consistent with SRPX2 being an inhibitor of C1q. We found that genetic deletion of either C1q or SRPX2 did not affect synapse elimination or microglial engulfment of synapses in layer 4 of the primary visual cortex in early brain development. Together, these results show that the classical complement pathway regulates microglia-mediated synapse elimination in the visual thalamus but not the visual cortex during early development of the central nervous system.
Collapse
Affiliation(s)
- Qifei Cong
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA,Institutes of Neuroscience, Soochow University, Suzhou, China.,Corresponding author: ,
| | - Breeanne M. Soteros
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Anran Huo
- Institutes of Neuroscience, Soochow University, Suzhou, China
| | - Yang Li
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Andrea J. Tenner
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA,Department of Neurobiology and Behavior, University of California, Irvine, CA, USA.,Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Gek Ming Sia
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA,Corresponding author: ,
| |
Collapse
|
12
|
Laroche S, Stil A, Germain P, Cherif H, Chemtob S, Bouchard JF. Participation of L-Lactate and Its Receptor HCAR1/GPR81 in Neurovisual Development. Cells 2021; 10:1640. [PMID: 34208876 PMCID: PMC8303161 DOI: 10.3390/cells10071640] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 11/16/2022] Open
Abstract
During the development of the retina and the nervous system, high levels of energy are required by the axons of retinal ganglion cells (RGCs) to grow towards their brain targets. This energy demand leads to an increase of glycolysis and L-lactate concentrations in the retina. L-lactate is known to be the endogenous ligand of the GPR81 receptor. However, the role of L-lactate and its receptor in the development of the nervous system has not been studied in depth. In the present study, we used immunohistochemistry to show that GPR81 is localized in different retinal layers during development, but is predominantly expressed in the RGC of the adult rodent. Treatment of retinal explants with L-lactate or the exogenous GPR81 agonist 3,5-DHBA altered RGC growth cone (GC) morphology (increasing in size and number of filopodia) and promoted RGC axon growth. These GPR81-mediated modifications of GC morphology and axon growth were mediated by protein kinases A and C, but were absent in explants from gpr81-/- transgenic mice. Living gpr81-/- mice showed a decrease in ipsilateral projections of RGCs to the dorsal lateral geniculate nucleus (dLGN). In conclusion, present results suggest that L-lactate and its receptor GPR81 play an important role in the development of the visual nervous system.
Collapse
Affiliation(s)
- Samuel Laroche
- Neuropharmacology Laboratory, School of Optometry, Université de Montréal, Montreal, QC H3T 1P1, Canada; (S.L.); (A.S.); (P.G.); (H.C.)
| | - Aurélie Stil
- Neuropharmacology Laboratory, School of Optometry, Université de Montréal, Montreal, QC H3T 1P1, Canada; (S.L.); (A.S.); (P.G.); (H.C.)
| | - Philippe Germain
- Neuropharmacology Laboratory, School of Optometry, Université de Montréal, Montreal, QC H3T 1P1, Canada; (S.L.); (A.S.); (P.G.); (H.C.)
| | - Hosni Cherif
- Neuropharmacology Laboratory, School of Optometry, Université de Montréal, Montreal, QC H3T 1P1, Canada; (S.L.); (A.S.); (P.G.); (H.C.)
| | - Sylvain Chemtob
- Department of Pediatrics, Research Center-CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada;
- Department of Ophtalmology, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Jean-François Bouchard
- Neuropharmacology Laboratory, School of Optometry, Université de Montréal, Montreal, QC H3T 1P1, Canada; (S.L.); (A.S.); (P.G.); (H.C.)
| |
Collapse
|
13
|
Abstract
PURPOSE In humans, loss-of-function mutations in the gene encoding Chordin-like 1 (CHRDL1) cause X-linked megalocornea (MGC1), characterized by bilateral corneal enlargement, decreased corneal thickness, and increased anterior chamber depth (ACD). We sought to determine whether Chrdl1 knockout (KO) mice would recapitulate the ocular findings found in patients with MGC1. METHODS We generated mice with a Chrdl1 KO allele and confirmed that male Chrdl1 hemizygous KO mice do not express Chrdl1 mRNA. We examined the eyes of male mice that were hemizygous for either the wild-type (WT) or KO allele and measured corneal diameter, corneal area, corneal thickness, endothelial cell density, ACD, tear volume, and intraocular pressure. We also harvested retinas and counted retinal ganglion cell numbers. Eye segregation pattern in the dorsal lateral geniculate nucleus were also compared between male Chrdl1 KO and WT mice. RESULTS Male Chrdl1 KO mice do not have larger cornea diameters than WT mice. KO mice have significantly thicker central corneas (116.5 ± 3.9 vs. 100.9 ± 4.2 μm, P = 0.013) and smaller ACD (325.7 ± 5.7 vs. 405.6 ± 6.3 μm, P < 0.001) than WT mice, which is the converse of what occurs in patients who lack CHRDL1. Retinal-thalamic projections and other ocular measurements did not significantly differ between KO and WT mice. CONCLUSIONS Male Chrdl1 KO mice do not have the same anterior chamber abnormalities seen in humans with CHRDL1 mutations. Therefore, Chrdl1 KO mice do not recapitulate the human MGC1 phenotype. Nevertheless, Chrdl1 plays a role during mouse ocular development because corneas in KO mice differ from those in WT mice.
Collapse
|
14
|
An activity-dependent determinant of synapse elimination in the mammalian brain. Neuron 2021; 109:1333-1349.e6. [PMID: 33770504 DOI: 10.1016/j.neuron.2021.03.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/26/2021] [Accepted: 03/04/2021] [Indexed: 01/06/2023]
Abstract
To establish functional neural circuits in the brain, synaptic connections are refined by neural activity during development, where active connections are maintained and inactive ones are eliminated. However, the molecular signals that regulate synapse refinement remain to be elucidated. When we inactivate a subset of neurons in the mouse cingulate cortex, their callosal connections are eliminated through activity-dependent competition. Using this system, we identify JAK2 tyrosine kinase as a key regulator of inactive synapse elimination. We show that JAK2 is necessary and sufficient for elimination of inactive connections; JAK2 is activated at inactive synapses in response to signals from other active synapses; STAT1, a substrate of JAK2, mediates inactive synapse elimination; JAK2 signaling is critical for physiological refinement of synapses during normal development; and JAK2 regulates synapse refinement in multiple brain regions. We propose that JAK2 is an activity-dependent switch that serves as a determinant of inactive synapse elimination.
Collapse
|
15
|
Fischer CA, Besora-Casals L, Rolland SG, Haeussler S, Singh K, Duchen M, Conradt B, Marr C. MitoSegNet: Easy-to-use Deep Learning Segmentation for Analyzing Mitochondrial Morphology. iScience 2020; 23:101601. [PMID: 33083756 PMCID: PMC7554024 DOI: 10.1016/j.isci.2020.101601] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 08/18/2020] [Accepted: 09/17/2020] [Indexed: 12/29/2022] Open
Abstract
While the analysis of mitochondrial morphology has emerged as a key tool in the study of mitochondrial function, efficient quantification of mitochondrial microscopy images presents a challenging task and bottleneck for statistically robust conclusions. Here, we present Mitochondrial Segmentation Network (MitoSegNet), a pretrained deep learning segmentation model that enables researchers to easily exploit the power of deep learning for the quantification of mitochondrial morphology. We tested the performance of MitoSegNet against three feature-based segmentation algorithms and the machine-learning segmentation tool Ilastik. MitoSegNet outperformed all other methods in both pixelwise and morphological segmentation accuracy. We successfully applied MitoSegNet to unseen fluorescence microscopy images of mitoGFP expressing mitochondria in wild-type and catp-6 ATP13A2 mutant C. elegans adults. Additionally, MitoSegNet was capable of accurately segmenting mitochondria in HeLa cells treated with fragmentation inducing reagents. We provide MitoSegNet in a toolbox for Windows and Linux operating systems that combines segmentation with morphological analysis.
