1
|
Chen X, Liu J, Bu Y, Wu T, Fan J, Yan H, Lin Q. Dodecyl glycoside intercalated organo-montmorillonite promoted biomimetic alginate/microcrystalline cellulose/nano-hydroxyapatite composite hydrogels for bone tissue engineering. Int J Biol Macromol 2025; 310:143304. [PMID: 40253035 DOI: 10.1016/j.ijbiomac.2025.143304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 03/29/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
To eliminate the brittleness of single ceramic materials and the poor mechanical properties, uncontrollable swelling and low biological activity of biological polysaccharides, thereby forming the tissue engineering scaffold capable of simulating natural bone tissue, alginate/microcrystalline cellulose/hydroxyapatite/organo-montmorillonite (ALG/MCC/HAP/OMMT) composite hydrogels were fabricated by in-situ crosslinking of alginate/microcrystalline cellulose mixed aqueous solution under the action of D-glucono-δ-lactone (GDL), using organo-montmorillonite (OMMT) as the filler and hydroxyapatite (HAP) as reinforcing agent and crosslinking agent. The experimental results indicated that non-ionic dodecyl polyglucoside (APG) intercalated into the interlayer of montmorillonite (MMT) through efficient wet ball milling technology to achieve the miscibility and effective dispersion of OMMT in alginate matrix. The presence of HAP and OMMT not only improved the mechanical properties, thermal stability, controllable swelling and degradability of the fabricated ALG/MCC/HAP/OMMT, but also enhanced their in vitro biomineralization performance. Furthermore, ALG/MCC/HAP/OMMT exhibited high encapsulation efficiency (EE) and loading rate (LR) for bovine serum albumin (BSA), and the BSA loading capacity increased with the increase of OMMT content. Meanwhile, ALG/MCC/HAP/OMMT also displayed good controlled release performance for BSA. Finally, the porous composite hydrogels formed by HAP, MCC and OMMT in alginate matrix presented good cell adhesion, proliferation and differentiation properties under the synergistic effect of their respective characteristics. To note, the implantation experiment in rabbit radius indicated that the ALG/MCC/HAP/OMMT composite hydrogels could effectively promote new bone formation in vivo, which was expected to be applied to clinical research. The ultimate goal of this study is to clarify the regulation rule of OMMT content on the physicochemical properties and structure of ALG/MCC/HAP/OMMT composite hydrogel, protein loading and release, cell compatibility and bone repair in vivo by investigating the interaction between components in composite hydrogel, so as to acquire unique alginate composite hydrogel based bone tissue engineering scaffolds.
Collapse
Affiliation(s)
- Xiuqiong Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China
| | - Jiayi Liu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China
| | - Yanan Bu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China
| | - Ting Wu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China
| | - Jiji Fan
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China
| | - Huiqiong Yan
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China.
| | - Qiang Lin
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China
| |
Collapse
|
2
|
Chen X, Sun L, Wang H, Cao S, Shang T, Yan H, Lin Q. Nano-SiO 2 reinforced alginate-chitosan-gelatin nanocomposite hydrogels with improved physicochemical properties and biological activity. Colloids Surf B Biointerfaces 2023; 228:113413. [PMID: 37343505 DOI: 10.1016/j.colsurfb.2023.113413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
Alginate (Alg) hydrogels possess desirable advantages for application in tissue engineering; however, they are limited by their weak mechanical properties, poor chronical stability in phosphate buffered saline, and absence of mammalian cell recognition sites, severely restricting their biomedical applications. To overcome these limitations, we integrated Alg hydrogels with nano-silica (SiO2) to produce nano-SiO2 reinforced Alg-chitosan-gelatin nanocomposite hydrogels (Alg/SiO2-CHI-GA NCH) for biomedical purposes, utilizing Chitosan (CHI) and gelatin (GA) in an alternate electrostatic adsorption. Specifically, we investigated the regulatory and promotional effects of the nano-SiO2 on the morphological structure, mechanical properties, thermal stability, rheological properties, swelling, biodegradability, biomineralization and cytocompatibility of the resultant Alg/SiO2-CHI-GA NCH. The experimental findings demonstrate that the constructed Alg/SiO2-CHI-GA NCH exhibited uniform morphology and a regular structure. Upon freeze-drying, the internal cross-sections of the NCH exhibited a honeycomb porous structure. Furthermore, the physicochemical properties and biological activities of the prepared Alg/SiO2-CHI-GA NCH were regulated to some extent by nano-SiO2 content. Notably, nano-SiO2 inclusion enhanced the attachment and viability of MG63 and MC3T3-E1 cells and induced three-dimensional cell growth in ALG/SiO2-CHI-GA NCH. Among the fabricated NCH, Alg/SiO2-CHI-GA NCH with 0.5% and 1.0% (w/v) nano-SiO2 exhibited significant proliferative activity, which is attributable to their high porosity and uniform cell adhesion. Furthermore, the alkaline phosphatase activity in the cells gradually increased with increasing of nano-SiO2 amount, indicating the favorable effect of nano-SiO2 on the osteogenic differentiation of MG63 and MC3T3-E1 cells. Our study findings provide a comprehensive foundation for the structural- and property-related limitations of Alg hydrogels in biomedicine, thereby expanding their potential applications in tissue engineering.
