1
|
Wang X, Zhu Y. SleepGCN: A transition rule learning model based on Graph Convolutional Network for sleep staging. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 257:108405. [PMID: 39243591 DOI: 10.1016/j.cmpb.2024.108405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND AND OBJECTIVE Automatic sleep staging is essential for assessing and diagnosing sleep disorders, serving millions of people who suffer from them. Numerous sleep staging models have been proposed recently, but most of them have not fully explored the sleep transition rules that are essential for sleep experts to identify sleep stages. Therefore, one objective of this paper is to develop an automatic sleep staging model to capture the transition rules between sleep stages. METHODS In this paper, we propose a novel sleep staging model named SleepGCN. It utilizes the deep features of electroencephalogram (EEG) and electrooculogram (EOG) signals extracted by the sleep representation learning (SRL) module, in conjunction with the transition rules learned by the sleep transition rule learning (STRL) module to identify sleep stages. Specifically, the SRL module utilizes the residual network (ResNet) and Long Short Term Memory (LSTM) structure to capture the deep time-invariant features and temporal information of each sleep stage from the two-channel EEG-EOG, and then applies a feature enhancement block to obtain the refined features. The STRL module employs a Graph Convolutional Network (GCN) and a transition rule matrix to capture transition rules between sleep stages based on the sequence labels of the input signals. RESULTS We evaluate SleepGCN on five public datasets: SleepEDF-20, SleepEDF-78, SHHS, DOD-H and DOD-O. Overall, SleepGCN achieves an accuracy of 89.70%, 87.70%, 86.16%, 82.07%, and 81.20%, alongside a macro-average F1-score of 85.20%, 82.70%, 77.69%, 72.44%, and 72.93% across these datasets, respectively. CONCLUSIONS The results achieved by our proposed model are much better than those of all other compared models. The ablation study validates the contributions of the SRL and STRL modules proposed in SleepGCN to the sleep staging tasks. Additionally, it shows that the sleep staging model using two-channel EEG-EOG outperforms the model using single-channel EEG or EOG. Overall, SleepGCN is an effective solution for sleep staging using two-channel EEG-EOG.
Collapse
Affiliation(s)
- Xuhui Wang
- School of Computer Science, Wuhan University, Wuhan, 430061, China
| | - Yuanyuan Zhu
- School of Computer Science, Wuhan University, Wuhan, 430061, China.
| |
Collapse
|
2
|
Niknazar H, Mednick SC. A Multi-Level Interpretable Sleep Stage Scoring System by Infusing Experts' Knowledge Into a Deep Network Architecture. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2024; 46:5044-5061. [PMID: 38358869 DOI: 10.1109/tpami.2024.3366170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
In recent years, deep learning has shown potential and efficiency in a wide area including computer vision, image and signal processing. Yet, translational challenges remain for user applications due to a lack of interpretability of algorithmic decisions and results. This black box problem is particularly problematic for high-risk applications such as medical-related decision-making. The current study goal was to design an interpretable deep learning system for time series classification of electroencephalogram (EEG) for sleep stage scoring as a step toward designing a transparent system. We have developed an interpretable deep neural network that includes a kernel-based layer guided by a set of principles used for sleep scoring by human experts in the visual analysis of polysomnographic records. A kernel-based convolutional layer was defined and used as the first layer of the system and made available for user interpretation. The trained system and its results were interpreted in four levels from microstructure of EEG signals, such as trained kernels and effect of each kernel on the detected stages, to macrostructures, such as transitions between stages. The proposed system demonstrated greater performance than prior studies and the system learned information consistent with expert knowledge.
Collapse
|
3
|
Shao Y, Huang B, Du L, Wang P, Li Z, Liu Z, Zhou L, Song Y, Chen X, Fang Z. Reliable automatic sleep stage classification based on hybrid intelligence. Comput Biol Med 2024; 173:108314. [PMID: 38513392 DOI: 10.1016/j.compbiomed.2024.108314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/10/2024] [Accepted: 03/12/2024] [Indexed: 03/23/2024]
Abstract
Sleep staging is a vital aspect of sleep assessment, serving as a critical tool for evaluating the quality of sleep and identifying sleep disorders. Manual sleep staging is a laborious process, while automatic sleep staging is seldom utilized in clinical practice due to issues related to the inadequate accuracy and interpretability of classification results in automatic sleep staging models. In this work, a hybrid intelligent model is presented for automatic sleep staging, which integrates data intelligence and knowledge intelligence, to attain a balance between accuracy, interpretability, and generalizability in the sleep stage classification. Specifically, it is built on any combination of typical electroencephalography (EEG) and electrooculography (EOG) channels, including a temporal fully convolutional network based on the U-Net architecture and a multi-task feature mapping structure. The experimental results show that, compared to current interpretable automatic sleep staging models, our model achieves a Macro-F1 score of 0.804 on the ISRUC dataset and 0.780 on the Sleep-EDFx dataset. Moreover, we use knowledge intelligence to address issues of excessive jumps and unreasonable sleep stage transitions in the coarse sleep graphs obtained by the model. We also explore the different ways knowledge intelligence affects coarse sleep graphs by combining different sleep graph correction methods. Our research can offer convenient support for sleep physicians, indicating its significant potential in improving the efficiency of clinical sleep staging.
Collapse
Affiliation(s)
- Yizi Shao
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Bokai Huang
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Lidong Du
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; Personalized Management of Chronic Respiratory Disease, Chinese Academy of Medical Sciences, Beijing, China.
| | - Peng Wang
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; Personalized Management of Chronic Respiratory Disease, Chinese Academy of Medical Sciences, Beijing, China.
| | - Zhenfeng Li
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; Personalized Management of Chronic Respiratory Disease, Chinese Academy of Medical Sciences, Beijing, China.
| | - Zhe Liu
- Hunan VentMed Medical Technology Co., Ltd, Shaoyang, China.
| | - Lei Zhou
- Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Yuanlin Song
- Zhongshan Hospital Fudan University, Shanghai, China.
| | - Xianxiang Chen
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; Personalized Management of Chronic Respiratory Disease, Chinese Academy of Medical Sciences, Beijing, China.
| | - Zhen Fang
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; Personalized Management of Chronic Respiratory Disease, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
4
|
Wei Y, Zhu Y, Zhou Y, Yu X, Luo Y. Automatic Sleep Staging Based on Contextual Scalograms and Attention Convolution Neural Network Using Single-Channel EEG. IEEE J Biomed Health Inform 2024; 28:801-811. [PMID: 37955995 DOI: 10.1109/jbhi.2023.3332503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Single-channel EEG based sleep staging is of interest to researchers due to its broad application prospect in daily sleep monitoring recently. We proposed using contextual scalograms as input and developed a convolutional neural network with attention modules named Co-ScaleNet for sleep staging. The contextual scalograms were obtained by combining the same color channels of three original RGB scalograms from consecutive epochs, and a simple and efficient data augmentation was designed according to their various forms. The Co-ScaleNet consists of two main parts. Firstly, three parallel convolutional branches with attention modules correspondingly extract and fuse features from contextual scalograms at the top layers. The remaining part is a stack of lightweight blocks. We achieved an overall accuracy of 87.0% for healthy individuals, 84.7% for depressed patients. And we obtained comparable performance on the public Sleep-EDFx (82.8%), ISRUC (84.6%) and SHHS datasets (87.7%), including a high recall of N1. The contextual scalograms of R channel as input achieved the best performance, which conform to the features of interest in visual scoring. The attention modules improved the recall of N1 and N3. Overall, the contextual scalograms provided a novel scheme for both contextual information extraction and data augmentation. Our study successfully expanded its application to depression datasets, as well as patients with sleep apnea, demonstrating its wide applicability.