Collapse
Affiliation(s)
- Christian A. Fischer
- Fakultät für Biologie, Ludwig-Maximilians-Universität Munich, Planegg-Martinsried, Munich, 82152 Bavaria, Germany
- Centre for Integrated Protein Science, Ludwig-Maximilians-University, Planegg-Martinsried, Munich, 82152 Bavaria, Germany
- Institute of Computational Biology, Helmholtz Zentrum München – German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Laura Besora-Casals
- Fakultät für Biologie, Ludwig-Maximilians-Universität Munich, Planegg-Martinsried, Munich, 82152 Bavaria, Germany
| | - Stéphane G. Rolland
- Fakultät für Biologie, Ludwig-Maximilians-Universität Munich, Planegg-Martinsried, Munich, 82152 Bavaria, Germany
| | - Simon Haeussler
- Fakultät für Biologie, Ludwig-Maximilians-Universität Munich, Planegg-Martinsried, Munich, 82152 Bavaria, Germany
| | - Kritarth Singh
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London WC1E 6AP, UK
| | - Michael Duchen
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London WC1E 6AP, UK
| | - Barbara Conradt
- Fakultät für Biologie, Ludwig-Maximilians-Universität Munich, Planegg-Martinsried, Munich, 82152 Bavaria, Germany
- Centre for Integrated Protein Science, Ludwig-Maximilians-University, Planegg-Martinsried, Munich, 82152 Bavaria, Germany
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London WC1E 6AP, UK
| | - Carsten Marr
- Institute of Computational Biology, Helmholtz Zentrum München – German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| |
Collapse
|
16
|
Liang L, Chen C. Organization, Function, and Development of the Mouse Retinogeniculate Synapse. Annu Rev Vis Sci 2020; 6:261-285. [DOI: 10.1146/annurev-vision-121219-081753] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Visual information is encoded in distinct retinal ganglion cell (RGC) types in the eye tuned to specific features of the visual space. These streams of information project to the visual thalamus, the first station of the image-forming pathway. In the mouse, this connection between RGCs and thalamocortical neurons, the retinogeniculate synapse, has become a powerful experimental model for understanding how circuits in the thalamus are constructed to process these incoming lines of information. Using modern molecular and genetic tools, recent studies have suggested a more complex circuit organization than was previously understood. In this review, we summarize the current understanding of the structural and functional organization of the retinogeniculate synapse in the mouse. We discuss a framework by which a seemingly complex circuit can effectively integrate and parse information to downstream stations of the visual pathway. Finally, we review how activity and visual experience can sculpt this exquisite connectivity.
Collapse
Affiliation(s)
- Liang Liang
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts 02115, USA
- Department of Neuroscience, Yale University, New Haven, Connecticut 06520, USA
| | - Chinfei Chen
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| |
Collapse
|
17
|
Cong Q, Soteros BM, Wollet M, Kim JH, Sia GM. The endogenous neuronal complement inhibitor SRPX2 protects against complement-mediated synapse elimination during development. Nat Neurosci 2020; 23:1067-1078. [PMID: 32661396 PMCID: PMC7483802 DOI: 10.1038/s41593-020-0672-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 06/16/2020] [Indexed: 02/06/2023]
Abstract
Complement-mediated synapse elimination has emerged as an important process in both brain development and neurological diseases, but whether neurons express complement inhibitors that protect synapses against complement-mediated synapse elimination remains unknown. Here, we show that the sushi domain protein SRPX2 is a neuronally expressed complement inhibitor that regulates complement-dependent synapse elimination. SRPX2 directly binds to C1q and blocks its activity, and SRPX2-/Y mice show increased C3 deposition and microglial synapse engulfment. They also show a transient decrease in synapse numbers and increase in retinogeniculate axon segregation in the lateral geniculate nucleus. In the somatosensory cortex, SRPX2-/Y mice show decreased thalamocortical synapse numbers and increased spine pruning. C3-/-;SRPX2-/Y double-knockout mice exhibit phenotypes associated with C3-/- mice rather than SRPX2-/Y mice, which indicates that C3 is necessary for the effect of SRPX2 on synapse elimination. Together, these results show that SRPX2 protects synapses against complement-mediated elimination in both the thalamus and the cortex.
Collapse
Affiliation(s)
- Qifei Cong
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Breeanne M Soteros
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Mackenna Wollet
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jun Hee Kim
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Gek-Ming Sia
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
18
|
Semyanov A, Henneberger C, Agarwal A. Making sense of astrocytic calcium signals — from acquisition to interpretation. Nat Rev Neurosci 2020; 21:551-564. [DOI: 10.1038/s41583-020-0361-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2020] [Indexed: 12/31/2022]
|
19
|
Li T, Chiou B, Gilman CK, Luo R, Koshi T, Yu D, Oak HC, Giera S, Johnson‐Venkatesh E, Muthukumar AK, Stevens B, Umemori H, Piao X. A splicing isoform of GPR56 mediates microglial synaptic refinement via phosphatidylserine binding. EMBO J 2020; 39:e104136. [PMID: 32452062 PMCID: PMC7429740 DOI: 10.15252/embj.2019104136] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/31/2022] Open
Abstract
Developmental synaptic remodeling is important for the formation of precise neural circuitry, and its disruption has been linked to neurodevelopmental disorders such as autism and schizophrenia. Microglia prune synapses, but integration of this synapse pruning with overlapping and concurrent neurodevelopmental processes, remains elusive. Adhesion G protein-coupled receptor ADGRG1/GPR56 controls multiple aspects of brain development in a cell type-specific manner: In neural progenitor cells, GPR56 regulates cortical lamination, whereas in oligodendrocyte progenitor cells, GPR56 controls developmental myelination and myelin repair. Here, we show that microglial GPR56 maintains appropriate synaptic numbers in several brain regions in a time- and circuit-dependent fashion. Phosphatidylserine (PS) on presynaptic elements binds GPR56 in a domain-specific manner, and microglia-specific deletion of Gpr56 leads to increased synapses as a result of reduced microglial engulfment of PS+ presynaptic inputs. Remarkably, a particular alternatively spliced isoform of GPR56 is selectively required for microglia-mediated synaptic pruning. Our present data provide a ligand- and isoform-specific mechanism underlying microglial GPR56-mediated synapse pruning in the context of complex neurodevelopmental processes.
Collapse
Affiliation(s)
- Tao Li
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell ResearchUniversity of California, San Francisco (UCSF)San FranciscoCAUSA
- Department of MedicineBoston Children's Hospital and Harvard Medical SchoolBostonMAUSA
| | - Brian Chiou
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell ResearchUniversity of California, San Francisco (UCSF)San FranciscoCAUSA
| | - Casey K Gilman
- Department of MedicineBoston Children's Hospital and Harvard Medical SchoolBostonMAUSA
| | - Rong Luo
- Department of MedicineBoston Children's Hospital and Harvard Medical SchoolBostonMAUSA
| | - Tatsuhiro Koshi
- Department of MedicineBoston Children's Hospital and Harvard Medical SchoolBostonMAUSA
| | - Diankun Yu
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell ResearchUniversity of California, San Francisco (UCSF)San FranciscoCAUSA
| | - Hayeon C Oak
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell ResearchUniversity of California, San Francisco (UCSF)San FranciscoCAUSA
| | - Stefanie Giera
- Department of MedicineBoston Children's Hospital and Harvard Medical SchoolBostonMAUSA
| | | | - Allie K Muthukumar
- F. M. Kirby Neurobiology CenterChildren's HospitalHarvard Medical SchoolBostonMAUSA
| | - Beth Stevens
- F. M. Kirby Neurobiology CenterChildren's HospitalHarvard Medical SchoolBostonMAUSA
- Howard Hughes Medical InstituteBoston Children's HospitalBostonMAUSA
| | - Hisashi Umemori
- F. M. Kirby Neurobiology CenterChildren's HospitalHarvard Medical SchoolBostonMAUSA
| | - Xianhua Piao
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell ResearchUniversity of California, San Francisco (UCSF)San FranciscoCAUSA
- Department of MedicineBoston Children's Hospital and Harvard Medical SchoolBostonMAUSA
- F. M. Kirby Neurobiology CenterChildren's HospitalHarvard Medical SchoolBostonMAUSA
- Weill Institute for NeuroscienceUniversity of California, San Francisco (UCSF)San FranciscoCAUSA
- Division of NeonatologyDepartment of PediatricsUniversity of California, San Francisco (UCSF)San FranciscoCAUSA
- Newborn Brain Research InstituteUniversity of California, San Francisco (UCSF)San FranciscoCAUSA
| |
Collapse
|
20
|
Cho K. Emerging Roles of Complement Protein C1q in Neurodegeneration. Aging Dis 2019; 10:652-663. [PMID: 31165008 PMCID: PMC6538225 DOI: 10.14336/ad.2019.0118] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/18/2019] [Indexed: 12/19/2022] Open
Abstract
The innate immune system is an ancient and primary component system that rapidly reacts to defend the body against external pathogens. C1 is the initial responder of classical pathway of the innate immune system. C1 is comprised of C1q, C1r, and C1s. Among them, C1q is known to interact with diverse ligands, which can perform various functions in physiological and pathophysiological conditions. Because C1q participates in the clearance of pathogens, its interaction with novel receptors is expected to facilitate apoptosis induction, which could prevent the onset or progression of neurodegenerative diseases and could delay the aging process. Because senescence-associated secreting phenotype determinants are generally inflammatory cytokines or immune factors to activate immune cells. In the central nervous system, C1q has diverse neuroprotective roles against pathogens and inflammation. Most of neurodegenerative diseases show region specific pathology feature in the brain. It has been suggested the evidences that the active site and amount of C1q may be disease specific. This review considers currently the emerging and under-recognized roles of C1q in neurodegeneration and highlights the need for further research to clarify these roles. Future studies on the roles of C1q in regulating disease progression should consider these aspects, including the age-dependent onset time of each neurodegenerative disease progression.