Collapse
Affiliation(s)
- Xiuqiong Chen
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China
| | - Lili Sun
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China
| | - Hongcai Wang
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China
| | - Shanshan Cao
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China
| | - Ting Shang
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China
| | - Huiqiong Yan
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China.
| | - Qiang Lin
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China
| |
Collapse
|
3
|
Hu B, Huang Y, Jakobs TC, Kang Q, Lv Z, Liu W, Wang R. Viability of mitochondria-labeled retinal ganglion cells in organotypic retinal explant cultures by two methods. Exp Eye Res 2023; 226:109311. [PMID: 36403849 PMCID: PMC11003390 DOI: 10.1016/j.exer.2022.109311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/09/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022]
Abstract
Retinal explant cultures provide a valuable system to study retinal function in vitro. This study established a new retinal explant culture method to prolong the survival of retinal ganglion cells (RGCs). Explants were prepared in two different ways: with or without optic nerve. Retinas from newborn mice that had received an injection of MitoTracker Red into the contralateral superior colliculus to label axonal mitochondria were cultured as organotypic culture for 7 days in vitro. At several time points during the culture, viability of RGCs was assessed by multi-electrode array recording, and morphology by immunohistochemical methods. During the culture, the thickness of the retinal tissue in both groups gradually decreased, however, the structure of the layers of the retina could be identified. Massive apoptosis in the retinal ganglion cell layer (GCL) appeared on the first day of culture, thereafter the number of apoptotic cells decreased. Glial activation was observed throughout the culture, and there was no difference in morphology between the two groups. RGCs loss was exacerbated on 3rdday of culture, and RGCs loss in retinal explants with preserved optic nerve was significantly lower than in retinas that did not preserve the optic nerve. More and longer-lasting mitochondrial signals were observed in the injured area of the optic nerve-preserving explants. Retinal explants provide an invaluable tool for studying retinal function and developing treatments for ocular diseases. The optic nerve-preserving culture helps preserve the integrity of RGCs. The higher number of mitochondria in the nerve-preserving cultures may help maintain viability of RGCs.
Collapse
Affiliation(s)
- Baoqi Hu
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Department of Ophthalmology, The First Affiliated Hospital of Northwest University, Xi'an, Shaanxi, 710002, China; Department of Ophthalmology, Xi'an No. 1 Hospital, Xi'an, Shaanxi, 710002, China
| | - Yaoyao Huang
- Department of Ophthalmology, The First Affiliated Hospital of Northwest University, Xi'an, Shaanxi, 710002, China; Department of Ophthalmology, Xi'an No. 1 Hospital, Xi'an, Shaanxi, 710002, China; Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Tatjana C Jakobs
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary / Schepens Eye Research Institute, Harvard Medical School, 20 Staniford Street, Boston, MA, 02114, United States
| | - Qianyan Kang
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Ziwei Lv
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Wenxuan Liu
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Rui Wang
- Department of Ophthalmology, The First Affiliated Hospital of Northwest University, Xi'an, Shaanxi, 710002, China; Department of Ophthalmology, Xi'an No. 1 Hospital, Xi'an, Shaanxi, 710002, China; Shaanxi Institute of Ophthalmology, Xi'an, Shaanxi, 710002, China.
| |
Collapse
|
4
|
Li YH, Zeng J, Wang Z, Wang TY, Wu SY, Zhu XY, Zhang X, Shan BH, Gao CZ, Wang SH, Wu FG. Sulfur-Doped Organosilica Nanodots as a Universal Sensor for Ultrafast Live/Dead Cell Discrimination. BIOSENSORS 2022; 12:1000. [PMID: 36354509 PMCID: PMC9688158 DOI: 10.3390/bios12111000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/22/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Rapid and accurate differentiation between live and dead cells is highly desirable for the evaluation of cell viability. Here, we report the application of the orange-emitting sulfur-doped organosilica nanodots (S-OSiNDs) for ultrafast (30 s), ultrasensitive (1 μg/mL), and universal staining of the dead bacterial, fungal, and mammalian cells but not the live ones, which satisfies the requirements of a fluorescent probe that can specifically stain the dead cells. We further verify that the fluorescence distribution range of S-OSiNDs (which are distributed in cytoplasm and nucleus) is much larger than that of the commercial dead/fixed cell/tissue staining dye RedDot2 (which is distributed in the nucleus) in terms of dead mammalian cell staining, indicating that S-OSiNDs possess a better staining effect of dead cells than RedDot2. Overall, S-OSiNDs can be used as a robust fluorescent probe for ultrafast and accurate discrimination between dead and live cells at a single cell level, which may find a variety of applications in the biomedical field.