Collapse
|
5
|
Ji X, Li Y, Wen P, Barua P, Acharya UR. MixSleepNet: A Multi-Type Convolution Combined Sleep Stage Classification Model. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 244:107992. [PMID: 38218118 DOI: 10.1016/j.cmpb.2023.107992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/09/2023] [Accepted: 12/19/2023] [Indexed: 01/15/2024]
Abstract
BACKGROUND AND OBJECTIVE Sleep staging is an essential step for sleep disorder diagnosis, which is time-intensive and laborious for experts to perform this work manually. Automatic sleep stage classification methods not only alleviate experts from these demanding tasks but also enhance the accuracy and efficiency of the classification process. METHODS A novel multi-channel biosignal-based model constructed by the combination of a 3D convolutional operation and a graph convolutional operation is proposed for the automated sleep stages using various physiological signals. Both the 3D convolution and graph convolution can aggregate information from neighboring brain areas, which helps to learn intrinsic connections from the biosignals. Electroencephalogram (EEG), electromyogram (EMG), electrooculogram (EOG) and electrocardiogram (ECG) signals are employed to extract time domain and frequency domain features. Subsequently, these signals are input to the 3D convolutional and graph convolutional branches, respectively. The 3D convolution branch can explore the correlations between multi-channel signals and multi-band waves in each channel in the time series, while the graph convolution branch can explore the connections between each channel and each frequency band. In this work, we have developed the proposed multi-channel convolution combined sleep stage classification model (MixSleepNet) using ISRUC datasets (Subgroup 3 and 50 random samples from Subgroup 1). RESULTS Based on the first expert's label, our generated MixSleepNet yielded an accuracy, F1-score and Cohen kappa scores of 0.830, 0.821 and 0.782, respectively for ISRUC-S3. It obtained accuracy, F1-score and Cohen kappa scores of 0.812, 0.786, and 0.756, respectively for the ISRUC-S1 dataset. In accordance with the evaluations conducted by the second expert, the comprehensive accuracies, F1-scores, and Cohen kappa coefficients for the ISRUC-S3 and ISRUC-S1 datasets are determined to be 0.837, 0.820, 0.789, and 0.829, 0.791, 0.775, respectively. CONCLUSION The results of the performance metrics by the proposed method are much better than those from all the compared models. Additional experiments were carried out on the ISRUC-S3 sub-dataset to evaluate the contributions of each module towards the classification performance.
Collapse
Affiliation(s)
- Xiaopeng Ji
- School of Mathematics, Physics and Computing, University of Southern Queensland, Toowoomba, QLD 4350, Australia.
| | - Yan Li
- School of Mathematics, Physics and Computing, University of Southern Queensland, Toowoomba, QLD 4350, Australia.
| | - Peng Wen
- School of Engineering, University of Southern Queensland, Toowoomba, QLD 4350, Australia.
| | - Prabal Barua
- Cogninet Brain Team, Sydney, NSW 2010, Australia.
| | - U Rajendra Acharya
- School of Mathematics, Physics and Computing, University of Southern Queensland, Toowoomba, QLD 4350, Australia.
| |
Collapse
|
6
|
Liao YS, Wu MC, Li CX, Lin WK, Lin CY, Liang SF. Polysomnography scoring-related training and quantitative assessment for improving interscorer agreement. J Clin Sleep Med 2024; 20:271-278. [PMID: 37811900 PMCID: PMC10835767 DOI: 10.5664/jcsm.10852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/29/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
STUDY OBJECTIVES To efficiently improve the scoring competency of scorers with varying levels of experience across regions in Taiwan, we developed a training program with a cloud-based polysomnography scoring platform to evaluate and improve interscorer agreement. METHODS A total of 70 scorers from 34 sleep centers in Taiwan (job tenure: 0.5-39.0 years) completed a scoring test. All scorers scored a 742-epoch (30 s/epoch) overnight polysomnography recording of a patient with a moderate apnea-hypopnea index. Subsequently, 8 scoring experts delivered 8 interactive online lectures (each lasting 30 minutes). The training program included identifying scoring weaknesses, highlighting the latest scoring rules, and providing physicians' perspectives. Afterward, the scorers completed the second scoring test on the same participant. Changes in agreement from the first to second scoring test were identified. Sleep staging, sleep parameters, and respiratory events were considered for evaluating scoring agreement. RESULTS The scorers' agreement in overall sleep stage scoring significantly increased from 74.6 to 82.3% (median score). The proportion of scorers with an agreement of ≥ 80% increased from 20.0% (14/70) to 58.6% (41/70) after the online training program. In addition, the scorers' agreement in overall respiratory-event scoring increased to 88.8% (median score) after training. The scorers with a job tenure of 2.0-4.9 years exhibited the highest level of improvement in overall sleep staging (their median agreement increased from 72.8 to 84.9%; P < .001). CONCLUSIONS Our interactive online training program efficiently targeted the scorers' scoring weaknesses identified in the first scoring test, leading to substantial improvements in scoring proficiency. CITATION Liao Y-S, Wu M-C, Li C-X, Lin W-K, Lin C-Y, Liang S-F. Polysomnography scoring-related training and quantitative assessment for improving interscorer agreement. J Clin Sleep Med. 2024;20(2):271-278.
Collapse
Affiliation(s)
- Ying-Siou Liao
- Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Meng-Chun Wu
- Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Xue Li
- Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Kuei Lin
- Sleep Medicine Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Yu Lin
- Sleep Medicine Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Otolaryngology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Fu Liang
- Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan
- Institute of Medical Informatics, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
7
|
Haghayegh S, Hu K, Stone K, Redline S, Schernhammer E. Automated Sleep Stages Classification Using Convolutional Neural Network From Raw and Time-Frequency Electroencephalogram Signals: Systematic Evaluation Study. J Med Internet Res 2023; 25:e40211. [PMID: 36763454 PMCID: PMC9960035 DOI: 10.2196/40211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/09/2022] [Accepted: 01/09/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Most existing automated sleep staging methods rely on multimodal data, and scoring a specific epoch requires not only the current epoch but also a sequence of consecutive epochs that precede and follow the epoch. OBJECTIVE We proposed and tested a convolutional neural network called SleepInceptionNet, which allows sleep classification of a single epoch using a single-channel electroencephalogram (EEG). METHODS SleepInceptionNet is based on our systematic evaluation of the effects of different EEG preprocessing methods, EEG channels, and convolutional neural networks on automatic sleep staging performance. The evaluation was performed using polysomnography data of 883 participants (937,975 thirty-second epochs). Raw data of individual EEG channels (ie, frontal, central, and occipital) and 3 specific transformations of the data, including power spectral density, continuous wavelet transform, and short-time Fourier transform, were used separately as the inputs of the convolutional neural network models. To classify sleep stages, 7 sequential deep neural networks were tested for the 1D data (ie, raw EEG and power spectral density), and 16 image classifier convolutional neural networks were tested for the 2D data (ie, continuous wavelet transform and short-time Fourier transform time-frequency images). RESULTS The best model, SleepInceptionNet, which uses time-frequency images developed by the continuous wavelet transform method from central single-channel EEG data as input to the InceptionV3 image classifier algorithm, achieved a Cohen κ agreement of 0.705 (SD 0.077) in reference to the gold standard polysomnography. CONCLUSIONS SleepInceptionNet may allow real-time automated sleep staging in free-living conditions using a single-channel EEG, which may be useful for on-demand intervention or treatment during specific sleep stages.
Collapse
Affiliation(s)
- Shahab Haghayegh
- Harvard Medical School, Boston, MA, United States
- Brigham and Women's Hospital, Boston, MA, United States
| | - Kun Hu
- Harvard Medical School, Boston, MA, United States
- Brigham and Women's Hospital, Boston, MA, United States
| | - Katie Stone
- California Pacific Medical Center Research Institute, San Francisco, CA, United States
| | - Susan Redline
- Harvard Medical School, Boston, MA, United States
- Brigham and Women's Hospital, Boston, MA, United States
| | - Eva Schernhammer
- Harvard Medical School, Boston, MA, United States
- Brigham and Women's Hospital, Boston, MA, United States
- Medical University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Efe E, Ozsen S. CoSleepNet: Automated sleep staging using a hybrid CNN-LSTM network on imbalanced EEG-EOG datasets. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
De Fazio R, Mattei V, Al-Naami B, De Vittorio M, Visconti P. Methodologies and Wearable Devices to Monitor Biophysical Parameters Related to Sleep Dysfunctions: An Overview. MICROMACHINES 2022; 13:1335. [PMID: 36014257 PMCID: PMC9412310 DOI: 10.3390/mi13081335] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 06/13/2023]
Abstract
Sleep is crucial for human health from metabolic, mental, emotional, and social points of view; obtaining good sleep in terms of quality and duration is fundamental for maintaining a good life quality. Over the years, several systems have been proposed in the scientific literature and on the market to derive metrics used to quantify sleep quality as well as detect sleep disturbances and disorders. In this field, wearable systems have an important role in the discreet, accurate, and long-term detection of biophysical markers useful to determine sleep quality. This paper presents the current state-of-the-art wearable systems and software tools for sleep staging and detecting sleep disorders and dysfunctions. At first, the paper discusses sleep's functions and the importance of monitoring sleep to detect eventual sleep disturbance and disorders. Afterward, an overview of prototype and commercial headband-like wearable devices to monitor sleep is presented, both reported in the scientific literature and on the market, allowing unobtrusive and accurate detection of sleep quality markers. Furthermore, a survey of scientific works related the effect of the COVID-19 pandemic on sleep functions, attributable to both infection and lifestyle changes. In addition, a survey of algorithms for sleep staging and detecting sleep disorders is introduced based on an analysis of single or multiple biosignals (EEG-electroencephalography, ECG-electrocardiography, EMG-electromyography, EOG-electrooculography, etc.). Lastly, comparative analyses and insights are provided to determine the future trends related to sleep monitoring systems.