Collapse
Affiliation(s)
- Kyoungjoo Cho
- Department of Life Science, Kyonggi University, Suwon, South Korea
| |
Collapse
|
21
|
Presynaptic SNAP-25 regulates retinal waves and retinogeniculate projection via phosphorylation. Proc Natl Acad Sci U S A 2019; 116:3262-3267. [PMID: 30728295 DOI: 10.1073/pnas.1812169116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Patterned spontaneous activity periodically displays in developing retinas termed retinal waves, essential for visual circuit refinement. In neonatal rodents, retinal waves initiate in starburst amacrine cells (SACs), propagating across retinal ganglion cells (RGCs), further through visual centers. Although these waves are shown temporally synchronized with transiently high PKA activity, the downstream PKA target important for regulating the transmission from SACs remains unidentified. A t-SNARE, synaptosome-associated protein of 25 kDa (SNAP-25/SN25), serves as a PKA substrate, implying a potential role of SN25 in regulating retinal development. Here, we examined whether SN25 in SACs could regulate wave properties and retinogeniculate projection during development. In developing SACs, overexpression of wild-type SN25b, but not the PKA-phosphodeficient mutant (SN25b-T138A), decreased the frequency and spatial correlation of wave-associated calcium transients. Overexpressing SN25b, but not SN25b-T138A, in SACs dampened spontaneous, wave-associated, postsynaptic currents in RGCs and decreased the SAC release upon augmenting the cAMP-PKA signaling. These results suggest that SN25b overexpression may inhibit the strength of transmission from SACs via PKA-mediated phosphorylation at T138. Moreover, knockdown of endogenous SN25b increased the frequency of wave-associated calcium transients, supporting the role of SN25 in restraining wave periodicity. Finally, the eye-specific segregation of retinogeniculate projection was impaired by in vivo overexpression of SN25b, but not SN25b-T138A, in SACs. These results suggest that SN25 in developing SACs dampens the spatiotemporal properties of retinal waves and limits visual circuit refinement by phosphorylation at T138. Therefore, SN25 in SACs plays a profound role in regulating visual circuit refinement.
Collapse
|
22
|
Ribic A, Crair MC, Biederer T. Synapse-Selective Control of Cortical Maturation and Plasticity by Parvalbumin-Autonomous Action of SynCAM 1. Cell Rep 2019; 26:381-393.e6. [PMID: 30625321 PMCID: PMC6345548 DOI: 10.1016/j.celrep.2018.12.069] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 11/05/2018] [Accepted: 12/17/2018] [Indexed: 12/20/2022] Open
Abstract
Cortical plasticity peaks early in life and tapers in adulthood, as exemplified in the primary visual cortex (V1), wherein brief loss of vision in one eye reduces cortical responses to inputs from that eye during the critical period but not in adulthood. The synaptic locus of cortical plasticity and the cell-autonomous synaptic factors determining critical periods remain unclear. We here demonstrate that the immunoglobulin protein Synaptic Cell Adhesion Molecule 1 (SynCAM 1/Cadm1) is regulated by visual experience and limits V1 plasticity. Loss of SynCAM 1 selectively reduces the number of thalamocortical inputs onto parvalbumin (PV+) interneurons, impairing the maturation of feedforward inhibition in V1. SynCAM 1 acts in PV+ interneurons to actively restrict cortical plasticity, and brief PV+-specific knockdown of SynCAM 1 in adult visual cortex restores juvenile-like plasticity. These results identify a synapse-specific, cell-autonomous mechanism for thalamocortical visual circuit maturation and closure of the visual critical period.
Collapse
Affiliation(s)
- Adema Ribic
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA.
| | - Michael C Crair
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Thomas Biederer
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
23
|
Tiriac A, Smith BE, Feller MB. Light Prior to Eye Opening Promotes Retinal Waves and Eye-Specific Segregation. Neuron 2018; 100:1059-1065.e4. [PMID: 30392793 DOI: 10.1016/j.neuron.2018.10.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 08/24/2018] [Accepted: 10/05/2018] [Indexed: 11/16/2022]
Abstract
Retinal waves are bursts of correlated activity that occur prior to eye opening and provide a critical source of activity that drives the refinement of retinofugal projections. Retinal waves are thought to be initiated spontaneously with their spatiotemporal features dictated by immature neural circuits. Here we demonstrate that, during the second postnatal week in mice, changes in light intensity dictate where and when a subset of retinal waves are triggered via activation of conventional photoreceptors. Propagation properties of triggered waves are indistinguishable from spontaneous waves, indicating that they are activating the same retinal circuits. Using whole-brain imaging techniques, we demonstrate that light deprivation prior to eye opening diminishes eye-specific segregation of the retinal projections to the dorsolateral geniculate nucleus of the thalamus, but not other retinal targets. These data indicate that light that passes through the closed eyelids plays a critical role in the development of the image-forming visual system.
Collapse
Affiliation(s)
- Alexandre Tiriac
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Benjamin E Smith
- School of Optometry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Marla B Feller
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
24
|
Retinal ganglion cell axon sorting at the optic chiasm requires dystroglycan. Dev Biol 2018; 442:210-219. [PMID: 30149005 DOI: 10.1016/j.ydbio.2018.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 01/19/2023]
Abstract
In the developing visual system, retinal ganglion cell (RGC) axons project from the retina to several distal retinorecipient regions in the brain. Several molecules have been implicated in guiding RGC axons in vivo, but the role of extracellular matrix molecules in this process remains poorly understood. Dystroglycan is a laminin-binding transmembrane protein important for formation and maintenance of the extracellular matrix and basement membranes and has previously been implicated in axon guidance in the developing spinal cord. Using two genetic models of functional dystroglycan loss, we show that dystroglycan is necessary for correct sorting of contralateral and ipsilateral RGC axons at the optic chiasm. Mis-sorted axons still target retinorecipient brain regions and persist in adult mice, even after axon pruning is complete. Our results highlight the importance of the extracellular matrix for axon sorting at an intermediate choice point in the developing visual circuit.
Collapse
|
25
|
Gao Y, Hu S, Li Q, Wang M, Zhi Z, Kuang X, Li Y, Vakal S, Wang Y. Neonatal inflammation induces reorganization in dendritic morphology of retinal ganglion cells but not their retinogeniculate projection in mice. Neurosci Lett 2018; 676:34-40. [PMID: 29627341 DOI: 10.1016/j.neulet.2018.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/21/2018] [Accepted: 04/04/2018] [Indexed: 10/17/2022]
Abstract
Perinatal inflammatory insult in preterm babies is associated with vision impairment, but the underlying cellular mechanism is still unknown. In this study, we set out to explore whether systemic inflammatory stress affects the development of retinal ganglion cells (RGCs). Neonatal inflammation was induced by single and systemic injection of lipopolysaccharide (LPS, 1 mg/kg) at postnatal day 4 (P4). Morphological changes of RGCs were investigated by using 3D neuron reconstruction technique in Thy-1 YFPH transgenic mice at P21, of which a fraction of RGCs selectively expresses the yellow fluorescent protein (YFP). Three types (Type I, II, III) of RGCs were distinguished and classified according to the characteristic features in their dendritic field area and dendrite density. Neonatal exposure to LPS did not alter the composition of the three RGC types but induced a reorganization of dendritic architecture in the RGC Type I and II (but not Type III). The average diameter, surface area and volume of dendrites in both RGC Type I and II were increased after systemic inflammation compared with those in the control group. However, soma sizes of all three RGC types were not affected by neonatal inflammation. Meanwhile, using anterograde labeling of the retinal cells, we found that neonatal exposure to LPS also did not affect the pattern of RGC projections in the dorsal lateral geniculate nucleus of the thalamus (dLGN). These results indicate that RGC dendrite reorganization induced by neonatal inflammation may contribute to the retinal cell dysfunctions associated with systemic inflammation in premature babies.
Collapse
Affiliation(s)
- Ying Gao
- School of Optometry and Ophthalmology and Eye Hospital, Key Laboratory of Visual Science, National Ministry of Health, Wenzhou Medical University, Wenzhou, 325027, PR China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, 325027, PR China.
| | - Shisi Hu
- School of Optometry and Ophthalmology and Eye Hospital, Key Laboratory of Visual Science, National Ministry of Health, Wenzhou Medical University, Wenzhou, 325027, PR China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, 325027, PR China
| | - Qiqin Li
- School of Optometry and Ophthalmology and Eye Hospital, Key Laboratory of Visual Science, National Ministry of Health, Wenzhou Medical University, Wenzhou, 325027, PR China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, 325027, PR China
| | - Muran Wang
- School of Optometry and Ophthalmology and Eye Hospital, Key Laboratory of Visual Science, National Ministry of Health, Wenzhou Medical University, Wenzhou, 325027, PR China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, 325027, PR China
| | - Zhina Zhi
- School of Optometry and Ophthalmology and Eye Hospital, Key Laboratory of Visual Science, National Ministry of Health, Wenzhou Medical University, Wenzhou, 325027, PR China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, 325027, PR China
| | - Xiuli Kuang
- School of Optometry and Ophthalmology and Eye Hospital, Key Laboratory of Visual Science, National Ministry of Health, Wenzhou Medical University, Wenzhou, 325027, PR China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, 325027, PR China
| | - Yaoyao Li
- School of Optometry and Ophthalmology and Eye Hospital, Key Laboratory of Visual Science, National Ministry of Health, Wenzhou Medical University, Wenzhou, 325027, PR China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, 325027, PR China
| | - Sergii Vakal
- School of Optometry and Ophthalmology and Eye Hospital, Key Laboratory of Visual Science, National Ministry of Health, Wenzhou Medical University, Wenzhou, 325027, PR China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, 325027, PR China
| | - Yun Wang
- School of Optometry and Ophthalmology and Eye Hospital, Key Laboratory of Visual Science, National Ministry of Health, Wenzhou Medical University, Wenzhou, 325027, PR China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, 325027, PR China; Allen Institute for Brain Science, Seattle, WA, 098109, United States.