Collapse
|
5
|
Preparation, physicochemical characterization, and cytotoxicity of selenium nanoparticles stabilized by Oudemansiella radicata polysaccharide. Int J Biol Macromol 2022; 211:35-46. [DOI: 10.1016/j.ijbiomac.2022.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/02/2022] [Accepted: 05/02/2022] [Indexed: 12/14/2022]
|
6
|
Üstün R, Oğuz EK, Şeker A, Korkaya H. Thymoquinone prevents cisplatin neurotoxicity in primary DRG neurons. Neurotoxicology 2018; 69:68-76. [DOI: 10.1016/j.neuro.2018.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 09/08/2018] [Accepted: 09/12/2018] [Indexed: 01/08/2023]
|
7
|
Fischer RA, Zhang Y, Risner ML, Li D, Xu Y, Sappington RM. Impact of Graphene on the Efficacy of Neuron Culture Substrates. Adv Healthc Mater 2018; 7:e1701290. [PMID: 29943431 PMCID: PMC6105445 DOI: 10.1002/adhm.201701290] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 04/11/2018] [Indexed: 01/09/2023]
Abstract
How graphene influences the behavior of living cells or tissues remains a critical issue for its application in biomedical studies, despite the general acceptance that graphene is biocompatible. While direct contact between cells and graphene is not a requirement for all biomedical applications, it is often mandatory for biosensing. Therefore, it is important to clarify whether graphene impedes the ability of cells to interact with biological elements in their environment. Here, a systematic study is reported to determine whether applying graphene on top of matrix substrates masks interactions between these substrates and retinal ganglion cells (RGCs). Six different platforms are tested for primary RGC cultures with three platforms comprised of matrix substrates compatible with these neurons, and another three having a layer of graphene placed on top of the matrix substrates. The results demonstrate that graphene does not impede interactions between RGCs and underlying substrate matrix, such that their positive or negative effects on neuron viability and vitality are retained. However, direct contact between RGCs and graphene reduces the number, but increases basal activity, of functional cation channels. The data indicate that, when proper baselines are established, graphene is a promising biosensing material for in vitro applications in neuroscience.
Collapse
Affiliation(s)
- Rachel A. Fischer
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Department of Pharmacology, Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN 37235, USA
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Department of Physics and Astronomy and Department of Electrical, Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Department of Pharmacology, Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN 37235, USA
| | - Yuchen Zhang
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Department of Pharmacology, Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN 37235, USA
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Department of Physics and Astronomy and Department of Electrical, Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Department of Pharmacology, Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN 37235, USA
| | - Michael L. Risner
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Department of Pharmacology, Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN 37235, USA
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Department of Physics and Astronomy and Department of Electrical, Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Department of Pharmacology, Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN 37235, USA
| | | | | | | |
Collapse
|
8
|
Perinbam K, Siryaporn A. A Rapid Image-based Bacterial Virulence Assay Using Amoeba. J Vis Exp 2018. [PMID: 30010653 DOI: 10.3791/57844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Traditional bacterial virulence assays involve prolonged exposure of bacteria over the course of several hours to host cells. During this time, bacteria can undergo changes in the physiology due to the exposure to host growth environment and the presence of the host cells. We developed an assay to rapidly measure the virulence state of bacteria that minimize the extent to which bacteria grow in the presence of host cells. Bacteria and amoebae are mixed together and immobilized on a single imaging plane using an agar pad. The procedure uses single-cell fluorescence imaging with calcein-acetoxymethyl ester (calcein-AM) as an indicator of host cell health. The fluorescence of host cells is analyzed after 1 h of exposure of host cells to bacteria using epifluorescence microscopy. Image analysis software is used to compute a host killing index. This method has been used to measure virulence within planktonic and surface-attached Pseudomonas aeruginosa sub-populations during the initial stage of biofilm formation and may be adapted to other bacteria and other stages of biofilm growth. This protocol provides a rapid and robust method of measuring virulence and avoids many of the complexities associated with the growth and maintenance of mammalian cell lines. Virulence phenotypes measured here using amoebae have also been validated using mouse macrophages. In particular, this assay was used to establish that surface attachment upregulates virulence in P. aeruginosa.
Collapse
Affiliation(s)
- Kumar Perinbam
- Department of Physics and Astronomy, University of California
| | - Albert Siryaporn
- Department of Physics and Astronomy, University of California; Department of Molecular Biology and Biochemistry, University of California;
| |
Collapse
|
9
|
Pati R, Das I, Mehta RK, Sahu R, Sonawane A. Zinc-Oxide Nanoparticles Exhibit Genotoxic, Clastogenic, Cytotoxic and Actin Depolymerization Effects by Inducing Oxidative Stress Responses in Macrophages and Adult Mice. Toxicol Sci 2016; 150:454-72. [PMID: 26794139 DOI: 10.1093/toxsci/kfw010] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Zinc oxide nanoparticles (ZnO-NPs) have wide biological applications, which have raised serious concerns about their impact on the health and environment. Although, various studies have shown ZnO-NP toxicity on different cells underin vitroconditions, sufficient information is lacking regarding toxicity and underlying mechanisms underin vivoconditions. In this work, we investigated genotoxic, clastogenic, and cytotoxic effects of ZnO-NPs on macrophages and in adult mice. ZnO-NP-treated mice showed signs of toxicity such as loss in body weight, passive behavior and reduced survival. Further mechanistic studies revealed that administration of higher dose caused severe DNA damage in peripheral blood and bone marrow cells as evident by the formation of COMET tail, micronuclei, chromosomal fragmentation, and phosphorylation of H2A histone family member X. Moreover, ZnO-NPs inhibited DNA repair mechanism by downregulating the expression offen-1andpolBproteins. Histopathological examinations showed severe inflammation and damage to liver, lungs, and kidneys. Cell viability and wound healing assays revealed that ZnO-NPs killed macrophages in a dose-dependent manner, caused severe wounds and inhibited cellular migration by irreversible actin depolymerization and degradation. Reduction in the viability of macrophages was due to the arrest of the cell cycle at the G0/G1 phase, inhibition of superoxide dismutase and catalase and eventually reactive oxygen species. Furthermore, treatment with an antioxidant drug N-acetyl cysteine significantly reduced the ZnO-NP induced genotoxicity bothin vitroandin vivo Altogether, this study gives detailed pathological insights of ZnO-NP that impair cellular functions, thus will enable to arbitrate their biological applications.
