1
|
Chen W, Wang S, Bao J, Yu C, Jiang Q, Song J, Zheng Y, Hao Y, Xu K. Restoration of coherent reach-grasp-pull movement via sequential intraneural peripheral nerve stimulation in rats. J Neural Eng 2024; 21:046007. [PMID: 38885677 DOI: 10.1088/1741-2552/ad5935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
Objective.Peripheral nerve stimulation (PNS) has been demonstrated as an effective way to selectively activate muscles and to produce fine hand movements. However, sequential multi-joint upper limb movements, which are critical for paralysis rehabilitation, has not been tested with PNS. Here, we aimed to restore multiple upper limb joint movements through an intraneural interface with a single electrode, achieving coherent reach-grasp-pull movement tasks through sequential stimulation.Approach.A transverse intrafascicular multichannel electrode was implanted under the axilla of the rat's upper limb, traversing the musculocutaneous, radial, median, and ulnar nerves. Intramuscular electrodes were implanted into the biceps brachii (BB), triceps brachii (TB), flexor carpi radialis (FCR), and extensor carpi radialis (ECR) muscles to record electromyographic (EMG) activity and video recordings were used to capture the kinematics of elbow, wrist, and digit joints. Charge-balanced biphasic pulses were applied to different channels to recruit distinct upper limb muscles, with concurrent recording of EMG signals and joint kinematics to assess the efficacy of the stimulation. Finally, a sequential stimulation protocol was employed by generating coordinated pulses in different channels.Main results.BB, TB, FCR and ECR muscles were selectively activated and various upper limb movements, including elbow flexion, elbow extension, wrist flexion, wrist extension, digit flexion, and digit extension, were reliably generated. The modulation effects of stimulation parameters, including pulse width, amplitude, and frequency, on induced joint movements were investigated and reach-grasp-pull movement was elicited by sequential stimulation.Significance.Our results demonstrated the feasibility of sequential intraneural stimulation for functional multi-joint movement restoration, providing a new approach for clinical rehabilitation in paralyzed patients.
Collapse
Affiliation(s)
- Weihuang Chen
- Qiushi Academy for Advanced Studies (QAAS), Zhejiang University, Hangzhou, People's Republic of China
- Nanhu Brain-computer interface institute, Hangzhou 311100, People's Republic of China
- The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311100, People's Republic of China
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Suhao Wang
- Nanhu Brain-computer interface institute, Hangzhou 311100, People's Republic of China
- The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311100, People's Republic of China
- Department of Engineering Mechanics, Soft Matter Research Center, and Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Jieting Bao
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Chaonan Yu
- Nanhu Brain-computer interface institute, Hangzhou 311100, People's Republic of China
| | - Qianqian Jiang
- Nanhu Brain-computer interface institute, Hangzhou 311100, People's Republic of China
- The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311100, People's Republic of China
- Department of Engineering Mechanics, Soft Matter Research Center, and Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Jizhou Song
- Nanhu Brain-computer interface institute, Hangzhou 311100, People's Republic of China
- The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311100, People's Republic of China
- Department of Engineering Mechanics, Soft Matter Research Center, and Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Yongte Zheng
- Cereblink (Hangzhou) Technology Co., Ltd, Hangzhou, People's Republic of China
| | - Yaoyao Hao
- Nanhu Brain-computer interface institute, Hangzhou 311100, People's Republic of China
- The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311100, People's Republic of China
| | - Kedi Xu
- Qiushi Academy for Advanced Studies (QAAS), Zhejiang University, Hangzhou, People's Republic of China
- Nanhu Brain-computer interface institute, Hangzhou 311100, People's Republic of China
- The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311100, People's Republic of China
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
2
|
Dalise S, Cavalli L, Ghuman H, Wahlberg B, Gerwig M, Chisari C, Ambrosio F, Modo M. Biological effects of dosing aerobic exercise and neuromuscular electrical stimulation in rats. Sci Rep 2017; 7:10830. [PMID: 28883534 PMCID: PMC5589775 DOI: 10.1038/s41598-017-11260-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/22/2017] [Indexed: 11/09/2022] Open
Abstract
Aerobic exercise (AE) and non-aerobic neuromuscular electric stimulation (NMES) are common interventions used in physical therapy. We explored the dose-dependency (low, medium, high) of these interventions on biochemical factors, such as brain derived neurotrophic growth factor (BDNF), vascular endothelial growth factor-A (VEGF-A), insulin-like growth factor-1 (IGF-1) and Klotho, in the blood and brain of normal rats, as well as a treadmill-based maximum capacity test (MCT). A medium dose of AE produced the most improvement in MCT with dose-dependent changes in Klotho in the blood. A dose-dependent increase of BDNF was evident following completion of an NMES protocol, but there was no improvement in MCT performance. Gene expression in the hippocampus was increased after both AE and NMES, with IGF-1 being a signaling molecule that correlated with MCT performance in the AE conditions, but also highly correlated with VEGF-A and Klotho. Blood Klotho levels can serve as a biomarker of therapeutic dosing of AE, whereas IGF-1 is a key molecule coupled to gene expression of other molecules in the hippocampus. This approach provides a translatable paradigm to investigate the mode and mechanism of action of interventions employed in physical therapy that can improve our understanding of how these factors change under pathological conditions.