| |
Collapse
|
26
|
Cherif H, Duhamel F, Cécyre B, Bouchard A, Quintal A, Chemtob S, Bouchard JF. Receptors of intermediates of carbohydrate metabolism, GPR91 and GPR99, mediate axon growth. PLoS Biol 2018; 16:e2003619. [PMID: 29771909 PMCID: PMC5976209 DOI: 10.1371/journal.pbio.2003619] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 05/30/2018] [Accepted: 05/01/2018] [Indexed: 01/23/2023] Open
Abstract
During the development of the visual system, high levels of energy are expended propelling axons from the retina to the brain. However, the role of intermediates of carbohydrate metabolism in the development of the visual system has been overlooked. Here, we report that the carbohydrate metabolites succinate and α-ketoglutarate (α-KG) and their respective receptor-GPR91 and GPR99-are involved in modulating retinal ganglion cell (RGC) projections toward the thalamus during visual system development. Using ex vivo and in vivo approaches, combined with pharmacological and genetic analyses, we revealed that GPR91 and GPR99 are expressed on axons of developing RGCs and have complementary roles during RGC axon growth in an extracellular signal-regulated kinases 1 and 2 (ERK1/2)-dependent manner. However, they have no effects on axon guidance. These findings suggest an important role for these receptors during the establishment of the visual system and provide a foundational link between carbohydrate metabolism and axon growth.
Collapse
Affiliation(s)
- Hosni Cherif
- School of Optometry, Université de Montréal, Montreal, Quebec, Canada
| | - François Duhamel
- Department of Pediatrics, Research Center-CHU Sainte-Justine, Montreal, Quebec, Canada
- Department of Pharmacology, Université de Montréal, Montreal, Quebec, Canada
| | - Bruno Cécyre
- School of Optometry, Université de Montréal, Montreal, Quebec, Canada
| | - Alex Bouchard
- School of Optometry, Université de Montréal, Montreal, Quebec, Canada
| | - Ariane Quintal
- School of Optometry, Université de Montréal, Montreal, Quebec, Canada
| | - Sylvain Chemtob
- Department of Pediatrics, Research Center-CHU Sainte-Justine, Montreal, Quebec, Canada
- Department of Pharmacology, Université de Montréal, Montreal, Quebec, Canada
| | | |
Collapse
|
27
|
Presumey J, Bialas AR, Carroll MC. Complement System in Neural Synapse Elimination in Development and Disease. Adv Immunol 2017; 135:53-79. [DOI: 10.1016/bs.ai.2017.06.004] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
28
|
Patel VC, Jurgens CWD, Krahe TE, Povlishock JT. Adaptive reorganization of retinogeniculate axon terminals in dorsal lateral geniculate nucleus following experimental mild traumatic brain injury. Exp Neurol 2016; 289:85-95. [PMID: 28038987 DOI: 10.1016/j.expneurol.2016.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/08/2016] [Accepted: 12/23/2016] [Indexed: 11/17/2022]
Abstract
The pathologic process in traumatic brain injury marked by delayed axonal loss, known as diffuse axonal injury (DAI), leads to partial deafferentation of neurons downstream of injured axons. This process is linked to persistent visual dysfunction following mild traumatic brain injury (mTBI), however, examination of deafferentation in humans is impossible with current technology. To investigate potential reorganization in the visual system following mTBI, we utilized the central fluid percussion injury (cFPI) mouse model of mTBI. We report that in the optic nerve of adult male C57BL/6J mice, axonal projections of retinal ganglion cells (RGCs) to their downstream thalamic target, dorsal lateral geniculate nucleus (dLGN), undergo DAI followed by scattered, widespread axon terminals loss within the dLGN at 4days post-injury. However, at 10days post-injury, significant reorganization of RGC axon terminals was found, suggestive of an adaptive neuroplastic response. While these changes persisted at 20days post-injury, the RGC axon terminal distribution did not recovery fully to sham-injury levels. Our studies also revealed that following DAI, the segregation of axon terminals from ipsilateral and contralateral eye projections remained consistent with normal adult mouse distribution. Lastly, our examination of the shell and core of dLGN suggested that different RGC subpopulations may vary in their susceptibility to injury or in their contribution to reorganization following injury. Collectively, these findings support the premise that subcortical axon terminal reorganization may contribute to recovery following mTBI, and that different neural phenotypes may vary in their contribution to this reorganization despite exposure to the same injury.
Collapse
Affiliation(s)
- Vishal C Patel
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA.
| | - Christopher W D Jurgens
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA.
| | - Thomas E Krahe
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA.
| | - John T Povlishock
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
29
|
Vlasits AL, Morrie RD, Tran-Van-Minh A, Bleckert A, Gainer CF, DiGregorio DA, Feller MB. A Role for Synaptic Input Distribution in a Dendritic Computation of Motion Direction in the Retina. Neuron 2016; 89:1317-1330. [PMID: 26985724 DOI: 10.1016/j.neuron.2016.02.020] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 12/22/2015] [Accepted: 02/10/2016] [Indexed: 12/21/2022]
Abstract
The starburst amacrine cell in the mouse retina presents an opportunity to examine the precise role of sensory input location on neuronal computations. Using visual receptive field mapping, glutamate uncaging, two-photon Ca(2+) imaging, and genetic labeling of putative synapses, we identify a unique arrangement of excitatory inputs and neurotransmitter release sites on starburst amacrine cell dendrites: the excitatory input distribution is skewed away from the release sites. By comparing computational simulations with Ca(2+) transients recorded near release sites, we show that this anatomical arrangement of inputs and outputs supports a dendritic mechanism for computing motion direction. Direction-selective Ca(2+) transients persist in the presence of a GABA-A receptor antagonist, though the directional tuning is reduced. These results indicate a synergistic interaction between dendritic and circuit mechanisms for generating direction selectivity in the starburst amacrine cell.
Collapse
Affiliation(s)
- Anna L Vlasits
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ryan D Morrie
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Alexandra Tran-Van-Minh
- Unit of Dynamic Neuronal Imaging, Institut Pasteur, 75724 Paris Cedex 15, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3571, 75724 Paris Cedex 15, France
| | - Adam Bleckert
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Christian F Gainer
- Department of Optometry, University of California, Berkeley, Berkeley, CA 94704, USA
| | - David A DiGregorio
- Unit of Dynamic Neuronal Imaging, Institut Pasteur, 75724 Paris Cedex 15, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3571, 75724 Paris Cedex 15, France.
| | - Marla B Feller
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
30
|
Sekar A, Bialas AR, de Rivera H, Davis A, Hammond TR, Kamitaki N, Tooley K, Presumey J, Baum M, Van Doren V, Genovese G, Rose SA, Handsaker RE, Daly MJ, Carroll MC, Stevens B, McCarroll SA. Schizophrenia risk from complex variation of complement component 4. Nature 2016; 530:177-183. [PMID: 26814963 PMCID: PMC4752392 DOI: 10.1038/nature16549] [Citation(s) in RCA: 1659] [Impact Index Per Article: 184.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 12/18/2015] [Indexed: 02/07/2023]
Abstract
Schizophrenia is a heritable brain illness with unknown pathogenic mechanisms. Schizophrenia's strongest genetic association at a population level involves variation in the major histocompatibility complex (MHC) locus, but the genes and molecular mechanisms accounting for this have been challenging to identify. Here we show that this association arises in part from many structurally diverse alleles of the complement component 4 (C4) genes. We found that these alleles generated widely varying levels of C4A and C4B expression in the brain, with each common C4 allele associating with schizophrenia in proportion to its tendency to generate greater expression of C4A. Human C4 protein localized to neuronal synapses, dendrites, axons, and cell bodies. In mice, C4 mediated synapse elimination during postnatal development. These results implicate excessive complement activity in the development of schizophrenia and may help explain the reduced numbers of synapses in the brains of individuals with schizophrenia.