Collapse
Affiliation(s)
| | | | | | - Rojalin Sahu
- School of Applied Sciences, Campus-3, KIIT University, Bhubaneswar 751024, Orissa, India
| | | |
Collapse
|
10
|
Zhang S, Bai H, Luo J, Yang P, Cai J. A recyclable chitosan-based QCM biosensor for sensitive and selective detection of breast cancer cells in real time. Analyst 2015; 139:6259-65. [PMID: 25313373 DOI: 10.1039/c4an01532k] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A highly sensitive and recyclable quartz crystal microbalance (QCM) biosensor was developed using chitosan (CS) and folic acid (FA), generating conjugates that are selectively recognized by MCF-7 cancer cell over-expressed folic acid receptors. The prepared CS-FA conjugate was characterized by UV-vis spectroscopy and Fourier transform infrared spectroscopy. Atomic force microscopy and scanning electron microscopy further presented the morphology of the CS-FA conjugate interface. The hydrophilicity of films was characterized by measuring the contact angle. The recognition of MCF-7 cancer cells was investigated in situ using QCM. Captured by FA, the concentration of the MCF-7 cell was determined on-line using a quartz crystal microbalance and a wide linear range of 4.5 × 10(2) to 1.01 × 10(5) cells per mL was obtained, with a detection limit of 430 cells per mL. The fluorescence microscope further confirmed the specificity and biocompatibility of the constructed biosensor. In addition, the regeneration of the QCM biosensor was studied by using lysozyme. This receptor-bound ligand based QCM biosensor also showed good selectivity, and repeatability in the cell mixture. For the first time, this simple, economical and label-free chitosan-based QCM sensing was demonstrated, and such design could provide a promising detection strategy for sensitive detection of cancer cell over-expressed folic acid receptors.
Collapse
Affiliation(s)
- Shaolian Zhang
- Department of Chemistry, Jinan University, Guangzhou 510632, People's Republic of China.
| | | | | | | | | |
Collapse
|
11
|
Robinson JP, Li N, Narayanan PK. High Throughput-Based Mitochondrial Function Assays by Multi-Parametric Flow Cytometry. ACTA ACUST UNITED AC 2015; 73:9.48.1-9.48.9. [PMID: 26132178 DOI: 10.1002/0471142956.cy0948s73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mitochondrial dysfunction has been increasingly implicated as an important mechanism for chemical-induced toxicity. In the present unit, we describe a multi-parametric flow cytometry assay to assess the effects of drug or chemical-induced mitochondrial dysfunction in cells. Cells are cultured in a glucose-supplemented medium and exposed to increasing concentrations of various chemicals. Several key mitochondrial/cellular parameters known to be directly impacted by mitochondrial dysfunction, such as mitochondrial membrane potential (MMP), mitochondrial reactive oxygen species (ROS) production, intracellular reduced glutathione (GSH) level, and cell viability, are simultaneously measured by flow cytometry.
Collapse
Affiliation(s)
- J Paul Robinson
- Purdue University Cytometry Laboratories, West Lafayette, Indiana
| | | | | |
Collapse
|
12
|
Li N, Oquendo E, Capaldi RA, Robinson JP, He YD, Hamadeh HK, Afshari CA, Lightfoot-Dunn R, Narayanan PK. A systematic assessment of mitochondrial function identified novel signatures for drug-induced mitochondrial disruption in cells. Toxicol Sci 2014; 142:261-73. [PMID: 25163676 DOI: 10.1093/toxsci/kfu176] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial perturbation has been recognized as a contributing factor to various drug-induced organ toxicities. To address this issue, we developed a high-throughput flow cytometry-based mitochondrial signaling assay to systematically investigate mitochondrial/cellular parameters known to be directly impacted by mitochondrial dysfunction: mitochondrial membrane potential (MMP), mitochondrial reactive oxygen species (ROS), intracellular reduced glutathione (GSH) level, and cell viability. Modulation of these parameters by a training set of compounds, comprised of established mitochondrial poisons and 60 marketed drugs (30 nM to 1mM), was tested in HL-60 cells (a human pro-myelocytic leukemia cell line) cultured in either glucose-supplemented (GSM) or glucose-free (containing galactose/glutamine; GFM) RPMI-1640 media. Post-hoc bio-informatic analyses of IC50 or EC50 values for all parameters tested revealed that MMP depolarization in HL-60 cells cultured in GSM was the most reliable parameter for determining mitochondrial dysfunction in these cells. Disruptors of mitochondrial function depolarized MMP at concentrations lower than those that caused loss of cell viability, especially in cells cultured in GSM; cellular GSH levels correlated more closely to loss of viability in vitro. Some mitochondrial respiratory chain inhibitors increased mitochondrial ROS generation; however, measuring an increase in ROS alone was not sufficient to identify mitochondrial disruptors. Furthermore, hierarchical cluster analysis of all measured parameters provided confirmation that MMP depletion, without loss of cell viability, was the key signature for identifying mitochondrial disruptors. Subsequent classification of compounds based on ratios of IC50s of cell viability:MMP determined that this parameter is the most critical indicator of mitochondrial health in cells and provides a powerful tool to predict whether novel small molecule entities possess this liability.