Collapse
Affiliation(s)
- Roberto De Fazio
- Department of Innovation Engineering, University of Salento, 73100 Lecce, Italy
| | - Veronica Mattei
- Department of Innovation Engineering, University of Salento, 73100 Lecce, Italy
| | - Bassam Al-Naami
- Department of Biomedical Engineering, Faculty of Engineering, The Hashemite University, Zarqa 13133, Jordan
| | - Massimo De Vittorio
- Department of Innovation Engineering, University of Salento, 73100 Lecce, Italy
- Center for Biomolecular Nanotechnologies, Italian Technology Institute IIT, 73010 Arnesano, Italy
| | - Paolo Visconti
- Department of Innovation Engineering, University of Salento, 73100 Lecce, Italy
| |
Collapse
|
10
|
Multi-scale ResNet and BiGRU automatic sleep staging based on attention mechanism. PLoS One 2022; 17:e0269500. [PMID: 35709101 PMCID: PMC9202858 DOI: 10.1371/journal.pone.0269500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/20/2022] [Indexed: 11/29/2022] Open
Abstract
Sleep staging is the basis of sleep evaluation and a key step in the diagnosis of sleep-related diseases. Despite being useful, the existing sleep staging methods have several disadvantages, such as relying on artificial feature extraction, failing to recognize temporal sequence patterns in the long-term associated data, and reaching the accuracy upper limit of sleep staging. Hence, this paper proposes an automatic Electroencephalogram (EEG) sleep signal staging model, which based on Multi-scale Attention Residual Nets (MAResnet) and Bidirectional Gated Recurrent Unit (BiGRU). The proposed model is based on the residual neural network in deep learning. Compared with the traditional residual learning module, the proposed model additionally uses the improved channel and spatial feature attention units and convolution kernels of different sizes in parallel at the same position. Thus, multiscale feature extraction of the EEG sleep signals and residual learning of the neural networks is performed to avoid network degradation. Finally, BiGRU is used to determine the dependence between the sleep stages and to realize the automatic learning of sleep data staging features and sleep cycle extraction. According to the experiment, the classification accuracy and kappa coefficient of the proposed method on sleep-EDF data set are 84.24% and 0.78, which are respectively 0.24% and 0.21 higher than the traditional residual net. At the same time, this paper also verified the proposed method on UCD and SHHS data sets, and the figure of classification accuracy is 79.34% and 81.6%, respectively. Compared to related existing studies, the recognition accuracy is significantly improved, which validates the effectiveness and generalization performance of the proposed method.
Collapse
|
11
|
Tao Y, Yang Y, Yang P, Nan F, Zhang Y, Rao Y, Du F. A novel feature relearning method for automatic sleep staging based on single-channel EEG. COMPLEX INTELL SYST 2022. [DOI: 10.1007/s40747-022-00779-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractCorrectly identifying sleep stages is essential for assessing sleep quality and treating sleep disorders. However, the current sleep staging methods have the following problems: (1) Manual or semi-automatic extraction of features requires professional knowledge, which is time-consuming and laborious. (2) Due to the similarity of stage features, it is necessary to strengthen the learning of features. (3) Acquisition of a variety of data has high requirements on equipment. Therefore, this paper proposes a novel feature relearning method for automatic sleep staging based on single-channel electroencephalography (EEG) to solve these three problems. Specifically, we design a bottom–up and top–down network and use the attention mechanism to learn EEG information fully. The cascading step with an imbalanced strategy is used to further improve the overall classification performance and realize automatic sleep classification. The experimental results on the public dataset Sleep-EDF show that the proposed method is advanced. The results show that the proposed method outperforms the state-of-the-art methods. The code and supplementary materials are available at GitHub: https://github.com/raintyj/A-novel-feature-relearning-method.
Collapse
|
12
|
Pompili MN, Todorova R. Discriminating Sleep From Freezing With Cortical Spindle Oscillations. Front Neural Circuits 2022; 16:783768. [PMID: 35399613 PMCID: PMC8988299 DOI: 10.3389/fncir.2022.783768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/31/2022] [Indexed: 12/23/2022] Open
Abstract
In-vivo longitudinal recordings require reliable means to automatically discriminate between distinct behavioral states, in particular between awake and sleep epochs. The typical approach is to use some measure of motor activity together with extracellular electrophysiological signals, namely the relative contribution of theta and delta frequency bands to the Local Field Potential (LFP). However, these bands can partially overlap with oscillations characterizing other behaviors such as the 4 Hz accompanying rodent freezing. Here, we first demonstrate how standard methods fail to discriminate between sleep and freezing in protocols where both behaviors are observed. Then, as an alternative, we propose to use the smoothed cortical spindle power to detect sleep epochs. Finally, we show the effectiveness of this method in discriminating between sleep and freezing in our recordings.
Collapse
Affiliation(s)
- Marco N. Pompili
- Aix Marseille University, INSERM, Institut de Neurosciences des Systèmes (INS), Marseille, France
- *Correspondence: Marco N. Pompili
| | - Ralitsa Todorova
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, United States
- Ralitsa Todorova
| |
Collapse
|
13
|
Hong J, Tran HH, Jung J, Jang H, Lee D, Yoon IY, Hong JK, Kim JW. End-to-End Sleep Staging Using Nocturnal Sounds from Microphone Chips for Mobile Devices. Nat Sci Sleep 2022; 14:1187-1201. [PMID: 35783665 PMCID: PMC9241996 DOI: 10.2147/nss.s361270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/03/2022] [Indexed: 02/04/2023] Open
Abstract
PURPOSE Nocturnal sounds contain numerous information and are easily obtainable by a non-contact manner. Sleep staging using nocturnal sounds recorded from common mobile devices may allow daily at-home sleep tracking. The objective of this study is to introduce an end-to-end (sound-to-sleep stages) deep learning model for sound-based sleep staging designed to work with audio from microphone chips, which are essential in mobile devices such as modern smartphones. PATIENTS AND METHODS Two different audio datasets were used: audio data routinely recorded by a solitary microphone chip during polysomnography (PSG dataset, N=1154) and audio data recorded by a smartphone (smartphone dataset, N=327). The audio was converted into Mel spectrogram to detect latent temporal frequency patterns of breathing and body movement from ambient noise. The proposed neural network model learns to first extract features from each 30-second epoch and then analyze inter-epoch relationships of extracted features to finally classify the epochs into sleep stages. RESULTS Our model achieved 70% epoch-by-epoch agreement for 4-class (wake, light, deep, REM) sleep stage classification and robust performance across various signal-to-noise conditions. The model performance was not considerably affected by sleep apnea or periodic limb movement. External validation with smartphone dataset also showed 68% epoch-by-epoch agreement. CONCLUSION The proposed end-to-end deep learning model shows potential of low-quality sounds recorded from microphone chips to be utilized for sleep staging. Future study using nocturnal sounds recorded from mobile devices at home environment may further confirm the use of mobile device recording as an at-home sleep tracker.
Collapse
Affiliation(s)
- Joonki Hong
- Asleep Inc., Seoul, Korea.,Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | | | | | | | | | - In-Young Yoon
- Department of Psychiatry, Seoul National University Bundang Hospital, Seongnam, Korea.,Seoul National University College of Medicine, Seoul, Korea
| | - Jung Kyung Hong
- Department of Psychiatry, Seoul National University Bundang Hospital, Seongnam, Korea.,Seoul National University College of Medicine, Seoul, Korea
| | - Jeong-Whun Kim
- Seoul National University College of Medicine, Seoul, Korea.,Department of Otorhinolaryngology, Seoul National University Bundang Hospital, Seongnam, Korea
| |
Collapse
|
14
|
Home-Use and Real-Time Sleep-Staging System Based on Eye Masks and Mobile Devices with a Deep Learning Model. J Med Biol Eng 2021; 41:659-668. [PMID: 34512223 PMCID: PMC8418457 DOI: 10.1007/s40846-021-00649-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 08/17/2021] [Indexed: 11/16/2022]
Abstract
Purpose Sleep is an important human activity. Comfortable sensing and accurate analysis in sleep monitoring is beneficial to many healthcare and medical applications. From 2020, owing to the COVID‑19 pandemic that spreads between people when they come into close physical contact with one another, the willingness to go to hospital for receiving care has reduced; care-at-home is the trend in modern healthcare. Therefore, a home-use and real-time sleep-staging system is developed in this paper. Methods We developed and implemented a real-time sleep staging system that integrates a wearable eye mask for high-quality electroencephalogram/electrooculogram measurement and a mobile device with MobileNETV2 deep learning model for sleep-stage identification. In the experiments, 25 all-night recordings were acquired, 17 of which were used for training, and the remaining eight were used for testing. Results The averaged scoring agreements for the wake, light sleep, deep sleep, and rapid eye movement stages were 85.20%, 87.17%, 82.87%, and 89.30%, respectively, for our system compared with the manual scoring of PSG recordings. In addition, the mean absolute errors of four objective sleep measurements, including sleep efficiency, total sleep time, sleep onset time, and wake after sleep onset time were 1.68%, 7.56 min, 5.50 min, and 3.94 min, respectively. No significant differences were observed between the proposed system and manual PSG scoring in terms of the percentage of each stage and the objective sleep measurements. Conclusion These experimental results demonstrate that our system provides high scoring agreements in sleep staging and unbiased sleep measurements owing to the use of EEG and EOG signals and powerful mobile computing based on deep learning networks. These results also suggest that our system is applicable for home-use real-time sleep monitoring.