Collapse
Affiliation(s)
- Aswin Sekar
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
- MD-PhD Program, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Allison R Bialas
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Heather de Rivera
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Avery Davis
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Timothy R Hammond
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Nolan Kamitaki
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Katherine Tooley
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Jessy Presumey
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Matthew Baum
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
- MD-PhD Program, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Vanessa Van Doren
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Giulio Genovese
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Samuel A Rose
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Robert E Handsaker
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Mark J Daly
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
- Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Michael C Carroll
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Beth Stevens
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Steven A McCarroll
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
31
|
Abstract
Early in development, before the onset of vision, the retina establishes direction-selective responses. During this time period, the retina spontaneously generates bursts of action potentials that propagate across its extent. The precise spatial and temporal properties of these "retinal waves" have been implicated in the formation of retinal projections to the brain. However, their role in the development of direction selective circuits within the retina has not yet been determined. We addressed this issue by combining multielectrode array and cell-attached recordings to examine mice that lack the CaV3.2 subunit of T-type Ca2+ channels (CaV3.2 KO) because these mice exhibit disrupted waves during the period that direction selective circuits are established. We found that the spontaneous activity of these mice displays wave-associated bursts of action potentials that are altered from that of control mice: the frequency of these bursts is significantly decreased and the firing rate within each burst is reduced. Moreover, the projection patterns of the retina demonstrate decreased eye-specific segregation in the dorsal lateral geniculate nucleus (dLGN). However, after eye-opening, the direction selective responses of CaV3.2 KO direction selective ganglion cells (DSGCs) are indistinguishable from those of wild-type DSGCs. Our data indicate that although the temporal properties of the action potential bursts associated with retinal waves are important for activity-dependent refining of retinal projections to central targets, they are not critical for establishing direction selectivity in the retina.
Collapse
|
32
|
Role of GPR55 during Axon Growth and Target Innervation. eNeuro 2015; 2:eN-NWR-0011-15. [PMID: 26730399 PMCID: PMC4699829 DOI: 10.1523/eneuro.0011-15.2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 09/24/2015] [Accepted: 10/15/2015] [Indexed: 12/26/2022] Open
Abstract
Guidance molecules regulate the navigation of retinal ganglion cell (RGC) projections toward targets in the visual thalamus. In this study, we demonstrate that the G-protein-coupled receptor 55 (GPR55) is expressed in the retina during development, and regulates growth cone (GC) morphology and axon growth. In vitro, neurons obtained from gpr55 knock-out (gpr55-/-) mouse embryos have smaller GCs, less GC filopodia, and have a decreased outgrowth compared with gpr55+/+ neurons. When gpr55+/+ neurons were treated with GPR55 agonists, lysophosphatidylinositol (LPI) and O-1602, we observed a chemo-attractive effect and an increase in GC size and filopodia number. In contrast, cannabidiol (CBD) decreased the GC size and filopodia number inducing chemo-repulsion. In absence of the receptor (gpr55-/-), no pharmacologic effects of the GPR55 ligands were observed. In vivo, compared to their wild-type (WT) littermates, gpr55-/- mice revealed a decreased branching in the dorsal terminal nucleus (DTN) and a lower level of eye-specific segregation of retinal projections in the superior colliculus (SC) and in the dorsal lateral geniculate nucleus (dLGN). Moreover, a single intraocular injection of LPI increased branching in the DTN, whereas treatment with CBD, an antagonist of GPR55, decreased it. These results indicate that GPR55 modulates the growth rate and the targets innervation of retinal projections and highlight, for the first time, an important role of GPR55 in axon refinement during development.
Collapse
|
33
|
Absence of plateau potentials in dLGN cells leads to a breakdown in retinogeniculate refinement. J Neurosci 2015; 35:3652-62. [PMID: 25716863 DOI: 10.1523/jneurosci.2343-14.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The link between neural activity and the refinement of projections from retina to the dorsal lateral geniculate nucleus (dLGN) of thalamus is based largely on studies that disrupt presynaptic retinogeniculate activity. Postsynaptic mechanisms responsible for implementing the activity-dependent remodeling in dLGN remain unknown. We tested whether L-type Ca(2+) channel activity in the form of synaptically evoked plateau potentials in dLGN cells is needed for remodeling by using a mutant mouse that lacks the ancillary β3 subunit and, as a consequence, has highly reduced L-type channel expression and attenuated L-type Ca(2+) currents. In the dLGNs of β3-null mice, glutamatergic postsynaptic activity evoked by optic tract stimulation was normal, but plateau potentials were rarely observed. The few plateaus that were evoked required high rates of retinal stimulation, but were still greatly attenuated compared with those recorded in age-matched wild-type mice. While β3-null mice exhibit normal stage II and III retinal waves, their retinogeniculate projections fail to segregate properly and dLGN cells show a high degree of retinal convergence even at late postnatal ages. These structural and functional defects were also accompanied by a reduction in CREB phosphorylation, a signaling event that has been shown to be essential for retinogeniculate axon segregation. Thus, postsynaptic L-type Ca(2+) activity plays an important role in mediating the refinement of the retinogeniculate pathway.
Collapse
|
34
|
Zhou EK, Xu HP. GABAergic regulation of spontaneous spike patterns in the developing rabbit retina. Neurosci Lett 2015; 600:137-42. [PMID: 26054939 DOI: 10.1016/j.neulet.2015.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 04/23/2015] [Accepted: 06/02/2015] [Indexed: 10/23/2022]
Abstract
Spontaneous retinal waves play a critical role in the establishment of precise neuronal connections in the developing visual system. Retinal waves in mammals progress through three distinct developmental stages prior to eye opening. Using multielectrode array (MEA) recording from the rabbit retina, this study found characteristic changes in the spontaneous spike pattern in the ganglion cell layer during the transition from stage II to stage III retinal waves. These changes led to an increased diversity in the spatiotemporal pattern of the spontaneous activity, consistent with a potential role of stage III retinal waves in the establishment of diverse, cell type-specific neuronal connectivity during visual system development. The study also showed that GABAergic inhibition, predominantly mediated by GABAA receptors, was critical in breaking down large waves of ganglion cell spiking into spatially restricted and temporally diverse spike patterns at stage III, suggesting an important role of amacrine cells in shaping the diverse spontaneous activity patterns of developing ganglion cells.
Collapse
Affiliation(s)
- Elton K Zhou
- Yale College, Yale University, New Haven, CT 06511, USA.
| | - Hong-Ping Xu
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
35
|
Kobayashi Y, Ye Z, Hensch TK. Clock genes control cortical critical period timing. Neuron 2015; 86:264-75. [PMID: 25801703 PMCID: PMC4392344 DOI: 10.1016/j.neuron.2015.02.036] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 01/25/2015] [Accepted: 02/18/2015] [Indexed: 01/05/2023]
Abstract
Circadian rhythms control a variety of physiological processes, but whether they may also time brain development remains largely unknown. Here, we show that circadian clock genes control the onset of critical period plasticity in the neocortex. Within visual cortex of Clock-deficient mice, the emergence of circadian gene expression was dampened, and the maturation of inhibitory parvalbumin (PV) cell networks slowed. Loss of visual acuity in response to brief monocular deprivation was concomitantly delayed and rescued by direct enhancement of GABAergic transmission. Conditional deletion of Clock or Bmal1 only within PV cells recapitulated the results of total Clock-deficient mice. Unique downstream gene sets controlling synaptic events and cellular homeostasis for proper maturation and maintenance were found to be mis-regulated by Clock deletion specifically within PV cells. These data demonstrate a developmental role for circadian clock genes outside the suprachiasmatic nucleus, which may contribute mis-timed brain plasticity in associated mental disorders.
Collapse
Affiliation(s)
- Yohei Kobayashi
- Center for Brain Science, Department of Molecular Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA; F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Zhanlei Ye
- Center for Brain Science, Department of Molecular Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Takao K Hensch
- Center for Brain Science, Department of Molecular Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA; F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
36
|
Xu HP, Burbridge TJ, Chen MG, Ge X, Zhang Y, Zhou ZJ, Crair MC. Spatial pattern of spontaneous retinal waves instructs retinotopic map refinement more than activity frequency. Dev Neurobiol 2015; 75:621-40. [PMID: 25787992 DOI: 10.1002/dneu.22288] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/08/2015] [Accepted: 03/11/2015] [Indexed: 01/03/2023]
Abstract
Spontaneous activity during early development is necessary for the formation of precise neural connections, but it remains uncertain whether activity plays an instructive or permissive role in brain wiring. In the visual system, retinal ganglion cell (RGC) projections to the brain form two prominent sensory maps, one reflecting eye of origin and the other retinotopic location. Recent studies provide compelling evidence supporting an instructive role for spontaneous retinal activity in the development of eye-specific projections, but evidence for a similarly instructive role in the development of retinotopy is more equivocal. Here, we report on experiments in which we knocked down the expression of β2-containing nicotinic acetylcholine receptors (β2-nAChRs) specifically in the retina through a Cre-loxP recombination strategy. Overall levels of spontaneous retinal activity in retina-specific β2-nAChR mutant mice (Rx-β2cKO), examined in vitro and in vivo, were reduced to a degree comparable to that observed in whole animal β2-nAChR mouse mutants (β2KO). However, many residual spontaneous waves in Rx-β2cKO mice displayed local propagating features with strong correlations between nearby but not distant RGCs typical of waves observed in wild-type (WT) but not β2KO mice. We further observed that eye-specific segregation was disrupted in Rx-β2cKO mice, but retinotopy was spared in a competition-dependent manner. These results suggest that propagating patterns of spontaneous retinal waves are essential for normal development of the retinotopic map, even while overall activity levels are significantly reduced, and support an instructive role for spontaneous retinal activity in both eye-specific segregation and retinotopic refinement.
