1
|
Hedegaard M, Hansen KB, Andersen KT, Bräuner-Osborne H, Traynelis SF. Molecular pharmacology of human NMDA receptors. Neurochem Int 2011; 61:601-9. [PMID: 22197913 DOI: 10.1016/j.neuint.2011.11.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 11/30/2011] [Indexed: 01/27/2023]
Abstract
N-methyl-d-aspartate (NMDA) receptors are ionotropic glutamate receptors that mediate excitatory neurotransmission. NMDA receptors are also important drug targets that are implicated in a number of pathophysiological conditions. To facilitate the transition from lead compounds in pre-clinical animal models to drug candidates for human use, it is important to establish whether NMDA receptor ligands have similar properties at rodent and human NMDA receptors. Here, we compare amino acid sequences for human and rat NMDA receptor subunits and discuss inter-species variation in the context of our current knowledge of the relationship between NMDA receptor structure and function. We summarize studies on the biophysical properties of human NMDA receptors and compare these properties to those of rat orthologs. Finally, we provide a comprehensive pharmacological characterization that allows side-by-side comparison of agonists, un-competitive antagonists, GluN2B-selective non-competitive antagonists, and GluN2C/D-selective modulators at recombinant human and rat NMDA receptors. The evaluation of biophysical properties and pharmacological probes acting at different sites on the receptor suggest that the binding sites and conformational changes leading to channel gating in response to agonist binding are highly conserved between human and rat NMDA receptors. In summary, the results of this study suggest that no major detectable differences exist in the pharmacological and functional properties of human and rat NMDA receptors.
Collapse
Affiliation(s)
- Maiken Hedegaard
- Department of Pharmacology, Emory University School of Medicine, 1510 Clifton Road, Rollins Research Center, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
2
|
Layton ME, Kelly MJ, Rodzinak KJ, Sanderson PE, Young SD, Bednar RA, DiLella AG, Mcdonald TP, Wang H, Mosser SD, Fay JF, Cunningham ME, Reiss DR, Fandozzi C, Trainor N, Liang A, Lis EV, Seabrook GR, Urban MO, Yergey J, Koblan KS. Discovery of 3-substituted aminocyclopentanes as potent and orally bioavailable NR2B subtype-selective NMDA antagonists. ACS Chem Neurosci 2011; 2:352-62. [PMID: 22816022 DOI: 10.1021/cn200013d] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 04/15/2011] [Indexed: 01/16/2023] Open
Abstract
A series of 3-substituted aminocyclopentanes has been identified as highly potent and selective NR2B receptor antagonists. Incorporation of a 1,2,4-oxadiazole linker and substitution of the pendant phenyl ring led to the discovery of orally bioavailable analogues that showed efficient NR2B receptor occupancy in rats. Unlike nonselective NMDA antagonists, the NR2B-selective antagonist 22 showed no adverse affects on motor coordination in the rotarod assay at high dose. Compound 22 was efficacious following oral administration in a spinal nerve ligation model of neuropathic pain and in an acute model of Parkinson's disease in a dose dependent manner.