Collapse
Affiliation(s)
- Nianyu Li
- Department of Comparative Biology and Safety Sciences, Amgen, Amgen Court West 1201, Seattle, Washington 98119
| | | | | | - J Paul Robinson
- Purdue University Cytometry Laboratories, Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Yudong D He
- Department of Comparative Biology and Safety Sciences, Amgen, Amgen Court West 1201, Seattle, Washington 98119
| | - Hisham K Hamadeh
- Department of Comparative Biology and Safety Sciences, Amgen, 1 Amgen Center Dr, Thousand Oaks, California 91320-1799
| | - Cynthia A Afshari
- Department of Comparative Biology and Safety Sciences, Amgen, 1 Amgen Center Dr, Thousand Oaks, California 91320-1799
| | - Ruth Lightfoot-Dunn
- Department of Comparative Biology and Safety Sciences, Amgen, 1 Amgen Center Dr, Thousand Oaks, California 91320-1799
| | - Padma Kumar Narayanan
- Department of Comparative Biology and Safety Sciences, Amgen, Amgen Court West 1201, Seattle, Washington 98119
| |
Collapse
|
13
|
Zou SQ, Tian C, Du ST, Hu B. Retrograde labeling of retinal ganglion cells in adult zebrafish with fluorescent dyes. J Vis Exp 2014. [PMID: 24837333 DOI: 10.3791/50987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
As retrograde labeling retinal ganglion cells (RGCs) can isolate RGCs somata from dying sites, it has become the gold standard for counting RGCs in RGCs survival and regeneration experiments. Many studies have been performed in mammalian animals to research RGCs survival after optic nerve injury. However, retrograde labeling of RGCs in adult zebrafish has not yet been reported, though some alternative methods can count cell numbers in retinal ganglion cell layers (RGCL). Considering the small size of the adult zebrafish skull and the high risk of death after drilling on the skull, we open the skull with the help of acid-etching and seal the hole with a light curing bond, which could significantly improve the survival rate. After absorbing the dyes for 5 days, almost all the RGCs are labeled. As this method does not need to transect the optic nerve, it is irreplaceable in the research of RGCs survival after optic nerve crush in adult zebrafish. Here, we introduce this method step by step and provide representative results.
Collapse
Affiliation(s)
- Su-Qi Zou
- Laboratory of Neurodevelopement and Repair, University of Science and Technology of China
| | - Chen Tian
- Laboratory of Neurodevelopement and Repair, University of Science and Technology of China
| | - Su-Tie Du
- Laboratory of Neurodevelopement and Repair, University of Science and Technology of China
| | - Bing Hu
- Laboratory of Neurodevelopement and Repair, University of Science and Technology of China;
| |
Collapse
|
14
|
Huang TL, Huang SP, Chang CH, Lin KH, Sheu MM, Tsai RK. Factors influencing the retrograde labeling of retinal ganglion cells with fluorogold in an animal optic nerve crush model. Ophthalmic Res 2014; 51:173-8. [PMID: 24662310 DOI: 10.1159/000357736] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 12/04/2013] [Indexed: 01/21/2023]
Abstract
PURPOSE To investigate whether different crush durations or a different fluorogold (FG) injection timing can affect the efficiency of FG retrograde labeling of retinal ganglion cells (RGCs) in the optic nerve (ON) crush model. METHODS We performed the ON crush in rats with a clip at different durations or a jewel forceps to compare the effects of different crush methods with FG staining. RGC density was compared between the FG injection 1 week before the sacrifice of the animals (group A) and the injection before the crush experiment (group B). Double staining with CD11b and FG in the retinal sections was conducted to investigate the relationship between the overcounting of RGCs and microglia. RESULTS The FG-stained particles were significantly decreased at the distal part of the crush site compared to the proximal site of the ON with a crush duration of over 30 s or when crushed with the jewel forceps. Two weeks after ON crush, the RGC count was higher both in the central and mid-peripheral retinas in group B. The percentage of CD11b-stained cells among the FG-stained cells in the RGC layer of retinas in group B was higher than that of group A (34% in group B vs. 4% in group A, p = 0.0001). Overcounting of RGC density in group B was due to additional microglia with FG engulfing. CONCLUSIONS Our results suggest that each laboratory should test its setting conditions to avoid factors influencing the RGC density measurement before conducting ON crush experiments.