Collapse
Affiliation(s)
- Stefania Dalise
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA.,University Hospital of Pisa, Department of Neuroscience, Unit of Neurorehabilitation, Pisa, Italy
| | - Loredana Cavalli
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA.,University Hospital of Pisa, Department of Neuroscience, Unit of Neurorehabilitation, Pisa, Italy
| | - Harmanvir Ghuman
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, Pittsburgh, Pennsylvania, USA
| | | | | | - Carmelo Chisari
- University Hospital of Pisa, Department of Neuroscience, Unit of Neurorehabilitation, Pisa, Italy
| | - Fabrisia Ambrosio
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, Pittsburgh, Pennsylvania, USA.,Department of Physical Medicine and Rehabilitation, Pittsburgh, Pennsylvania, USA
| | - Michel Modo
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA. .,Department of Bioengineering, Pittsburgh, Pennsylvania, USA. .,Department of Radiology, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
3
|
Lai S, Panarese A, Lawrence R, Boninger ML, Micera S, Ambrosio F. A Murine Model of Robotic Training to Evaluate Skeletal Muscle Recovery after Injury. Med Sci Sports Exerc 2016; 49:840-847. [PMID: 27875498 DOI: 10.1249/mss.0000000000001160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE In vivo studies have suggested that motor exercise can improve muscle regeneration after injury. Nevertheless, preclinical investigations still lack reliable tools to monitor motor performance over time and to deliver optimal training protocols to maximize force recovery. Here, we evaluated the utility of a murine robotic platform (i) to detect early impairment and longitudinal recovery after acute skeletal muscle injury and (ii) to administer varying intensity training protocols to enhance forelimb motor performance. METHODS A custom-designed robotic platform was used to train mice to perform a forelimb retraction task. After an acute injury to bilateral biceps brachii muscles, animals performed a daily training protocol in the platform at high (HL) or low (LL) loading levels over the course of 3 wk. Control animals were not trained (NT). Motor performance was assessed by quantifying force, time, submovement count, and number of movement attempts to accomplish the task. Myofiber number and cross-sectional area at the injury site were quantified histologically. RESULTS Two days after injury, significant differences in the time, submovement count, number of movement attempts, and exerted force were observed in all mice, as compared with baseline values. Interestingly, the recovery time of muscle force production differed significantly between intervention groups, with HL group showing a significantly accelerated recovery. Three weeks after injury, all groups showed motor performance comparable with baseline values. Accordingly, there were no differences in the number of myofibers or average cross-sectional area among groups after 3 wk. CONCLUSION Our findings demonstrate the utility of our custom-designed robotic device for the quantitative assessment of skeletal muscle function in preclinical murine studies. Moreover, we demonstrate that this device may be used to apply varying levels of resistance longitudinally as a means manipulate physiological muscle responses.