Collapse
|
15
|
Jain R, Ganesan RA. Reliable sleep staging of unseen subjects with fusion of multiple EEG features and RUSBoost. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.103061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
16
|
A single-channel EEG based automatic sleep stage classification method leveraging deep one-dimensional convolutional neural network and hidden Markov model. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102581] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Zhao D, Jiang R, Feng M, Yang J, Wang Y, Hou X, Wang X. A deep learning algorithm based on 1D CNN-LSTM for automatic sleep staging. Technol Health Care 2021; 30:323-336. [PMID: 34180436 DOI: 10.3233/thc-212847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Sleep staging is an important part of sleep research. Traditional automatic sleep staging based on machine learning requires extensive feature extraction and selection. OBJECTIVE This paper proposed a deep learning algorithm without feature extraction based on one-dimensional convolutional neural network and long short-term memory. METHODS The algorithm can automatically divide sleep into 5 phases including awake period, non-rapid eye movement sleep period (N1 ∼ N3) and rapid eye movement using the electroencephalogram signals. The raw signal was processed by the wavelet transform. Then, the processed signal was directly input into the deep learning algorithm to obtain the staging result. RESULTS The accuracy of staging is 93.47% using the Fpz-Cz electroencephalogram signal. When using the Fpz-Cz and electroencephalogram signal, the algorithm can obtain the highest accuracy of 94.15%. CONCLUSION These results show that this algorithm is suitable for different physiological signals and can realize end-to-end automatic sleep staging without any manual feature extraction.
Collapse
Affiliation(s)
- Dechun Zhao
- College of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Renpin Jiang
- School of Automation, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Mingyang Feng
- College of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Jiaxin Yang
- College of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Yi Wang
- College of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Xiaorong Hou
- College of Medical Informatics, Chongqing Medical University, Chongqing, China
| | - Xing Wang
- College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
18
|
Abou Jaoude M, Sun H, Pellerin KR, Pavlova M, Sarkis RA, Cash SS, Westover MB, Lam AD. Expert-level automated sleep staging of long-term scalp electroencephalography recordings using deep learning. Sleep 2021; 43:5849506. [PMID: 32478820 DOI: 10.1093/sleep/zsaa112] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/20/2020] [Indexed: 12/25/2022] Open
Abstract
STUDY OBJECTIVES Develop a high-performing, automated sleep scoring algorithm that can be applied to long-term scalp electroencephalography (EEG) recordings. METHODS Using a clinical dataset of polysomnograms from 6,431 patients (MGH-PSG dataset), we trained a deep neural network to classify sleep stages based on scalp EEG data. The algorithm consists of a convolutional neural network for feature extraction, followed by a recurrent neural network that extracts temporal dependencies of sleep stages. The algorithm's inputs are four scalp EEG bipolar channels (F3-C3, C3-O1, F4-C4, and C4-O2), which can be derived from any standard PSG or scalp EEG recording. We initially trained the algorithm on the MGH-PSG dataset and used transfer learning to fine-tune it on a dataset of long-term (24-72 h) scalp EEG recordings from 112 patients (scalpEEG dataset). RESULTS The algorithm achieved a Cohen's kappa of 0.74 on the MGH-PSG holdout testing set and cross-validated Cohen's kappa of 0.78 after optimization on the scalpEEG dataset. The algorithm also performed well on two publicly available PSG datasets, demonstrating high generalizability. Performance on all datasets was comparable to the inter-rater agreement of human sleep staging experts (Cohen's kappa ~ 0.75 ± 0.11). The algorithm's performance on long-term scalp EEGs was robust over a wide age range and across common EEG background abnormalities. CONCLUSION We developed a deep learning algorithm that achieves human expert level sleep staging performance on long-term scalp EEG recordings. This algorithm, which we have made publicly available, greatly facilitates the use of large long-term EEG clinical datasets for sleep-related research.
Collapse
Affiliation(s)
- Maurice Abou Jaoude
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Haoqi Sun
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Kyle R Pellerin
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Milena Pavlova
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Rani A Sarkis
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - M Brandon Westover
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Alice D Lam
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
19
|
Cooray N, Andreotti F, Lo C, Symmonds M, Hu MTM, De Vos M. Proof of concept: Screening for REM sleep behaviour disorder with a minimal set of sensors. Clin Neurophysiol 2021; 132:904-913. [PMID: 33636605 PMCID: PMC8289737 DOI: 10.1016/j.clinph.2021.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/08/2021] [Accepted: 01/18/2021] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Rapid-Eye-Movement (REM) sleep behaviour disorder (RBD) is an early predictor of Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. This study investigated the use of a minimal set of sensors to achieve effective screening for RBD in the population, integrating automated sleep staging (three state) followed by RBD detection without the need for cumbersome electroencephalogram (EEG) sensors. METHODS Polysomnography signals from 50 participants with RBD and 50 age-matched healthy controls were used to evaluate this study. Three stage sleep classification was achieved using a random forest classifier and features derived from a combination of cost-effective and easy to use sensors, namely electrocardiogram (ECG), electrooculogram (EOG), and electromyogram (EMG) channels. Subsequently, RBD detection was achieved using established and new metrics derived from ECG and EMG channels. RESULTS The EOG and EMG combination provided the optimal minimalist fully-automated performance, achieving 0.57 ± 0.19 kappa (3 stage) for sleep staging and an RBD detection accuracy of 0.90 ± 0.11, (sensitivity and specificity of 0.88 ± 0.13 and 0.92 ± 0.098, respectively). A single ECG sensor achieved three state sleep staging with 0.28 ± 0.06 kappa and RBD detection accuracy of 0.62 ± 0.10. CONCLUSIONS This study demonstrates the feasibility of using signals from a single EOG and EMG sensor to detect RBD using fully-automated techniques. SIGNIFICANCE This study proposes a cost-effective, practical, and simple RBD identification support tool using only two sensors (EMG and EOG); ideal for screening purposes.
Collapse
Affiliation(s)
- Navin Cooray
- University of Oxford, Institute of Biomedical Engineering, Dept. Engineering Sciences, Oxford, UK.
| | - Fernando Andreotti
- University of Oxford, Institute of Biomedical Engineering, Dept. Engineering Sciences, Oxford, UK
| | - Christine Lo
- Oxford Parkinson's Disease Centre (OPDC), University of Oxford, UK; Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Mkael Symmonds
- Nuffield Department of Clinical Neurosciences, University of Oxford, UK; Department of Clinical Neurophysiology, John Radcliffe Hospital, Oxford University Hospitals Foundation Trust, UK
| | - Michele T M Hu
- Oxford Parkinson's Disease Centre (OPDC), University of Oxford, UK; Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Maarten De Vos
- University of Oxford, Institute of Biomedical Engineering, Dept. Engineering Sciences, Oxford, UK
| |
Collapse
|
20
|
Huang H, Zhang J, Zhu L, Tang J, Lin G, Kong W, Lei X, Zhu L. EEG-Based Sleep Staging Analysis with Functional Connectivity. SENSORS (BASEL, SWITZERLAND) 2021; 21:1988. [PMID: 33799850 PMCID: PMC7999974 DOI: 10.3390/s21061988] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 12/20/2022]
Abstract
Sleep staging is important in sleep research since it is the basis for sleep evaluation and disease diagnosis. Related works have acquired many desirable outcomes. However, most of current studies focus on time-domain or frequency-domain measures as classification features using single or very few channels, which only obtain the local features but ignore the global information exchanging between different brain regions. Meanwhile, brain functional connectivity is considered to be closely related to brain activity and can be used to study the interaction relationship between brain areas. To explore the electroencephalography (EEG)-based brain mechanisms of sleep stages through functional connectivity, especially from different frequency bands, we applied phase-locked value (PLV) to build the functional connectivity network and analyze the brain interaction during sleep stages for different frequency bands. Then, we performed the feature-level, decision-level and hybrid fusion methods to discuss the performance of different frequency bands for sleep stages. The results show that (1) PLV increases in the lower frequency band (delta and alpha bands) and vice versa during different stages of non-rapid eye movement (NREM); (2) alpha band shows a better discriminative ability for sleeping stages; (3) the classification accuracy of feature-level fusion (six frequency bands) reaches 96.91% and 96.14% for intra-subject and inter-subjects respectively, which outperforms decision-level and hybrid fusion methods.