Collapse
Affiliation(s)
- Mark E. Layton
- Departments of †Medicinal Chemistry, ‡Molecular Pain Research, §Movement Disorders, and ∥Drug Metabolism, Merck Research Laboratories, West Point, Pennsylvania 19486, United States
| | - Michael J. Kelly
- Departments of †Medicinal Chemistry, ‡Molecular Pain Research, §Movement Disorders, and ∥Drug Metabolism, Merck Research Laboratories, West Point, Pennsylvania 19486, United States
| | - Kevin J. Rodzinak
- Departments of †Medicinal Chemistry, ‡Molecular Pain Research, §Movement Disorders, and ∥Drug Metabolism, Merck Research Laboratories, West Point, Pennsylvania 19486, United States
| | - Philip E. Sanderson
- Departments of †Medicinal Chemistry, ‡Molecular Pain Research, §Movement Disorders, and ∥Drug Metabolism, Merck Research Laboratories, West Point, Pennsylvania 19486, United States
| | - Steven D. Young
- Departments of †Medicinal Chemistry, ‡Molecular Pain Research, §Movement Disorders, and ∥Drug Metabolism, Merck Research Laboratories, West Point, Pennsylvania 19486, United States
| | - Rodney A. Bednar
- Departments of †Medicinal Chemistry, ‡Molecular Pain Research, §Movement Disorders, and ∥Drug Metabolism, Merck Research Laboratories, West Point, Pennsylvania 19486, United States
| | - Anthony G. DiLella
- Departments of †Medicinal Chemistry, ‡Molecular Pain Research, §Movement Disorders, and ∥Drug Metabolism, Merck Research Laboratories, West Point, Pennsylvania 19486, United States
| | - Terrence P. Mcdonald
- Departments of †Medicinal Chemistry, ‡Molecular Pain Research, §Movement Disorders, and ∥Drug Metabolism, Merck Research Laboratories, West Point, Pennsylvania 19486, United States
| | - Hao Wang
- Departments of †Medicinal Chemistry, ‡Molecular Pain Research, §Movement Disorders, and ∥Drug Metabolism, Merck Research Laboratories, West Point, Pennsylvania 19486, United States
| | - Scott D. Mosser
- Departments of †Medicinal Chemistry, ‡Molecular Pain Research, §Movement Disorders, and ∥Drug Metabolism, Merck Research Laboratories, West Point, Pennsylvania 19486, United States
| | - John F. Fay
- Departments of †Medicinal Chemistry, ‡Molecular Pain Research, §Movement Disorders, and ∥Drug Metabolism, Merck Research Laboratories, West Point, Pennsylvania 19486, United States
| | - Michael E. Cunningham
- Departments of †Medicinal Chemistry, ‡Molecular Pain Research, §Movement Disorders, and ∥Drug Metabolism, Merck Research Laboratories, West Point, Pennsylvania 19486, United States
| | - Duane R. Reiss
- Departments of †Medicinal Chemistry, ‡Molecular Pain Research, §Movement Disorders, and ∥Drug Metabolism, Merck Research Laboratories, West Point, Pennsylvania 19486, United States
| | - Christine Fandozzi
- Departments of †Medicinal Chemistry, ‡Molecular Pain Research, §Movement Disorders, and ∥Drug Metabolism, Merck Research Laboratories, West Point, Pennsylvania 19486, United States
| | - Nicole Trainor
- Departments of †Medicinal Chemistry, ‡Molecular Pain Research, §Movement Disorders, and ∥Drug Metabolism, Merck Research Laboratories, West Point, Pennsylvania 19486, United States
| | - Annie Liang
- Departments of †Medicinal Chemistry, ‡Molecular Pain Research, §Movement Disorders, and ∥Drug Metabolism, Merck Research Laboratories, West Point, Pennsylvania 19486, United States
| | - Edward V. Lis
- Departments of †Medicinal Chemistry, ‡Molecular Pain Research, §Movement Disorders, and ∥Drug Metabolism, Merck Research Laboratories, West Point, Pennsylvania 19486, United States
| | - Guy R. Seabrook
- Departments of †Medicinal Chemistry, ‡Molecular Pain Research, §Movement Disorders, and ∥Drug Metabolism, Merck Research Laboratories, West Point, Pennsylvania 19486, United States
| | - Mark O. Urban
- Departments of †Medicinal Chemistry, ‡Molecular Pain Research, §Movement Disorders, and ∥Drug Metabolism, Merck Research Laboratories, West Point, Pennsylvania 19486, United States
| | - James Yergey
- Departments of †Medicinal Chemistry, ‡Molecular Pain Research, §Movement Disorders, and ∥Drug Metabolism, Merck Research Laboratories, West Point, Pennsylvania 19486, United States
| | - Kenneth S. Koblan
- Departments of †Medicinal Chemistry, ‡Molecular Pain Research, §Movement Disorders, and ∥Drug Metabolism, Merck Research Laboratories, West Point, Pennsylvania 19486, United States
| |
Collapse
|