Collapse
Affiliation(s)
- Tzu-Lun Huang
- Institute of Eye Research, Buddhist Tzu Chi General Hospital, Tzu Chi University, Hualien, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
15
|
Tsai Y, Lu B, Ljubimov AV, Girman S, Ross-Cisneros FN, Sadun AA, Svendsen CN, Cohen RM, Wang S. Ocular changes in TgF344-AD rat model of Alzheimer's disease. Invest Ophthalmol Vis Sci 2014; 55:523-34. [PMID: 24398104 DOI: 10.1167/iovs.13-12888] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Alzheimer's disease (AD) is the most common neurodegenerative disorder characterized by progressive decline in learning, memory, and executive functions. In addition to cognitive and behavioral deficits, vision disturbances have been reported in early stage of AD, well before the diagnosis is clearly established. To further investigate ocular abnormalities, a novel AD transgenic rat model was analyzed. METHODS Transgenic (Tg) rats (TgF344-AD) heterozygous for human mutant APPswe/PS1ΔE9 and age-matched wild type (WT) rats, as well as 20 human postmortem retinal samples from both AD and healthy donors were used. Visual function in the rodent was analyzed using the optokinetic response and luminance threshold recording from the superior colliculus. Immunohistochemistry on retinal and brain sections was used to detect various markers including amyloid-β (Aβ) plaques. RESULTS As expected, Aβ plaques were detected in the hippocampus, cortex, and retina of Tg rats. Plaque-like structures were also found in two AD human whole-mount retinas. The choroidal thickness was significantly reduced in both Tg rat and in AD human eyes when compared with age-matched controls. Tg rat eyes also showed hypertrophic retinal pigment epithelial cells, inflammatory cells, and upregulation of complement factor C3. Although visual acuity was lower in Tg than in WT rats, there was no significant difference in the retinal ganglion cell number and retinal vasculature. CONCLUSIONS In this study, we observed pathological changes in the choroid and in RPE cells in the TgF344-AD rat model; choroidal thinning was observed further in human AD retina. Along with Ab deposition, the inflammatory response was manifested by microglial recruitment and complement activation. Further studies are needed to elucidate the significance and mechanisms of these pathological changes [corrected].
Collapse
Affiliation(s)
- Yuchun Tsai
- Cedars-Sinai Regenerative Medicine Institute, Los Angeles, California
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Effects of L-arginine on anatomical and electrophysiological deterioration of the eye in a rodent model of nonarteritic ischemic optic neuropathy. Jpn J Ophthalmol 2013; 57:402-9. [PMID: 23712653 DOI: 10.1007/s10384-013-0250-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 04/08/2013] [Indexed: 02/05/2023]
Abstract
PURPOSE The aims of this study were to clarify the effectiveness of L-arginine (1) for reducing the severity of anatomical changes in the eye and improving visual function in the acute stage of a rodent model of nonarteritic ischemic optic neuropathy (rNAION) and (2) in preventing those changes in anatomy and visual function. METHODS For the first aim, L-arginine was intravenously injected into rats 3 h after rNAION induction; for the second aim, rNAION was induced after the oral administration of L-arginine for 7 days. The inner retinal thickness was determined over time by optical coherence tomography, and the amplitude of the scotopic threshold response (STR) and the number of surviving retinal ganglion cells (RGCs) were measured. These data were compared with the baseline data from the control group. RESULTS Both intravenous infusion of L-arginine after rNAION induction and oral pretreatment with L-arginine significantly decreased optic disc edema in the acute stage and thinning of the inner retina, reduced the decrease in STR amplitude, and reduced the decrease in the number of RGCs during rNAION. CONCLUSION Based on these results, we conclude that L-arginine treatment is effective for reducing anatomical changes in the eye and improving visual function in the acute stage of rNAION and that pretreatment with L-arginine is an effective therapy to reduce the severity of the condition during recurrence in the other eye.