Collapse
Affiliation(s)
- Hong-Ping Xu
- Department of Neurobiology, Yale University, New Haven, CT, 06510
| | | | - Ming-Gang Chen
- Department of Ophthalmology and Visual Science, Yale University, New Haven, CT, 06510
| | - Xinxin Ge
- Department of Neurobiology, Yale University, New Haven, CT, 06510
| | - Yueyi Zhang
- Department of Neurobiology, Yale University, New Haven, CT, 06510
| | - Zhimin Jimmy Zhou
- Department of Ophthalmology and Visual Science, Yale University, New Haven, CT, 06510
| | - Michael C Crair
- Department of Neurobiology, Yale University, New Haven, CT, 06510.,Department of Ophthalmology and Visual Science, Yale University, New Haven, CT, 06510.,Kavli Institute of Neuroscience, Yale University, New Haven, CT, 06510
| |
Collapse
|
37
|
Davis ZW, Sun C, Derieg B, Chapman B, Cheng HJ. Epibatidine blocks eye-specific segregation in ferret dorsal lateral geniculate nucleus during stage III retinal waves. PLoS One 2015; 10:e0118783. [PMID: 25794280 PMCID: PMC4368645 DOI: 10.1371/journal.pone.0118783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 01/18/2015] [Indexed: 11/18/2022] Open
Abstract
The segregation and maintenance of eye-specific inputs in the dorsal lateral geniculate nucleus (dLGN) during early postnatal development requires the patterned spontaneous activity of retinal waves. In contrast to the development of the mouse, ferret eye-specific segregation is not complete at the start of stage III glutamatergic retinal waves, and the remaining overlap is limited to the C/C1 lamina of the dLGN. To investigate the role of patterned spontaneous activity in this late segregation, we disrupted retinal waves pharmacologically for 5 day windows from postnatal day (P) 10 to P25. Multi-electrode array recordings of the retina in vitro reveal that the cholinergic agonist epibatidine disrupts correlated retinal activity during stage III waves. Epibatidine also prevents the segregation of eye-specific inputs in vivo during that period. Our results reveal a novel role for cholinergic influence on stage III retinal waves as an instructive signal for the continued segregation of eye-specific inputs in the ferret dLGN.
Collapse
Affiliation(s)
- Zachary W. Davis
- Center for Neuroscience, University of California Davis, Davis, California, United States of America
| | - Chao Sun
- Department of Neurobiology, Physiology, and Behavior, University of California Davis, Davis, California, United States of America
| | - Brittany Derieg
- Center for Neuroscience, University of California Davis, Davis, California, United States of America
| | - Barbara Chapman
- Center for Neuroscience, University of California Davis, Davis, California, United States of America
- Department of Neurobiology, Physiology, and Behavior, University of California Davis, Davis, California, United States of America
| | - Hwai-Jong Cheng
- Center for Neuroscience, University of California Davis, Davis, California, United States of America
- Department of Neurobiology, Physiology, and Behavior, University of California Davis, Davis, California, United States of America
- Department of Pathology and Laboratory Medicine, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
38
|
Chen X, Ye R, Gargus JJ, Blakely RD, Dobrenis K, Sze JY. Disruption of Transient Serotonin Accumulation by Non-Serotonin-Producing Neurons Impairs Cortical Map Development. Cell Rep 2015; 10:346-358. [PMID: 25600870 PMCID: PMC4824665 DOI: 10.1016/j.celrep.2014.12.033] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 11/10/2014] [Accepted: 12/15/2014] [Indexed: 01/24/2023] Open
Abstract
Polymorphisms that alter serotonin transporter SERT expression and functionality increase the risks for autism and psychiatric traits. Here, we investigate how SERT controls serotonin signaling in developing CNS in mice. SERT is transiently expressed in specific sets of glutamatergic neurons and uptakes extrasynaptic serotonin during perinatal CNS development. We show that SERT expression in glutamatergic thalamocortical axons (TCAs) dictates sensory map architecture. Knockout of SERT in TCAs causes lasting alterations in TCA patterning, spatial organizations of cortical neurons, and dendritic arborization in sensory cortex. Pharmacological reduction of serotonin synthesis during the first postnatal week rescues sensory maps in SERTGluΔ mice. Furthermore, knockdown of SERT expression in serotonin-producing neurons does not impair barrel maps. We propose that spatiotemporal SERT expression in non-serotonin-producing neurons represents a determinant in early life genetic programming of cortical circuits. Perturbing this SERT function could be involved in the origin of sensory and cognitive deficits associated with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Xiaoning Chen
- Department of Molecular Pharmacology and Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ran Ye
- Departments of Pharmacology & Psychiatry, Silvio O. Conte Center for Neuroscience Research, Vanderbilt University, Nashville, TN 37232, USA
| | - J Jay Gargus
- Center for Autism Research and Translation and Department of Physiology & Biophysics and Section of Human Genetics in Pediatrics, University of California, Irvine, Irvine, CA 92697, USA
| | - Randy D Blakely
- Departments of Pharmacology & Psychiatry, Silvio O. Conte Center for Neuroscience Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Kostantin Dobrenis
- Dominick P. Purpura Department of Neuroscience and Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ji Ying Sze
- Department of Molecular Pharmacology and Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
39
|
Synapse elimination and learning rules co-regulated by MHC class I H2-Db. Nature 2014; 509:195-200. [PMID: 24695230 PMCID: PMC4016165 DOI: 10.1038/nature13154] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 02/13/2014] [Indexed: 12/31/2022]
Abstract
The formation of precise connections between retina and LGN involves the activity-dependent elimination of some synapses, with strengthening and retention of others. Here we show that the MHC Class I (MHCI) molecule H2-Db is necessary and sufficient for synapse elimination in the retinogeniculate system. In mice lacking both H2-Kb and H2-Db (KbDb−/−) despite intact retinal activity and basal synaptic transmission, the developmentally-regulated decrease in functional convergence of retinal ganglion cell synaptic inputs to LGN neurons fails and eye-specific layers do not form. Neuronal expression of just H2-Db in KbDb−/− mice rescues both synapse elimination and eye specific segregation despite a compromised immune system. When patterns of stimulation mimicking endogenous retinal waves are used to probe synaptic learning rules at retinogeniculate synapses, LTP is intact but LTD is impaired in KbDb−/− mice. This change is due to an increase in Ca2+ permeable AMPA receptors. Restoring H2-Db to KbDb−/− neurons renders AMPA receptors Ca2+ impermeable and rescues LTD. These observations reveal an MHCI mediated link between developmental synapse pruning and balanced synaptic learning rules enabling both LTD and LTP, and demonstrate a direct requirement for H2-Db in functional and structural synapse pruning in CNS neurons.
Collapse
|
40
|
Cain MD, Vo BQ, Kolesnikov AV, Kefalov VJ, Culican SM, Kerschensteiner D, Blumer KJ. An allosteric regulator of R7-RGS proteins influences light-evoked activity and glutamatergic waves in the inner retina. PLoS One 2013; 8:e82276. [PMID: 24349243 PMCID: PMC3857278 DOI: 10.1371/journal.pone.0082276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 10/31/2013] [Indexed: 11/23/2022] Open
Abstract
In the outer retina, G protein-coupled receptor (GPCR) signaling mediates phototransduction and synaptic transmission between photoreceptors and ON bipolar cells. In contrast, the functions of modulatory GPCR signaling networks in the inner retina are less well understood. We addressed this question by determining the consequences of augmenting modulatory Gi/o signaling driven by endogenous transmitters. This was done by analyzing the effects of genetically ablating the R7 RGS-binding protein (R7BP), a membrane-targeting protein and positive allosteric modulator of R7-RGS (regulator of the G protein signaling 7) family that deactivates Gi/oα subunits. We found that R7BP is expressed highly in starburst amacrine cells and retinal ganglion cells (RGCs). As indicated by electroretinography and multielectrode array recordings of adult retina, ablation of R7BP preserved outer retina function, but altered the firing rate and latency of ON RGCs driven by rods and cones but not rods alone. In developing retina, R7BP ablation increased the burst duration of glutamatergic waves whereas cholinergic waves were unaffected. This effect on glutamatergic waves did not result in impaired segregation of RGC projections to eye-specific domains of the dorsal lateral geniculate nucleus. R7BP knockout mice exhibited normal spatial contrast sensitivity and visual acuity as assessed by optomotor reflexes. Taken together these findings indicate that R7BP-dependent regulation of R7-RGS proteins shapes specific aspects of light-evoked and spontaneous activity of RGCs in mature and developing retina.