Collapse
Affiliation(s)
- Hui Huang
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China; (H.H.); (J.Z.); (J.T.); (G.L.)
- Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou Dianzi University, Hangzhou 310018, China;
| | - Jianhai Zhang
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China; (H.H.); (J.Z.); (J.T.); (G.L.)
- Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou Dianzi University, Hangzhou 310018, China;
| | - Li Zhu
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China; (H.H.); (J.Z.); (J.T.); (G.L.)
- Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou Dianzi University, Hangzhou 310018, China;
| | - Jiajia Tang
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China; (H.H.); (J.Z.); (J.T.); (G.L.)
- Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou Dianzi University, Hangzhou 310018, China;
| | - Guang Lin
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China; (H.H.); (J.Z.); (J.T.); (G.L.)
- Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou Dianzi University, Hangzhou 310018, China;
| | - Wanzeng Kong
- Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou Dianzi University, Hangzhou 310018, China;
| | - Xu Lei
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing 400715, China;
- Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing 400715, China
| | - Lei Zhu
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China;
| |
Collapse
|
21
|
Bozkurt F, Uçar MK, Bilgin C, Zengin A. Sleep-wake stage detection with single channel ECG and hybrid machine learning model in patients with obstructive sleep apnea. Phys Eng Sci Med 2021; 44:63-77. [PMID: 33398636 DOI: 10.1007/s13246-020-00953-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/24/2020] [Indexed: 11/30/2022]
Abstract
Sleep staging is an important step in the diagnosis of obstructive sleep apnea (OSA) and this step is performed by a physician who visually scores the electroencephalography, electrooculography and electromyography signals taken by the polysomnography (PSG) device. The PSG records must be taken by a technician in a hospital environment, this may suggest a drawback. This study aims to develop a new method based on hybrid machine learning with single-channel ECG for sleep-wake detection, which is an alternative to the sleep staging procedure used in hospitals today. For this purpose, the heart rate variability signal was derived using electrocardiography (ECG) signals of 10 OSA patients. Then, QRS components in different frequency bands were obtained from the ECG signal by digital filtering. In this way, nine more signals were obtained in total. 25 features from each of the 9 signals, a total of 225 features have been extracted. Fisher feature selection algorithm and principal component analysis were used to reduce the number of features. Finally, features were classified with decision tree, support vector machines, k-nearest neighborhood algorithm and ensemble classifiers. In addition, the proposed model has been checked with the leave one out method. At the end of the study, it was shown that sleep-wake detection can be performed with 81.35% accuracy with only three features and 87.12% accuracy with 10 features. The sensitivity and specificity values for the 3 features were 0.85 and 0.77, and for 10 features the sensitivity and specificity values were 0.90 and 0.85 respectively. These results suggested that the proposed model could be used to detect sleep-wake stages during the OSA diagnostic process.
Collapse
Affiliation(s)
- Ferda Bozkurt
- Institute of Natural Sciences, Sakarya University, Sakarya, Turkey
| | - Muhammed Kürşad Uçar
- Faculty of Engineering, Electrical-Electronics Engineering, Sakarya University, Sakarya, Turkey.
| | - Cahit Bilgin
- Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Ahmet Zengin
- Faculty of Computer and Information Sciences, Computer Engineering, Sakarya University, Sakarya, Turkey
| |
Collapse
|
22
|
Zhu T, Luo W, Yu F. Multi-Branch Convolutional Neural Network for Automatic Sleep Stage Classification with Embedded Stage Refinement and Residual Attention Channel Fusion. SENSORS 2020; 20:s20226592. [PMID: 33218040 PMCID: PMC7698838 DOI: 10.3390/s20226592] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 01/21/2023]
Abstract
Automatic sleep stage classification of multi-channel sleep signals can help clinicians efficiently evaluate an individual's sleep quality and assist in diagnosing a possible sleep disorder. To obtain accurate sleep classification results, the processing flow of results from signal preprocessing and machine-learning-based classification is typically employed. These classification results are refined based on sleep transition rules. Neural networks-i.e., machine learning algorithms-are powerful at solving classification problems. Some methods apply them to the first two processes above; however, the refinement process continues to be based on traditional methods. In this study, the sleep stage refinement process was incorporated into the neural network model to form real end-to-end processing. In addition, for multi-channel signals, the multi-branch convolutional neural network was combined with a proposed residual attention method. This approach further improved the model classification accuracy. The proposed method was evaluated on the Sleep-EDF Expanded Database (Sleep-EDFx) and University College Dublin Sleep Apnea Database (UCDDB). It achieved respective accuracy rates of 85.7% and 79.4%. The results also showed that sleep stage refinement based on a neural network is more effective than the traditional refinement method. Moreover, the proposed residual attention method was determined to have a more robust channel-information fusion ability than the respective average and concatenation methods.
Collapse
|
23
|
Fernandez-Blanco E, Rivero D, Pazos A. EEG signal processing with separable convolutional neural network for automatic scoring of sleeping stage. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2020.05.085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Zhang L, Fabbri D, Upender R, Kent D. Automated sleep stage scoring of the Sleep Heart Health Study using deep neural networks. Sleep 2020; 42:5530377. [PMID: 31289828 DOI: 10.1093/sleep/zsz159] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 05/19/2019] [Indexed: 11/13/2022] Open
Abstract
STUDY OBJECTIVES Polysomnography (PSG) scoring is labor intensive and suffers from variability in inter- and intra-rater reliability. Automated PSG scoring has the potential to reduce the human labor costs and the variability inherent to this task. Deep learning is a form of machine learning that uses neural networks to recognize data patterns by inspecting many examples rather than by following explicit programming. METHODS A sleep staging classifier trained using deep learning methods scored PSG data from the Sleep Heart Health Study (SHHS). The training set was composed of 42 560 hours of PSG data from 5213 patients. To capture higher-order data, spectrograms were generated from electroencephalography, electrooculography, and electromyography data and then passed to the neural network. A holdout set of 580 PSGs not included in the training set was used to assess model accuracy and discrimination via weighted F1-score, per-stage accuracy, and Cohen's kappa (K). RESULTS The optimal neural network model was composed of spectrograms in the input layer feeding into convolutional neural network layers and a long short-term memory layer to achieve a weighted F1-score of 0.87 and K = 0.82. CONCLUSIONS The deep learning sleep stage classifier demonstrates excellent accuracy and agreement with expert sleep stage scoring, outperforming human agreement on sleep staging. It achieves comparable or better F1-scores, accuracy, and Cohen's kappa compared to literature for automated sleep stage scoring of PSG epochs. Accurate automated scoring of other PSG events may eventually allow for fully automated PSG scoring.
Collapse
Affiliation(s)
- Linda Zhang
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN
| | - Daniel Fabbri
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN
| | - Raghu Upender
- Department of Neurology, Sleep Disorders Division, Vanderbilt University School of Medicine, Nashville, TN
| | - David Kent
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
25
|
Goldstein CA, Berry RB, Kent DT, Kristo DA, Seixas AA, Redline S, Westover MB. Artificial intelligence in sleep medicine: background and implications for clinicians. J Clin Sleep Med 2020; 16:609-618. [PMID: 32065113 PMCID: PMC7161463 DOI: 10.5664/jcsm.8388] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 12/14/2022]
Abstract
None Polysomnography remains the cornerstone of objective testing in sleep medicine and results in massive amounts of electrophysiological data, which is well-suited for analysis with artificial intelligence (AI)-based tools. Combined with other sources of health data, AI is expected to provide new insights to inform the clinical care of sleep disorders and advance our understanding of the integral role sleep plays in human health. Additionally, AI has the potential to streamline day-to-day operations and therefore optimize direct patient care by the sleep disorders team. However, clinicians, scientists, and other stakeholders must develop best practices to integrate this rapidly evolving technology into our daily work while maintaining the highest degree of quality and transparency in health care and research. Ultimately, when harnessed appropriately in conjunction with human expertise, AI will improve the practice of sleep medicine and further sleep science for the health and well-being of our patients.