Collapse
Affiliation(s)
- Stefano Lai
- 1Scuola Superiore Sant'Anna, Translational Neural Engineering Area, The BioRobotics Institute, Pisa, ITALY; 2Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA; 3McGowan Institute for Regenerative Medicine, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA; 4Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA; 5Department of Rehabilitation Science and Technology, University of Pittsburgh, Pittsburgh, PA; and 6Ecole Polytechnique Federale de Lausanne (EPFL), Bertarelli Foundation Chair in Translational NeuroEngineering Laboratory, Center for Neuroprosthetics and Institute of Bioengineering, Lausanne, SWITZERLAND
| | | | | | | | | | | |
Collapse
|
4
|
Kanchiku T, Suzuki H, Imajo Y, Yoshida Y, Moriya A, Suetomi Y, Nishida N, Takahashi Y, Taguchi T. The efficacy of neuromuscular electrical stimulation with alternating currents in the kilohertz frequency to stimulate gait rhythm in rats following spinal cord injury. Biomed Eng Online 2015; 14:98. [PMID: 26510623 PMCID: PMC4625441 DOI: 10.1186/s12938-015-0094-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/15/2015] [Indexed: 11/29/2022] Open
Abstract
Background Rehabilitation facilitates the reorganization of residual/regenerated neural pathways and is key in improving motor function following spinal cord injury. Neuromuscular electrical stimulation (NMES) has been reported as being clinically effective. Although it can be used after the acute phase post-injury, the optimal stimulation conditions to improve motor function remain unclear. In this paper, we examined the effectiveness of NMES with alternating currents in the kilohertz (kHz) frequency in gait rhythm stimulation therapy. Methods Tests were performed using 20 mature female Fischer rats. Incomplete spinal cord injuries (T9 level) were made with an IH impactor using a force of 150 kdyn, and NMES was administered for 3 days from the 7th day post-injury. The needle electrodes were inserted percutaneously near the motor point of each muscle in conscious rats, and each muscle on the left and right leg was stimulated for 15 min at two frequencies, 75 Hz and 8 kHz, to induce a gait rhythm. Motor function was evaluated using Basso, Beattie, Bresnahan (BBB) scores and three-dimensional (3D) gait analysis. Rats were divided into four groups (5 rats/group), including the NMES treatment 75-Hz group (iSCI-NMES 75 Hz), 8-kHz group (iSCI-NMES 8 kHz), injury control group (iSCI-NT), and normal group (Normal-CT), and were compared. Results There was no significant difference in BBB scores among the three groups. In 3D gait analysis, compared with the injury control group, the 8-kHz group showed a significant improvement in synergistic movement of both hindlimbs. Conclusion We suggest that kHz stimulation is effective in gait rhythm stimulation using NMES.
Collapse
Affiliation(s)
- Tsukasa Kanchiku
- Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan.
| | - Hidenori Suzuki
- Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan.
| | - Yasuaki Imajo
- Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan.
| | - Yuichiro Yoshida
- Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan.
| | - Atsushi Moriya
- Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan.
| | - Yutaka Suetomi
- Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan.
| | - Norihiro Nishida
- Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan.
| | - Youhei Takahashi
- Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan.
| | - Toshihiko Taguchi
- Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan.
| |
Collapse
|
5
|
Jarc AM, Berniker M, Tresch MC. FES control of isometric forces in the rat hindlimb using many muscles. IEEE Trans Biomed Eng 2013; 60:1422-30. [PMID: 23303688 DOI: 10.1109/tbme.2013.2237768] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Functional electrical stimulation (FES) attempts to restore motor behaviors to paralyzed limbs by electrically stimulating nerves and/or muscles. This restoration of behavior requires specifying commands to a large number of muscles, each making an independent contribution to the ongoing behavior. Efforts to develop FES systems in humans have generally been limited to preprogrammed, fixed muscle activation patterns. The development and evaluation of more sophisticated FES control strategies is difficult to accomplish in humans, mainly because of the limited access of patients for FES experiments. Here, we developed an in vivo FES test platform using a rat model that is capable of using many muscles for control and that can therefore be used to evaluate potential strategies for developing flexible FES control strategies. We first validated this FES test platform by showing consistent force responses to repeated stimulation, monotonically increasing muscle recruitment with constant force directions, and linear summation of costimulated muscles. These results demonstrate that we are able to differentially control the activation of many muscles, despite the small size of the rat hindlimb. We then demonstrate the utility of this platform to test potential FES control strategies, using it to test our ability to effectively produce open-loop control of isometric forces. We show that we are able to use this preparation to produce a range of endpoint forces flexibly and with good accuracy. We suggest that this platform will aid in FES controller design, development, and evaluation, thus accelerating the development of effective FES applications for the restoration of movement in paralyzed patients.