Collapse
|
17
|
Schriewer JM, Peek CB, Bass J, Schumacker PT. ROS-mediated PARP activity undermines mitochondrial function after permeability transition pore opening during myocardial ischemia-reperfusion. J Am Heart Assoc 2013; 2:e000159. [PMID: 23598272 PMCID: PMC3647275 DOI: 10.1161/jaha.113.000159] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background Ischemia–reperfusion (I/R) studies have implicated oxidant stress, the mitochondrial permeability transition pore (mPTP), and poly(ADP‐ribose) polymerase (PARP) as contributing factors in myocardial cell death. However, the interdependence of these factors in the intact, blood‐perfused heart is not known. We therefore wanted to determine whether oxidant stress, mPTP opening, and PARP activity contribute to the same death pathway after myocardial I/R. Methods and Results A murine left anterior descending coronary artery (LAD) occlusion (30 minutes) and release (1 to 4 hours) model was employed. Experimental groups included controls and antioxidant‐treated, mPTP‐inhibited, or PARP‐inhibited hearts. Antioxidant treatment prevented oxidative damage, mPTP opening, ATP depletion, and PARP activity, placing oxidant stress as the proximal death trigger. Genetic deletion of cyclophilin D (CypD−/−) prevented loss of total NAD+ and PARP activity, and mPTP‐mediated loss of mitochondrial function. Control hearts showed progressive mitochondrial depolarization and loss of ATP from 1.5 to 4 hours of reperfusion, but not outer mitochondrial membrane rupture. Neither genetic deletion of PARP‐1 nor its pharmacological inhibition prevented the initial mPTP‐mediated depolarization or loss of ATP, but PARP ablation did allow mitochondrial recovery by 4 hours of reperfusion. Conclusions These results indicate that oxidant stress, the mPTP, and PARP activity contribute to a single death pathway after I/R in the heart. PARP activation undermines cell survival by preventing mitochondrial recovery after mPTP opening early in reperfusion. This suggests that PARP‐mediated prolongation of mitochondrial depolarization contributes significantly to cell death via an energetic crisis rather than by mitochondrial outer membrane rupture.
Collapse
Affiliation(s)
- Jacqueline M Schriewer
- Division of Neonatology, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
18
|
The structural effect of intravitreal Brilliant blue G and Indocyanine green in rats eyes. Eye (Lond) 2012. [PMID: 23196646 DOI: 10.1038/eye.2012.260] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To compare the potential retinal toxicity of two commercially Brilliant blue G dyes (Brilliant Peel and Ocublue Plus) and Indocyanine green (ICG) at usual clinical concentration. METHODS Brilliant Peel 0.025% (n=9), Ocublue Plus 0.025% (n=9), and ICG 0.05% (n=9) were injected intravitreally into Sprague-Dawley rat left eyes with balanced salt solution injected in the contralateral eyes as control. Evaluation of the effect of the dyes on retinal architecture was done by histological analysis of neurosensory retinal thickness and retinal ganglion cell (RGC) counts 7 days after intravitreal injection. Paired t-test was done to detect the presence of biologically significant thinning in neurosensory retina and five retinal layers for each dye (paired t-tests). One-way ANOVA and Tukey's Honestly Significant Difference test were used to assess whether different dyes caused significant thinning in mean neurosensory retinal thickness and reduction of mean RGC density. RESULTS Eyes treated with ICG had significantly thinner mean total neurosensory retinal thickness compared with the control eyes (P-value=0.01), followed by those treated with Ocublue Plus (P-value=0.03). Brilliant Peel did not cause significant thinning in any of the five retinal layers (all P-values>0.05). No significant difference in mean thinning of the total retinal thickness was detected between dyes (P-value=0.11). The mean thickness of the photoreceptor outer segment and outer plexiform layers were significantly reduced in ICG-injected eyes when compared with the control eyes (P-value=0.02). No significant difference in mean thinning between the three dyes was detected at all five retinal layers using one-way ANOVA (all P-values>0.35). RGC density was significantly reduced for ICG (P-value=0.01) but only marginally for Ocublue Plus (P-value=0.05). No significant reduction in RGC density was observed for Brilliant Peel (P-value=0.2). CONCLUSION Intravitreal Brilliant Peel is safe to rats retina. The retinal thinning and reduction in RGC density induced by Ocublue Plus requires further studies to determine the safety profile of this product. Potential retinal toxicity is seen with ICG 0.05%.
Collapse
|
19
|
Calcein and calcein−Ag films under vapor exposure: Sensing properties and reversible film restructuring. Talanta 2012; 101:267-72. [DOI: 10.1016/j.talanta.2012.09.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 09/05/2012] [Accepted: 09/16/2012] [Indexed: 11/18/2022]
|
20
|
Quantification of retrograde axonal transport in the rat optic nerve by fluorogold spectrometry. PLoS One 2012; 7:e38820. [PMID: 22719956 PMCID: PMC3377715 DOI: 10.1371/journal.pone.0038820] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 05/11/2012] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Disturbed axonal transport is an important pathogenic factor in many neurodegenerative diseases, such as glaucoma, an eye disease characterised by progressive atrophy of the optic nerve. Quantification of retrograde axonal transport in the optic nerve usually requires labour intensive histochemical techniques or expensive equipment for in vivo imaging. Here, we report on a robust alternative method using Fluorogold (FG) as tracer, which is spectrometrically quantified in retinal tissue lysate. METHODS To determine parameters reflecting the relative FG content of a sample FG was dissolved in retinal lysates at different concentrations and spectra were obtained. For validation in vivo FG was injected uni- or bilaterally into the superior colliculus (SC) of Sprague Dawley rats. The retinal lysate was analysed after 3, 5 and 7 days to determine the time course of FG accumulation in the retina (n = 15). In subsequent experiments axona transport was impaired by optic nerve crush (n = 3), laser-induced ocular hypertension (n = 5) or colchicine treatment to the SC (n = 10). RESULTS Spectrometry at 370 nm excitation revealed two emission peaks at 430 and 610 nm. We devised a formula to calculate the relative FG content (c(FG)), from the emission spectrum. c(FG) is proportional to the real FG concentration as it corrects for variations of retinal protein concentration in the lysate. After SC injection, c(FG) monotonously increases with time (p = 0.002). Optic nerve axonal damage caused a significant decrease of c(FG) (crush p = 0.029; hypertension p = 0.025; colchicine p = 0.006). Lysates are amenable to subsequent protein analysis. CONCLUSIONS Spectrometrical FG detection in retinal lysates allows for quantitative assessment of retrograde axonal transport using standard laboratory equipment. It is faster than histochemical techniques and may also complement morphological in vivo analyses.