Collapse
Affiliation(s)
- Cathy A. Goldstein
- Sleep Disorders Center, Department of Neurology, University of Michigan, Ann Arbor, Michigan
| | - Richard B. Berry
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, Florida
| | - David T. Kent
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Azizi A. Seixas
- Department of Population Health, Department of Psychiatry, NYU Langone Health, New York, New York
| | - Susan Redline
- Brigham and Women's Hospital and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
26
|
Wang X, Gong G, Li N, Ding L. Use of multimodal physiological signals to explore pilots’ cognitive behaviour during flight strike task performance. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2020. [DOI: 10.1016/j.medntd.2020.100030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
27
|
Yan R, Li F, Wang X, Ristaniemi T, Cong F. Automatic Sleep Scoring Toolbox and Its Application in Sleep Apnea. COMMUNICATIONS IN COMPUTER AND INFORMATION SCIENCE 2020:256-275. [DOI: 10.1007/978-3-030-52686-3_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
28
|
Fraiwan L, Alkhodari M. Investigating the use of uni-directional and bi-directional long short-term memory models for automatic sleep stage scoring. INFORMATICS IN MEDICINE UNLOCKED 2020. [DOI: 10.1016/j.imu.2020.100370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
29
|
Biswal S, Sun H, Goparaju B, Westover MB, Sun J, Bianchi MT. Expert-level sleep scoring with deep neural networks. J Am Med Inform Assoc 2019; 25:1643-1650. [PMID: 30445569 PMCID: PMC6289549 DOI: 10.1093/jamia/ocy131] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 09/21/2018] [Indexed: 12/15/2022] Open
Abstract
Objectives Scoring laboratory polysomnography (PSG) data remains a manual task of visually annotating 3 primary categories: sleep stages, sleep disordered breathing, and limb movements. Attempts to automate this process have been hampered by the complexity of PSG signals and physiological heterogeneity between patients. Deep neural networks, which have recently achieved expert-level performance for other complex medical tasks, are ideally suited to PSG scoring, given sufficient training data. Methods We used a combination of deep recurrent and convolutional neural networks (RCNN) for supervised learning of clinical labels designating sleep stages, sleep apnea events, and limb movements. The data for testing and training were derived from 10 000 clinical PSGs and 5804 research PSGs. Results When trained on the clinical dataset, the RCNN reproduces PSG diagnostic scoring for sleep staging, sleep apnea, and limb movements with accuracies of 87.6%, 88.2% and 84.7% on held-out test data, a level of performance comparable to human experts. The RCNN model performs equally well when tested on the independent research PSG database. Only small reductions in accuracy were noted when training on limited channels to mimic at-home monitoring devices: frontal leads only for sleep staging, and thoracic belt signals only for the apnea-hypopnea index. Conclusions By creating accurate deep learning models for sleep scoring, our work opens the path toward broader and more timely access to sleep diagnostics. Accurate scoring automation can improve the utility and efficiency of in-lab and at-home approaches to sleep diagnostics, potentially extending the reach of sleep expertise beyond specialty clinics.
Collapse
Affiliation(s)
- Siddharth Biswal
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Haoqi Sun
- Neurology Department, Massachusetts General Hospital, Wang 720, Boston, MA, USA
| | - Balaji Goparaju
- Neurology Department, Massachusetts General Hospital, Wang 720, Boston, MA, USA.,Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - M Brandon Westover
- Neurology Department, Massachusetts General Hospital, Wang 720, Boston, MA, USA
| | - Jimeng Sun
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Matt T Bianchi
- Neurology Department, Massachusetts General Hospital, Wang 720, Boston, MA, USA.,Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
30
|
Klok AB, Edin J, Cesari M, Olesen AN, Jennum P, Sorensen HBD. A New Fully Automated Random-Forest Algorithm for Sleep Staging. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2018:4920-4923. [PMID: 30441446 DOI: 10.1109/embc.2018.8513413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Rapid eye movement (REM) sleep behavior disorder is considered the prodromal stage of alpha-synucleinopathies. Its diagnosis requires careful detection of REM sleep and the gold standard manual sleep staging is inconsistent and expensive. This work proposes a new automatic sleep staging model to add robust automation to such applications, using only electroencephalography (EEG) and electrooculography (EOG) recordings. The publicly available ISRUC-Sleep database was used to optimize the design of the proposed model. The model was trained and tested on subgroup-I consisting of 100 subjects with evidence of having different sleep disorders and the polysomnographic data were manually scored by two individual experts. We divided the EOG and EEG recordings in overlapping moving 33-s epochs with step of 3s and for each of them we computed several time and frequency-domain features. The features were used to train a random forest classifier that was able to label each 33-s epoch with the probabilities of being wakefulness, REM and non-REM. The mean of the probability values of ten 33-s epochs were calculated, and the sleep stage with the highest probability was chosen to classify a 30-s epoch and matched with the manual staged hypnogram. The performance of the model was tested using 20-fold cross validation scheme. When the epochs where the scorers agreed were used, the classification achieved an overall accuracy of 92.6% and a Cohen's kappa of 0.856. Future validation on RBD patients is needed, but these performances are promising as first step of development of an automated diagnosis of RBD.
Collapse
|
31
|
Wei TY, Young CP, Liu YT, Xu JH, Liang SF, Shaw FZ, Kuo CE. Development of a rule-based automatic five-sleep-stage scoring method for rats. Biomed Eng Online 2019; 18:92. [PMID: 31484584 PMCID: PMC6727553 DOI: 10.1186/s12938-019-0712-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 08/26/2019] [Indexed: 01/19/2023] Open
Abstract
Background Sleep problem or disturbance often exists in pain or neurological/psychiatric diseases. However, sleep scoring is a time-consuming tedious labor. Very few studies discuss the 5-stage (wake/NREM1/NREM2/transition sleep/REM) automatic fine analysis of wake–sleep stages in rodent models. The present study aimed to develop and validate an automatic rule-based classification of 5-stage wake–sleep pattern in acid-induced widespread hyperalgesia model of the rat. Results The overall agreement between two experts’ consensus and automatic scoring in the 5-stage and 3-stage analyses were 92.32% (κ = 0.88) and 94.97% (κ = 0.91), respectively. Standard deviation of the accuracy among all rats was only 2.93%. Both frontal–occipital EEG and parietal EEG data showed comparable accuracies. The results demonstrated the performance of the proposed method with high accuracy and reliability. Subtle changes exhibited in the 5-stage wake–sleep analysis but not in the 3-stage analysis during hyperalgesia development of the acid-induced pain model. Compared with existing methods, our method can automatically classify vigilance states into 5-stage or 3-stage wake–sleep pattern with a promising high agreement with sleep experts. Conclusions In this study, we have performed and validated a reliable automated sleep scoring system in rats. The classification algorithm is less computation power, a high robustness, and consistency of results. The algorithm can be implanted into a versatile wireless portable monitoring system for real-time analysis in the future.
Collapse
Affiliation(s)
- Ting-Ying Wei
- Dept. of Computer Science and Information Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chung-Ping Young
- Dept. of Computer Science and Information Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yu-Ting Liu
- Department of Medical Sciences Industry, Chang Jung Christian University, Tainan, 711, Taiwan
| | - Jia-Hao Xu
- Dept. of Computer Science and Information Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Sheng-Fu Liang
- Dept. of Computer Science and Information Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Fu-Zen Shaw
- Department of Psychology, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Chin-En Kuo
- Department of Automatic Control Engineering, Feng Chia University, Taichung, 407, Taiwan.
| |
Collapse
|
32
|
Jiang D, Ma Y, Wang Y. Sleep stage classification using covariance features of multi-channel physiological signals on Riemannian manifolds. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2019; 178:19-30. [PMID: 31416548 DOI: 10.1016/j.cmpb.2019.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/31/2019] [Accepted: 06/09/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVE The recognition of many sleep related pathologies highly relies on an accurate classification of sleep stages. Clinically, sleep stages are usually labelled by sleep experts through visually inspecting the whole-night polysomnography (PSG) recording of patients, wherein electroencephalogram (EEG), electrooculogram (EOG) and electromyogram (EMG) play the dominant role. Developing an automatic sleep staging system based on multi-channel physiological signals could relieve the burden of manual labeling by experts, and obtain reliable and repeatable recognition results as well. METHODS In this work, we find the correlation between the spatial covariance matrices of multi-channel signals and their corresponding sleep stages. Based on that, we propose two novel sleep stage classification methods based on the features extracted from the covariance matrices of multi-channel signals. Sleep stages are classified using a minimum distance classifier according to their corresponding covariance matrices mapped on Riemannian manifolds. An alternative way to classify these covariance matrices is to represent the features of covariance matrices on the tangent space of Riemannian manifolds and classify them with an ensemble learning classifier. After any of these classification methods, a rule-free refinement process is utilized to further optimize the classification results. RESULTS On the MASS dataset that includes 61 whole-night PSG recordings, both two methods provide satisfactory classification results while the one based on tangent space projection has better performance. On average, an accuracy of 0.812 and a Cohen's Kappa coefficient of 0.722 are obtained under leave-one-subject-out cross validation, using EEG, EOG and EMG signals. Meanwhile, the most effective combinations of EEG channels for sleep staging have been found in this work. CONCLUSIONS The correlation between spatial covariance matrices of multi-channel signals and their corresponding sleep stages have been found. Features based on that are used for sleep stage classification, and experimental results show the superior performance of proposed methods compared to state-of-the-art works. Results of this work are expected to provide a new vision for dealing with multi-channel or multi-modal signal processing tasks in various applications.