Collapse
|
6
|
Kanchiku T, Kato Y, Suzuki H, Imajo Y, Yoshida Y, Moriya A, Taguchi T, Jung R. Development of less invasive neuromuscular electrical stimulation model for motor therapy in rodents. J Spinal Cord Med 2012; 35:162-9. [PMID: 22507026 PMCID: PMC3324833 DOI: 10.1179/2045772312y.0000000009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
BACKGROUND Combination therapy is essential for functional repairs of the spinal cord. Rehabilitative therapy can be considered as the key for reorganizing the nervous system after spinal cord regeneration therapy. Functional electrical stimulation has been used as a neuroprosthesis in quadriplegia and can be used for providing rehabilitative therapy to tap the capability for central nervous system reorganization after spinal cord regeneration therapy. OBJECTIVE To develop a less invasive muscular electrical stimulation model capable of being combined with spinal cord regeneration therapy especially for motor therapy in the acute stage after spinal cord injury. METHODS The tibialis anterior and gastrocnemius motor points were identified in intact anesthetized adult female Fischer rats, and stimulation needle electrodes were percutaneously inserted into these points. Threshold currents for visual twitches were obtained upon stimulation using pulses of 75 or 8 kHz for 200 ms. Biphasic pulse widths of 20, 40, 80, 100, 300, and 500 µs per phase were used to determine strength-duration curves. Using these parameters and previously obtained locomotor electromyogram data, stimulations were performed on bilateral joint muscle pairs to produce reciprocal flexion/extension movements of the ankle for 15 minutes while three-dimensional joint kinematics were assessed. RESULTS Rhythmic muscular electrical stimulation with needle electrodes was successfully done, but decreased range of motion (ROM) over time. High-frequency and high-amplitude stimulation was also shown to be effective in alleviating decreases in ROM due to muscle fatigue. CONCLUSIONS This model will be useful for investigating the ability of rhythmic muscular electrical stimulation therapy to promote motor recovery, in addition to the efficacy of combining treatments with spinal cord regeneration therapy after spinal cord injuries.
Collapse
Affiliation(s)
- Tsukasa Kanchiku
- Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan.
| | - Yoshihiko Kato
- Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Hidenori Suzuki
- Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Yasuaki Imajo
- Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Yuichiro Yoshida
- Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Atsushi Moriya
- Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Toshihiko Taguchi
- Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Ranu Jung
- Florida International University, Miami, FL, USA
| |
Collapse
|
7
|
Transient decreases in forelimb gait and ground reaction forces following rotator cuff injury and repair in a rat model. J Biomech 2010; 43:778-82. [PMID: 19931082 DOI: 10.1016/j.jbiomech.2009.10.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 10/07/2009] [Accepted: 10/14/2009] [Indexed: 12/22/2022]
Abstract
Due to inadequate healing, surgical repairs of torn rotator cuff tendons often fail, limiting the recovery of upper extremity function. The rat is frequently used to study rotator cuff healing; however, there are few systems capable of quantifying forelimb function necessary to interpret the clinical significance of tissue level healing. We constructed a device to capture images, ground reaction forces and torques, as animals ambulated in a confined walkway, and used it to evaluate forelimb function in uninjured control and surgically injured/repaired animals. Ambulatory data were recorded before (D-1), and 3, 7, 14, 28 and 56 days after surgery. Speed as well as step width and length were determined by analyzing ventral images, and ground reaction forces were normalized to body weight. Speed averaged 22+/-6 cm/s and was not affected by repair or time. Step width and length of uninjured animals compared well to values measured with our previous system. Forelimbs were used primarily for braking (-1.6+/-1.5% vs +2.5+/-0.6%), bore less weight than hind limbs (49+/-5% vs 58+/-4%), and showed no differences between sides (49+/-5% vs 46+/-5%) for uninjured control animals. Step length and ground reaction forces of the repaired animals were significantly less than control initially (days 3, 7 and 14 post-surgery), but not by day 28. Our new device provided uninjured ambulatory data consistent with our previous system and available literature, and measured reductions in forelimb function consistent with the deficit expected by our surgical model.