Collapse
|
21
|
Chang ZY, Lu DW, Yeh MK, Chiang CH. A novel high-content flow cytometric method for assessing the viability and damage of rat retinal ganglion cells. PLoS One 2012; 7:e33983. [PMID: 22457807 PMCID: PMC3311554 DOI: 10.1371/journal.pone.0033983] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 02/20/2012] [Indexed: 01/04/2023] Open
Abstract
Purpose The aim of the study was to develop a high-content flow cytometric method for assessing the viability and damage of small, medium, and large retinal ganglion cells (RGCs) in N-methyl-D-aspartic acid (NMDA)-injury model. Methods/Results Retinal toxicity was induced in rats by intravitreal injection of NMDA and RGCs were retrogradely labeled with Fluoro-Gold (FG). Seven days post-NMDA injection, flatmount and flow cytometric methods were used to evaluate RGCs. In addition, the RGC area diameter (D(a)) obtained from retinal flatmount imaging were plotted versus apparent volume diameter (D(v)) obtained from flow cytometry for the same cumulative cell number (sequentially from small to large RGCs) percentile (Q) to establish their relationship for accurately determining RGC sizes. Good correlation (r = 0.9718) was found between D(a) and apparent D(v). Both flatmount and flow cytometric analyses of RGCs showed that 40 mM NMDA significantly reduced the numbers of small and medium RGCs but not large RGCs. Additionally, flow cytometry showed that the geometric means of FG and thy-1 intensities in three types of RGCs decreased to 90.96±2.24% (P<0.05) and 91.78±1.89% (P>0.05) for small, 69.62±2.11% (P<0.01) and 69.07±2.98% (P<0.01) for medium, and 69.68±6.48% (P<0.05) and 69.91±6.23% (P<0.05) for large as compared with the normal RGCs. Conclusion The established flow cytometric method provides high-content analysis for differential evaluation of RGC number and status and should be useful for the evaluation of various models of optic nerve injury and the effects of potential neuroprotective agents.
Collapse
Affiliation(s)
- Zhi-Yang Chang
- Graduate Institute of Life Sciences, National Defense Medical Center, Neihu, Taipei, Taiwan
| | - Da-Wen Lu
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Neihu, Taipei, Taiwan
| | - Ming-Kung Yeh
- Institute of Preventive Medicine, National Defense Medical Center, Sanhsia, Taipei, Taiwan
| | - Chiao-Hsi Chiang
- Graduate Institute of Life Sciences, National Defense Medical Center, Neihu, Taipei, Taiwan
- School of Pharmacy, National Defense Medical Center, Neihu, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
22
|
Zhao X, Zhou S, Jiang L, Hou W, Shen Q, Zhu J. Graphene–CdS Nanocomposites: Facile One‐Step Synthesis and Enhanced Photoelectrochemical Cytosensing. Chemistry 2012; 18:4974-81. [DOI: 10.1002/chem.201102379] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 11/29/2011] [Indexed: 11/05/2022]
Affiliation(s)
- Xiaomei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (P. R. China)
| | - Shiwei Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (P. R. China)
| | - Li‐Ping Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (P. R. China)
| | - Wenhua Hou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (P. R. China)
| | - Qingming Shen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (P. R. China)
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210046 (P. R. China)
| | - Jun‐Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (P. R. China)
| |
Collapse
|
23
|
Abstract
The application of nanotechnology has opened a new realm of advancement in the field of regenerative medicine and has provided hope for the culmination of long-felt needs by the development of an ideal means to control the biochemical and mechanical microenvironment for successful cell delivery and tissue regeneration. Both top-down and bottom-up approaches have been widely used in the advancement of this field, be it by improvement in scaffolds for cell growth, development of new and efficient delivery devices, cellular modification and tracking applications or by development of nanodevices such as biosensors. The current review elaborates the various nanomaterials used in regenerative medicine with a special focus on the development of this field during the last 5 years and the recent advances in their aforementioned applications. Furthermore, the key issues and challenges in using nanotechnology-based approaches are highlighted with an outlook on the likely future of nano-assisted regenerative medicine.
Collapse
Affiliation(s)
- Shalini Verma
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Sector-67, SAS Nagar (Mohali) 160062, Punjab, India
| | - Abraham J Domb
- Department of Medicinal Chemistry, School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Neeraj Kumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Sector-67, SAS Nagar (Mohali) 160062, Punjab, India
| |
Collapse
|