Collapse
Affiliation(s)
- Dihong Jiang
- Department of Electronic Engineering, Fudan University, Shanghai 200433, China.
| | - Yu Ma
- Department of Electronic Engineering, Fudan University, Shanghai 200433, China; Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention (MICCAI) of Shanghai, Shanghai 200032, China.
| | - Yuanyuan Wang
- Department of Electronic Engineering, Fudan University, Shanghai 200433, China; Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention (MICCAI) of Shanghai, Shanghai 200032, China.
| |
Collapse
|
33
|
Liang SF, Shih YH, Chen PY, Kuo CE. Development of a human-computer collaborative sleep scoring system for polysomnography recordings. PLoS One 2019; 14:e0218948. [PMID: 31291270 PMCID: PMC6619661 DOI: 10.1371/journal.pone.0218948] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 06/12/2019] [Indexed: 11/19/2022] Open
Abstract
The overnight polysomnographic (PSG) recordings of patients were scored by an expert to diagnose sleep disorders. Visual sleep scoring is a time-consuming and subjective process. Automatic sleep staging methods can help; however, the mechanism and reliability of these methods are not fully understood. Therefore, experts often need to rescore the recordings to obtain reliable results. Here, we propose a human-computer collaborative sleep scoring system. It is a rule-based automatic sleep scoring method that follows the American Academy of Sleep Medicine (AASM) guidelines to perform an initial scoring. Then, the reliability level of each epoch is analyzed based on physiological patterns during sleep and the characteristics of various stage changes. Finally, experts would only need to rescore epochs with a low-reliability level. The experimental results show that the average agreement rate between our system and fully manual scorings can reach 90.42% with a kappa coefficient of 0.85. Over 50% of the manual scoring time can be reduced. Due to the demonstrated robustness and applicability, the proposed approach can be integrated with various PSG systems or automatic sleep scoring methods for sleep monitoring in clinical or homecare applications in the future.
Collapse
Affiliation(s)
- Sheng-Fu Liang
- Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan
- AI Biomedical Research Center at NCKU, Ministry of Science and Technology, Tainan, Taiwan
| | - Yu-Hsuan Shih
- Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Peng-Yu Chen
- Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Chih-En Kuo
- Department of Automatic Control Engineering, Feng Chia University, Taichung, Taiwan
| |
Collapse
|
34
|
Zhao D, Wang Y, Wang Q, Wang X. Comparative analysis of different characteristics of automatic sleep stages. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2019; 175:53-72. [PMID: 31104715 DOI: 10.1016/j.cmpb.2019.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND AND OBJECTIVE With the acceleration of social rhythm and the increase of pressure, there are various sleep problems among people. Sleep staging is an important basis for the diagnosis of sleep disorders and other related diseases. The process of automatic staging of sleep is mainly divided into three core steps: data preprocessing, feature extraction, and classification. Accurate analysis of the features of sleep electroencephalogram (EEG) signals is not only helpful to improve the accuracy of sleep staging, but also help people to understand their sleep status. METHODS This paper focuses on the analysis of EEG features during sleep staging, and reviews many feature extraction methods and classification methods for sleep staging and sums up these algorithms used in literatures and its staging results. Besides, this paper lists a total of 22 features based on time domain, time-frequency, and nonlinear analysis methods, including kurtosis, skewness, Hjorth parameters, and standard deviations, wavelets energy; sample entropy (SampEn), fuzzy entropy, Tsallis entropy, fractal dimension (FD), complexity. The data set comes from EDF database. Wavelet transform (WT) and support vector machine (SVM) are used to achieve the sleep staging based on single-channel EEG signal. And the characteristic feature data was analyzed by ANOVA. RESULTS By comparison, the SampEn, fuzzy entropy, FD and complexity can achieve ideal sleep staging. The highest accuracy of sleep staging is 85.93%. The FD and complexity are simpler than the entropy value, but their accuracies are lower. Furthermore, the distribution of these methods in different sleep period is more significant than others, which is content with the results of sleep staging. CONCLUSION In a word, due to the non-stationary and non-linear characteristics of EEG signals, time domain and time-frequency analysis methods all have some limitations. Nonlinear analysis was more effective and practical for the analysis of sleep EEG.
Collapse
Affiliation(s)
- Dechun Zhao
- Chongqing Engineering Laboratory of Digital Medical Equipment and Systems, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
| | - Yi Wang
- Chongqing Engineering Laboratory of Digital Medical Equipment and Systems, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Qiangqiang Wang
- Chongqing Engineering Laboratory of Digital Medical Equipment and Systems, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Xing Wang
- College of Biomedical Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
35
|
Faust O, Razaghi H, Barika R, Ciaccio EJ, Acharya UR. A review of automated sleep stage scoring based on physiological signals for the new millennia. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2019; 176:81-91. [PMID: 31200914 DOI: 10.1016/j.cmpb.2019.04.032] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 04/03/2019] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND AND OBJECTIVE Sleep is an important part of our life. That importance is highlighted by the multitude of health problems which result from sleep disorders. Detecting these sleep disorders requires an accurate interpretation of physiological signals. Prerequisite for this interpretation is an understanding of the way in which sleep stage changes manifest themselves in the signal waveform. With that understanding it is possible to build automated sleep stage scoring systems. Apart from their practical relevance for automating sleep disorder diagnosis, these systems provide a good indication of the amount of sleep stage related information communicated by a specific physiological signal. METHODS This article provides a comprehensive review of automated sleep stage scoring systems, which were created since the year 2000. The systems were developed for Electrocardiogram (ECG), Electroencephalogram (EEG), Electrooculogram (EOG), and a combination of signals. RESULTS Our review shows that all of these signals contain information for sleep stage scoring. CONCLUSIONS The result is important, because it allows us to shift our research focus away from information extraction methods to systemic improvements, such as patient comfort, redundancy, safety and cost.
Collapse
Affiliation(s)
- Oliver Faust
- Department of Engineering and Mathematics, Sheffield Hallam University, United Kingdom.
| | - Hajar Razaghi
- Department of Engineering and Mathematics, Sheffield Hallam University, United Kingdom
| | - Ragab Barika
- Department of Engineering and Mathematics, Sheffield Hallam University, United Kingdom
| | - Edward J Ciaccio
- Department of Medicine - Cardiology, Columbia University, New York, New York, USA
| | - U Rajendra Acharya
- Department of Electronic & Computer Engineering, Ngee Ann Polytechnic, Singapore; Department of Biomedical Engineering, School of Science and Technology, SIM University, Singapore; Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
36
|
Phan H, Andreotti F, Cooray N, Chén OY, De Vos M. Joint Classification and Prediction CNN Framework for Automatic Sleep Stage Classification. IEEE Trans Biomed Eng 2019; 66:1285-1296. [PMID: 30346277 PMCID: PMC6487915 DOI: 10.1109/tbme.2018.2872652] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 09/22/2018] [Indexed: 11/07/2022]
Abstract
Correctly identifying sleep stages is important in diagnosing and treating sleep disorders. This paper proposes a joint classification-and-prediction framework based on convolutional neural networks (CNNs) for automatic sleep staging, and, subsequently, introduces a simple yet efficient CNN architecture to power the framework. Given a single input epoch, the novel framework jointly determines its label (classification) and its neighboring epochs' labels (prediction) in the contextual output. While the proposed framework is orthogonal to the widely adopted classification schemes, which take one or multiple epochs as contextual inputs and produce a single classification decision on the target epoch, we demonstrate its advantages in several ways. First, it leverages the dependency among consecutive sleep epochs while surpassing the problems experienced with the common classification schemes. Second, even with a single model, the framework has the capacity to produce multiple decisions, which are essential in obtaining a good performance as in ensemble-of-models methods, with very little induced computational overhead. Probabilistic aggregation techniques are then proposed to leverage the availability of multiple decisions. To illustrate the efficacy of the proposed framework, we conducted experiments on two public datasets: Sleep-EDF Expanded (Sleep-EDF), which consists of 20 subjects, and Montreal Archive of Sleep Studies (MASS) dataset, which consists of 200 subjects. The proposed framework yields an overall classification accuracy of 82.3% and 83.6%, respectively. We also show that the proposed framework not only is superior to the baselines based on the common classification schemes but also outperforms existing deep-learning approaches. To our knowledge, this is the first work going beyond the standard single-output classification to consider multitask neural networks for automatic sleep staging. This framework provides avenues for further studies of different neural-network architectures for automatic sleep staging.