Collapse
|
8
|
Jung R, Ichihara K, Venkatasubramanian G, Abbas JJ. Chronic neuromuscular electrical stimulation of paralyzed hindlimbs in a rodent model. J Neurosci Methods 2009; 183:241-54. [PMID: 19596376 PMCID: PMC2774355 DOI: 10.1016/j.jneumeth.2009.06.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 06/07/2009] [Accepted: 06/29/2009] [Indexed: 11/15/2022]
Abstract
Neuromuscular electrical stimulation (NMES) can be used to activate paralyzed or paretic muscles to generate functional or therapeutic movements. The goal of this research was to develop a rodent model of NMES-assisted movement therapy after spinal cord injury (SCI) that will enable investigation of mechanisms of NMES-induced plasticity, from the molecular to systems level. Development of the model requires accurate mapping of electrode and muscle stimulation sites, the capability to selectively activate muscles to produce graded contractions of sufficient strength, stable anchoring of the implanted electrode within the muscles and stable performance with functional reliability over several weeks of the therapy window. Custom designed electrodes were implanted chronically in hindlimb muscles of spinal cord transected rats. Mechanical and electrical stability of electrodes and the ability to achieve appropriate muscle recruitment and joint angle excursion were assessed by characterizing the strength duration curves, isometric torque recruitment curves and kinematics of joint angle excursion over 6-8 weeks post implantation. Results indicate that the custom designed electrodes and implantation techniques provided sufficient anchoring and produced stable and reliable recruitment of muscles both in the absence of daily NMES (for 8 weeks) as well as with daily NMES that is initiated 3 weeks post implantation (for 6 weeks). The completed work establishes a rodent model that can be used to investigate mechanisms of neuroplasticity that underlie NMES-based movement therapy after spinal cord injury and to optimize the timing of its delivery.
Collapse
Affiliation(s)
- Ranu Jung
- Center for Adaptive Neural Systems, Tempe, Arizona State University, AZ 85287-4404, USA.
| | | | | | | |
Collapse
|
9
|
Ichihara K, Venkatasubramanian G, Abbas JJ, Jung R. Neuromuscular electrical stimulation of the hindlimb muscles for movement therapy in a rodent model. J Neurosci Methods 2009; 176:213-24. [PMID: 18848960 PMCID: PMC2745190 DOI: 10.1016/j.jneumeth.2008.09.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2008] [Revised: 08/16/2008] [Accepted: 09/05/2008] [Indexed: 11/21/2022]
Abstract
Neuromuscular electrical stimulation (NMES) can provide functional movements in people after central nervous system injury. The neuroplastic effects of long-term NMES-induced repetitive limb movement are not well understood. A rodent model of neurotrauma in which NMES can be implemented may be effective for such investigations. We present a rodent model for NMES of the flexor and extensor muscles of the hip, knee, and ankle hindlimb muscles. Custom fabricated intramuscular stimulating electrodes for rodents were implanted near identified motor points of targeted muscles in ten adult, female Long Evans rats. The effects of altering NMES pulse stimulation parameters were characterized using strength duration curves, isometric joint torque recruitment curves and joint angle measures. The data indicate that short pulse widths have the advantage of producing graded torque recruitment curves when current is used as the control parameter. A stimulus frequency of 75 Hz or more produces fused contractions. The data demonstrate ability to accurately implant the electrodes and obtain selective, graded, repeatable, strong muscle contractions. Knee and ankle angular excursions comparable to those obtained in normal treadmill walking in the same rodent species can be obtained by stimulating the target muscles. Joint torques (normalized to body weight) obtained were larger than those reported in the literature for small tailed therian mammals and for peak isometric ankle plantarflexion in a different rodent species. This model system could be used for investigations of NMES assisted hindlimb movement therapy.