Collapse
Affiliation(s)
- Matthew D. Cain
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Bradly Q. Vo
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Alexander V. Kolesnikov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Vladimir J. Kefalov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Susan M. Culican
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kendall J. Blumer
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
41
|
Toda T, Homma D, Tokuoka H, Hayakawa I, Sugimoto Y, Ichinose H, Kawasaki H. Birth regulates the initiation of sensory map formation through serotonin signaling. Dev Cell 2013; 27:32-46. [PMID: 24135230 DOI: 10.1016/j.devcel.2013.09.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Revised: 05/16/2013] [Accepted: 09/04/2013] [Indexed: 10/26/2022]
Abstract
Although the mechanisms underlying the spatial pattern formation of sensory maps have been extensively investigated, those triggering sensory map formation during development are largely unknown. Here we show that the birth of pups instructively and selectively regulates the initiation of barrel formation in the somatosensory cortex by reducing serotonin concentration. We found that preterm birth accelerated barrel formation, whereas it did not affect either barreloid formation or barrel structural plasticity. We also found that serotonin was selectively reduced soon after birth and that the reduction of serotonin was triggered by birth. The reduction of serotonin was necessary and sufficient for the effect of birth on barrel formation. Interestingly, the regulatory mechanisms described here were also found to regulate eye-specific segregation in the visual system, suggesting that they are utilized in various brain regions. Our results shed light on roles of birth and serotonin in sensory map formation.
Collapse
Affiliation(s)
- Tomohisa Toda
- Department of Biophysical Genetics, Graduate School of Medical Sciences, Kanazawa University, Ishikawa 920-8640, Japan; Brain/Liver Interface Medicine Research Center, Kanazawa University, Ishikawa 920-8640, Japan; Innovative Preventive Medicine Education and Research Center, Kanazawa University, Ishikawa 920-8640, Japan; Department of Molecular and Systems Neurobiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
TGF-β signaling regulates neuronal C1q expression and developmental synaptic refinement. Nat Neurosci 2013; 16:1773-82. [PMID: 24162655 PMCID: PMC3973738 DOI: 10.1038/nn.3560] [Citation(s) in RCA: 427] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 09/30/2013] [Indexed: 12/13/2022]
Abstract
Immune molecules, including complement proteins C1q and C3, have emerged as critical mediators of synaptic refinement and plasticity. Complement localizes to synapses and refines the developing visual system via C3-dependent microglial phagocytosis of synapses. Retinal ganglion cells (RGCs) express C1q, the initiating protein of the classical complement cascade, during retinogeniculate refinement; however, the signals controlling C1q expression and function remain elusive. Previous work implicated an astrocyte-derived factor in regulating neuronal C1q expression. Here we identify retinal TGF-β as a key regulator of neuronal C1q expression and synaptic pruning in the developing visual system. Mice lacking TGF-β receptor II (TGFβRII) in retinal neurons have reduced C1q expression in RGCs, reduced synaptic localization of complement, and phenocopy refinement defects observed in complement-deficient mice, including reduced eye specific segregation and microglial engulfment of RGC inputs. These data implicate TGF-β in regulating neuronal C1q expression to initiate complement- and microglia-mediated synaptic pruning.
Collapse
|
43
|
Abstract
Neurons in layer VI of visual cortex represent one of the largest sources of nonretinal input to the dorsal lateral geniculate nucleus (dLGN) and play a major role in modulating the gain of thalamic signal transmission. However, little is known about how and when these descending projections arrive and make functional connections with dLGN cells. Here we used a transgenic mouse to visualize corticogeniculate projections to examine the timing of cortical innervation in dLGN. Corticogeniculate innervation occurred at postnatal ages and was delayed compared with the arrival of retinal afferents. Cortical fibers began to enter dLGN at postnatal day 3 (P3) to P4, a time when retinogeniculate innervation is complete. However, cortical projections did not fully innervate dLGN until eye opening (P12), well after the time when retinal inputs from the two eyes segregate to form nonoverlapping eye-specific domains. In vitro thalamic slice recordings revealed that newly arriving cortical axons form functional connections with dLGN cells. However, adult-like responses that exhibited paired pulse facilitation did not fully emerge until 2 weeks of age. Finally, surgical or genetic elimination of retinal input greatly accelerated the rate of corticogeniculate innervation, with axons invading between P2 and P3 and fully innervating dLGN by P8 to P10. However, recordings in genetically deafferented mice showed that corticogeniculate synapses continued to mature at the same rate as controls. These studies suggest that retinal and cortical innervation of dLGN is highly coordinated and that input from retina plays an important role in regulating the rate of corticogeniculate innervation.
Collapse
|
44
|
Duff G, Argaw A, Cecyre B, Cherif H, Tea N, Zabouri N, Casanova C, Ptito M, Bouchard JF. Cannabinoid receptor CB2 modulates axon guidance. PLoS One 2013; 8:e70849. [PMID: 23951024 PMCID: PMC3739758 DOI: 10.1371/journal.pone.0070849] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 06/28/2013] [Indexed: 01/29/2023] Open
Abstract
Navigation of retinal projections towards their targets is regulated by guidance molecules and growth cone transduction mechanisms. Here, we present in vitro and in vivo evidences that the cannabinoid receptor 2 (CB2R) is expressed along the retino-thalamic pathway and exerts a modulatory action on axon guidance. These effects are specific to CB2R since no changes were observed in mice where the gene coding for this receptor was altered (cnr2 (-/-)). The CB2R induced morphological changes observed at the growth cone are PKA dependent and require the presence of the netrin-1 receptor, Deleted in Colorectal Cancer. Interfering with endogenous CB2R signalling using pharmacological agents increased retinal axon length and induced aberrant projections. Additionally, cnr2 (-/-) mice showed abnormal eye-specific segregation of retinal projections in the dorsal lateral geniculate nucleus (dLGN) indicating CB2R's implication in retinothalamic development. Overall, this study demonstrates that the contribution of endocannabinoids to brain development is not solely mediated by CB1R, but also involves CB2R.
Collapse
MESH Headings
- Animals
- Axons/metabolism
- Axons/ultrastructure
- Cyclic AMP-Dependent Protein Kinases/genetics
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Embryo, Mammalian
- Endocannabinoids/metabolism
- Gene Expression Regulation, Developmental
- Geniculate Bodies/cytology
- Geniculate Bodies/growth & development
- Geniculate Bodies/metabolism
- Mice
- Mice, Knockout
- Netrin Receptors
- Neurogenesis/physiology
- Primary Cell Culture
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/deficiency
- Receptor, Cannabinoid, CB2/genetics
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Retinal Ganglion Cells/cytology
- Retinal Ganglion Cells/metabolism
- Visual Pathways/physiology
Collapse
Affiliation(s)
- Gabriel Duff
- School of Optometry, University of Montreal, Montreal, Quebec, Canada
- Faculty of Pharmacy, University of Montreal, Montreal, Quebec, Canada
| | - Anteneh Argaw
- School of Optometry, University of Montreal, Montreal, Quebec, Canada
- Department of Biomedical Science, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Bruno Cecyre
- School of Optometry, University of Montreal, Montreal, Quebec, Canada
| | - Hosni Cherif
- School of Optometry, University of Montreal, Montreal, Quebec, Canada
| | - Nicolas Tea
- School of Optometry, University of Montreal, Montreal, Quebec, Canada
| | - Nawal Zabouri
- School of Optometry, University of Montreal, Montreal, Quebec, Canada
| | | | - Maurice Ptito
- School of Optometry, University of Montreal, Montreal, Quebec, Canada
| | - Jean-François Bouchard
- School of Optometry, University of Montreal, Montreal, Quebec, Canada
- Faculty of Pharmacy, University of Montreal, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
45
|
Discenza CB, Reinagel P. Dorsal lateral geniculate substructure in the long-evans rat: a cholera toxin B subunit study. Front Neuroanat 2012; 6:40. [PMID: 23055955 PMCID: PMC3457007 DOI: 10.3389/fnana.2012.00040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 09/05/2012] [Indexed: 11/23/2022] Open
Abstract
The pigmented rat is an increasingly important model in visual neuroscience research, yet the lamination of retinal projections in the dLGN has not been examined in sufficient detail. From previous studies it was known that most of the rat dLGN receives monocular input from the contralateral eye, with a small island receiving predominantly ipsilateral projections. Here we revisit the question using cholera toxin B subunit, a tracer that efficiently fills retinal terminals after intra-ocular injection. We imaged retinal termini throughout the dLGN at 0.5 μm resolution and traced areas of ipsilateral and contralateral terminals to obtain a high resolution 3D reconstruction of the projection pattern. Retinal termini in the dLGN are well segregated by eye of origin, as expected. We find, however, that the ipsilateral projections form multiple discrete projection zones in three dimensions, not the single island previously described. It remains to be determined whether these subdomains represent distinct functional sublaminae, as is the case in other mammals.