Collapse
Affiliation(s)
| | - Ganapriya Venkatasubramanian
- Center for Adaptive Neural Systems, Tempe, AZ 85287-4404
- The Harrington Department of Bioengineering, Tempe, AZ 85287-4404
| | - James J. Abbas
- Center for Adaptive Neural Systems, Tempe, AZ 85287-4404
- The Harrington Department of Bioengineering, Tempe, AZ 85287-4404
- Banner Good Samaritan Medical Center, Phoenix, AZ 85006
| | - Ranu Jung
- Center for Adaptive Neural Systems, Tempe, AZ 85287-4404
- The Harrington Department of Bioengineering, Tempe, AZ 85287-4404
| |
Collapse
|
10
|
Kim SJ, Fairchild MD, Iarkov Yarkov A, Abbas JJ, Jung R. Adaptive control of movement for neuromuscular stimulation-assisted therapy in a rodent model. IEEE Trans Biomed Eng 2008; 56:452-61. [PMID: 19272884 DOI: 10.1109/tbme.2008.2008193] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Neuromotor therapy after spinal cord or brain injury often attempts to utilize activity-dependent plasticity to promote functional recovery. Neuromuscular electrical stimulation that activates paralyzed or paretic muscles may enhance passive assistance therapy by activating more muscle mass and enriching the sensory pattern with appropriately timed muscle spindle activation. To enable studies of activity-dependent plasticity, a rodent model for stimulation-assisted locomotor therapy was developed previously. To be effective, however, such a system must allow lengthy sessions of repetitive movements. In this study, we implemented an adaptive pattern generator/pattern shaper (PG/PS) control system for a rodent model of neuromotor therapy and evaluated its ability to generate accurate and repeatable hip movements in lengthy sessions by adjusting the activation patterns of an agonist/antagonist muscle pair. In 100-cycle movement trials, the PG/PS control system provided excellent movement tracking (<<10% error), but stimulation levels steadily increased to account for muscle fatigue. In trials using an intermittent movement paradigm (100 sets of five-cycle bouts interspersed by 20-s rest periods), excellent performance (<<8% error) was also observed with less stimulation, thus indicating reduced muscle fatigue. These results demonstrate the ability of the PG/PS control system to utilize an agonist/antagonist muscle pair to control movement at a joint in a rodent model. The demonstration of repeatable movements over lengthy intermittent sessions suggests that it may be well suited to provide efficient neuromotor therapy.
Collapse
Affiliation(s)
- Seung-Jae Kim
- Center for Adaptive Neural Systems, Arizona State University, Tempe, AZ 85287, USA
| | | | | | | | | |
Collapse
|
11
|
Lynskey JV, Belanger A, Jung R. Activity-dependent plasticity in spinal cord injury. JOURNAL OF REHABILITATION RESEARCH AND DEVELOPMENT 2008; 45:229-40. [PMID: 18566941 PMCID: PMC2562625 DOI: 10.1682/jrrd.2007.03.0047] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The adult mammalian central nervous system (CNS) is capable of considerable plasticity, both in health and disease. After spinal neurotrauma, the degrees and extent of neuroplasticity and recovery depend on multiple factors, including the level and extent of injury, postinjury medical and surgical care, and rehabilitative interventions. Rehabilitation strategies focus less on repairing lost connections and more on influencing CNS plasticity for regaining function. Current evidence indicates that strategies for rehabilitation, including passive exercise, active exercise with some voluntary control, and use of neuroprostheses, can enhance sensorimotor recovery after spinal cord injury (SCI) by promoting adaptive structural and functional plasticity while mitigating maladaptive changes at multiple levels of the neuraxis. In this review, we will discuss CNS plasticity that occurs both spontaneously after SCI and in response to rehabilitative therapies.
Collapse
Affiliation(s)
- James V. Lynskey
- Center for Adaptive Neural Systems, Ira A. Fulton School of Engineering, Arizona State University, Tempe, AZ
- Department of Physical Therapy, Arizona School of Health Sciences, A.T. Still University, Mesa, AZ
| | - Adam Belanger
- Center for Adaptive Neural Systems, Ira A. Fulton School of Engineering, Arizona State University, Tempe, AZ
- Harrington Department of Bioengineering, Ira A. Fulton School of Engineering, Arizona State University, Tempe, AZ
| | - Ranu Jung
- Center for Adaptive Neural Systems, Ira A. Fulton School of Engineering, Arizona State University, Tempe, AZ
- Harrington Department of Bioengineering, Ira A. Fulton School of Engineering, Arizona State University, Tempe, AZ
| |
Collapse
|