Collapse
Affiliation(s)
- Claire B. Discenza
- Department of Neuroscience, School of Medicine, University of CaliforniaSan Diego, CA, USA
| | - Pamela Reinagel
- Section of Neurobiology, Division of Biological Sciences, University of CaliforniaSan Diego, CA, USA
| |
Collapse
|
46
|
Dhande OS, Bhatt S, Anishchenko A, Elstrott J, Iwasato T, Swindell EC, Xu HP, Jamrich M, Itohara S, Feller MB, Crair MC. Role of adenylate cyclase 1 in retinofugal map development. J Comp Neurol 2012; 520:1562-83. [PMID: 22102330 DOI: 10.1002/cne.23000] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The development of topographic maps of the sensory periphery is sensitive to the disruption of adenylate cyclase 1 (AC1) signaling. AC1 catalyzes the production of cAMP in a Ca2+/calmodulin-dependent manner, and AC1 mutant mice (AC1−/−) have disordered visual and somatotopic maps. However, the broad expression of AC1 in the brain and the promiscuous nature of cAMP signaling have frustrated attempts to determine the underlying mechanism of AC1-dependent map development. In the mammalian visual system, the initial coarse targeting of retinal ganglion cell (RGC) projections to the superior colliculus (SC) and lateral geniculate nucleus (LGN) is guided by molecular cues, and the subsequent refinement of these crude projections occurs via an activity-dependent process that depends on spontaneous retinal waves. Here, we show that AC1−/− mice have normal retinal waves but disrupted map refinement. We demonstrate that AC1 is required for the emergence of dense and focused termination zones and elimination of inaccurately targeted collaterals at the level of individual retinofugal arbors. Conditional deletion of AC1 in the retina recapitulates map defects, indicating that the locus of map disruptions in the SC and dorsal LGN of AC1−/− mice is presynaptic. Finally, map defects in mice without AC1 and disrupted retinal waves (AC1−/−;β2−/− double KO mice) are no worse than those in mice lacking only β2−/−, but loss of AC1 occludes map recovery in β2−/− mice during the second postnatal week. These results suggest that AC1 in RGC axons mediates the development of retinotopy and eye-specific segregation in the SC and dorsal LGN.
Collapse
Affiliation(s)
- Onkar S Dhande
- Department of Neurobiology, Yale University, New Haven, Connecticut 06510, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Spontaneous activity promotes synapse formation in a cell-type-dependent manner in the developing retina. J Neurosci 2012; 32:5426-39. [PMID: 22514306 DOI: 10.1523/jneurosci.0194-12.2012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Spontaneous activity is thought to regulate synaptogenesis in many parts of the developing nervous system. In vivo evidence for this regulation, however, is scarce and comes almost exclusively from experiments in which normal activity was reduced or blocked completely. Thus, whether spontaneous activity itself promotes synaptogenesis or plays a purely permissive role remains uncertain. In addition, how activity influences synapse dynamics to shape connectivity and whether its effects among neurons are uniform or cell-type-dependent is unclear. In mice lacking the cone-rod homeobox gene (Crx), photoreceptors fail to establish normal connections with bipolar cells (BCs). Here, we find that retinal ganglion cells (RGCs) in Crx⁻/⁻ mice become rhythmically hyperactive around the time of eye opening as a result of increased spontaneous glutamate release from BCs. This elevated neurotransmission enhances synaptogenesis between BCs and RGCs, without altering the overall circuit architecture. Using live imaging, we discover that spontaneous activity selectively regulates the rate of synapse formation, not elimination, in this circuit. Reconstructions of the connectivity patterns of three BC types with a shared RGC target further revealed that neurotransmission specifically promotes the formation of multisynaptic appositions from one BC type without affecting the maintenance or elimination of connections from the other two. Although hyperactivity in Crx⁻/⁻ mice persists, synapse numbers do not increase beyond 4 weeks of age, suggesting closure of a critical period for synaptic refinement in the inner retina. Interestingly, despite their hyperactivity, RGC axons maintain normal eye-specific territories and cell-type-specific layers in the dorsal lateral geniculate nucleus.
Collapse
|
48
|
Fujino T, Leslie JH, Eavri R, Chen JL, Lin WC, Flanders GH, Borok E, Horvath TL, Nedivi E. CPG15 regulates synapse stability in the developing and adult brain. Genes Dev 2012; 25:2674-85. [PMID: 22190461 DOI: 10.1101/gad.176172.111] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Use-dependent selection of optimal connections is a key feature of neural circuit development and, in the mature brain, underlies functional adaptation, such as is required for learning and memory. Activity patterns guide circuit refinement through selective stabilization or elimination of specific neuronal branches and synapses. The molecular signals that mediate activity-dependent synapse and arbor stabilization and maintenance remain elusive. We report that knockout of the activity-regulated gene cpg15 in mice delays developmental maturation of axonal and dendritic arbors visualized by anterograde tracing and diolistic labeling, respectively. Electrophysiology shows that synaptic maturation is also delayed, and electron microscopy confirms that many dendritic spines initially lack functional synaptic contacts. While circuits eventually develop, in vivo imaging reveals that spine maintenance is compromised in the adult, leading to a gradual attrition in spine numbers. Loss of cpg15 also results in poor learning. cpg15 knockout mice require more trails to learn, but once they learn, memories are retained. Our findings suggest that CPG15 acts to stabilize active synapses on dendritic spines, resulting in selective spine and arbor stabilization and synaptic maturation, and that synapse stabilization mediated by CPG15 is critical for efficient learning.
Collapse
Affiliation(s)
- Tadahiro Fujino
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Xu HP, Furman M, Mineur YS, Chen H, King SL, Zenisek D, Zhou ZJ, Butts DA, Tian N, Picciotto MR, Crair MC. An instructive role for patterned spontaneous retinal activity in mouse visual map development. Neuron 2011; 70:1115-27. [PMID: 21689598 DOI: 10.1016/j.neuron.2011.04.028] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2011] [Indexed: 10/18/2022]
Abstract
Complex neural circuits in the mammalian brain develop through a combination of genetic instruction and activity-dependent refinement. The relative role of these factors and the form of neuronal activity responsible for circuit development is a matter of significant debate. In the mammalian visual system, retinal ganglion cell projections to the brain are mapped with respect to retinotopic location and eye of origin. We manipulated the pattern of spontaneous retinal waves present during development without changing overall activity levels through the transgenic expression of β2-nicotinic acetylcholine receptors in retinal ganglion cells of mice. We used this manipulation to demonstrate that spontaneous retinal activity is not just permissive, but instructive in the emergence of eye-specific segregation and retinotopic refinement in the mouse visual system. This suggests that specific patterns of spontaneous activity throughout the developing brain are essential in the emergence of specific and distinct patterns of neuronal connectivity.
Collapse
Affiliation(s)
- Hong-ping Xu
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06510, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Blankenship AG, Hamby AM, Firl A, Vyas S, Maxeiner S, Willecke K, Feller MB. The role of neuronal connexins 36 and 45 in shaping spontaneous firing patterns in the developing retina. J Neurosci 2011; 31:9998-10008. [PMID: 21734291 PMCID: PMC3142875 DOI: 10.1523/jneurosci.5640-10.2011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 05/17/2011] [Accepted: 05/23/2011] [Indexed: 12/27/2022] Open
Abstract
Gap junction coupling synchronizes activity among neurons in adult neural circuits, but its role in coordinating activity during development is less known. The developing retina exhibits retinal waves--spontaneous depolarizations that propagate among retinal interneurons and drive retinal ganglion cells (RGCs) to fire correlated bursts of action potentials. During development, two connexin isoforms, connexin 36 (Cx36) and Cx45, are expressed in bipolar cells and RGCs, and therefore provide a potential substrate for coordinating network activity. To determine whether gap junctions contribute to retinal waves, we compared spontaneous activity patterns using calcium imaging, whole-cell recording, and multielectrode array recording in control, single-knock-out (ko) mice lacking Cx45 and double-knock-out (dko) mice lacking both isoforms. Wave frequency, propagation speed, and bias in propagation direction were similar in control, Cx36ko, Cx45ko, and Cx36/45dko retinas. However, the spontaneous firing rate of individual retinal ganglion cells was elevated in Cx45ko retinas, similar to Cx36ko retinas (Hansen et al., 2005; Torborg and Feller, 2005), a phenotype that was more pronounced in Cx36/45dko retinas. As a result, spatial correlations, as assayed by nearest-neighbor correlation and functional connectivity maps, were significantly altered. In addition, Cx36/45dko mice had reduced eye-specific segregation of retinogeniculate afferents. Together, these findings suggest that although Cx36 and Cx45 do not play a role in gross spatial and temporal propagation properties of retinal waves, they strongly modulate the firing pattern of individual RGCs, ensuring strongly correlated firing between nearby RGCs and normal patterning of retinogeniculate projections.
Collapse
Affiliation(s)
- Aaron G. Blankenship
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, California 92093
- Department of Molecular and Cell Biology
| | | | - Alana Firl
- Vision Sciences Graduate Program, Department of Optometry, and
| | - Shri Vyas
- Department of Molecular and Cell Biology
| | - Stephan Maxeiner
- LIMES (Life and Medical Sciences) Institute, University of Bonn, 53115 Bonn, Germany
| | - Klaus Willecke
- LIMES (Life and Medical Sciences) Institute, University of Bonn, 53115 Bonn, Germany
| | - Marla B. Feller
- Department of Molecular and Cell Biology
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California 94720, and
| |
Collapse
|