Collapse
Affiliation(s)
- Huy Phan
- Institute of Biomedical EngineeringUniversity of OxfordOxfordOX3 7DQU.K.
| | | | - Navin Cooray
- Institute of Biomedical EngineeringUniversity of Oxford
| | | | | |
Collapse
|
37
|
Detection of REM sleep behaviour disorder by automated polysomnography analysis. Clin Neurophysiol 2019; 130:505-514. [PMID: 30772763 DOI: 10.1016/j.clinph.2019.01.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/12/2018] [Accepted: 01/08/2019] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Evidence suggests Rapid-Eye-Movement (REM) Sleep Behaviour Disorder (RBD) is an early predictor of Parkinson's disease. This study proposes a fully-automated framework for RBD detection consisting of automated sleep staging followed by RBD identification. METHODS Analysis was assessed using a limited polysomnography montage from 53 participants with RBD and 53 age-matched healthy controls. Sleep stage classification was achieved using a Random Forest (RF) classifier and 156 features extracted from electroencephalogram (EEG), electrooculogram (EOG) and electromyogram (EMG) channels. For RBD detection, a RF classifier was trained combining established techniques to quantify muscle atonia with additional features that incorporate sleep architecture and the EMG fractal exponent. RESULTS Automated multi-state sleep staging achieved a 0.62 Cohen's Kappa score. RBD detection accuracy improved from 86% to 96% (compared to individual established metrics) when using manually annotated sleep staging. Accuracy remained high (92%) when using automated sleep staging. CONCLUSIONS This study outperforms established metrics and demonstrates that incorporating sleep architecture and sleep stage transitions can benefit RBD detection. This study also achieved automated sleep staging with a level of accuracy comparable to manual annotation. SIGNIFICANCE This study validates a tractable, fully-automated, and sensitive pipeline for RBD identification that could be translated to wearable take-home technology.
Collapse
|
38
|
Memar P, Faradji F. A Novel Multi-Class EEG-Based Sleep Stage Classification System. IEEE Trans Neural Syst Rehabil Eng 2019; 26:84-95. [PMID: 29324406 DOI: 10.1109/tnsre.2017.2776149] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sleep stage classification is one of the most critical steps in effective diagnosis and the treatment of sleep-related disorders. Visual inspection undertaken by sleep experts is a time-consuming and burdensome task. A computer-assisted sleep stage classification system is thus essential for both sleep-related disorders diagnosis and sleep monitoring. In this paper, we propose a system to classify the wake and sleep stages with high rates of sensitivity and specificity. The EEG signals of 25 subjects with suspected sleep-disordered breathing, and the EEG signals of 20 healthy subjects from three data sets are used. Every EEG epoch is decomposed into eight subband epochs each of which has a frequency band pertaining to one EEG rhythm (i.e., delta, theta, alpha, sigma, beta 1, beta 2, gamma 1, or gamma 2). Thirteen features are extracted from each subband epoch. Therefore, 104 features are totally obtained for every EEG epoch. The Kruskal-Wallis test is used to examine the significance of the features. Non-significant features are discarded. The minimal-redundancy-maximal-relevance feature selection algorithm is then used to eliminate redundant and irrelevant features. The features selected are classified by a random forest classifier. To set the system parameters and to evaluate the system performance, nested 5-fold cross-validation and subject cross-validation are performed. The performance of our proposed system is evaluated for different multi-class classification problems. The minimum overall accuracy rates obtained are 95.31% and 86.64% for nested 5-fold and subject cross-validation, respectively. The system performance is promising in terms of the accuracy, sensitivity, and specificity rates compared with the ones of the state-of-the-art systems. The proposed system can be used in health care applications with the aim of improving sleep stage classification.
Collapse
|
39
|
Harnessing olfactory bulb oscillations to perform fully brain-based sleep-scoring and real-time monitoring of anaesthesia depth. PLoS Biol 2018; 16:e2005458. [PMID: 30408025 PMCID: PMC6224033 DOI: 10.1371/journal.pbio.2005458] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 10/04/2018] [Indexed: 12/11/2022] Open
Abstract
Real-time tracking of vigilance states related to both sleep or anaesthesia has been a goal for over a century. However, sleep scoring cannot currently be performed with brain signals alone, despite the deep neuromodulatory transformations that accompany sleep state changes. Therefore, at heart, the operational distinction between sleep and wake is that of immobility and movement, despite numerous situations in which this one-to-one mapping fails. Here we demonstrate, using local field potential (LFP) recordings in freely moving mice, that gamma (50–70 Hz) power in the olfactory bulb (OB) allows for clear classification of sleep and wake, thus providing a brain-based criterion to distinguish these two vigilance states without relying on motor activity. Coupled with hippocampal theta activity, it allows the elaboration of a sleep scoring algorithm that relies on brain activity alone. This method reaches over 90% homology with classical methods based on muscular activity (electromyography [EMG]) and video tracking. Moreover, contrary to EMG, OB gamma power allows correct discrimination between sleep and immobility in ambiguous situations such as fear-related freezing. We use the instantaneous power of hippocampal theta oscillation and OB gamma oscillation to construct a 2D phase space that is highly robust throughout time, across individual mice and mouse strains, and under classical drug treatment. Dynamic analysis of trajectories within this space yields a novel characterisation of sleep/wake transitions: whereas waking up is a fast and direct transition that can be modelled by a ballistic trajectory, falling asleep is best described as a stochastic and gradual state change. Finally, we demonstrate that OB oscillations also allow us to track other vigilance states. Non-REM (NREM) and rapid eye movement (REM) sleep can be distinguished with high accuracy based on beta (10–15 Hz) power. More importantly, we show that depth of anaesthesia can be tracked in real time using OB gamma power. Indeed, the gamma power predicts and anticipates the motor response to stimulation both in the steady state under constant anaesthetic and dynamically during the recovery period. Altogether, this methodology opens the avenue for multi-timescale characterisation of brain states and provides an unprecedented window onto levels of vigilance. Real-time tracking of vigilance states related to wake, sleep, and anaesthesia has been a goal for over a century. However identification of wakefulness and different sleep states cannot currently be performed routinely with brain signals and instead relies on motor activity. Here we demonstrate that 50–70 Hz electrical oscillations in the olfactory bulb (OB) of mice are a reliable indicator for global brain states. Recording this activity with an implanted electrode allows for clear classification of sleep and wake, without the need for motor activity monitoring. We construct a fully automatic sleep scoring algorithm that relies on brain activity alone and is robust throughout time, between animals, and after drug administration. Our method also tracks in real time the depth of anaesthesia both in the steady state under constant anaesthetic and dynamically during the recovery period from anaesthesia. Furthermore, this index predicts responsiveness to noxious stimulation under anaesthesia. Altogether, this methodology opens the avenue for characterisation of vigilance states based on OB recordings.
Collapse
|
40
|
Rahman MM, Bhuiyan MIH, Hassan AR. Sleep stage classification using single-channel EOG. Comput Biol Med 2018; 102:211-220. [DOI: 10.1016/j.compbiomed.2018.08.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/17/2018] [Accepted: 08/19/2018] [Indexed: 10/28/2022]
|
41
|
Seifpour S, Niknazar H, Mikaeili M, Nasrabadi AM. A new automatic sleep staging system based on statistical behavior of local extrema using single channel EEG signal. EXPERT SYSTEMS WITH APPLICATIONS 2018; 104:277-293. [DOI: 10.1016/j.eswa.2018.03.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
42
|
A novel, fast and efficient single-sensor automatic sleep-stage classification based on complementary cross-frequency coupling estimates. Clin Neurophysiol 2018; 129:815-828. [DOI: 10.1016/j.clinph.2017.12.039] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 11/21/2017] [Accepted: 12/21/2017] [Indexed: 01/18/2023]
|
43
|
Roomkham S, Lovell D, Cheung J, Perrin D. Promises and Challenges in the Use of Consumer-Grade Devices for Sleep Monitoring. IEEE Rev Biomed Eng 2018; 11:53-67. [PMID: 29993607 DOI: 10.1109/rbme.2018.2811735] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The market for smartphones, smartwatches, and wearable devices is booming. In recent years, individuals and researchers have used these devices as additional tools to monitor and track sleep, physical activity, and behavior. Their use in sleep research and clinical applications could address the difficulties in scaling up studies that rely on polysomnography, the gold-standard. However, the use of commercial devices for large-scale sleep studies is not without challenges. With this in mind, this paper presents an extensive review of sleep monitoring systems and the techniques used in their development. We also discuss their performance in terms of reliability and validity, and consider the needs and expectations of users, whether they are experts, patients, or the general public. Through this review, we highlight a number of challenges with current studies: a lack of standard evaluation methods for consumer-grade devices (e.g., reliability and validity assessment); limitations in the populations studied; consumer expectations of monitoring devices; constraints on the resources of consumer-grade devices (e.g., power consumption).
Collapse
|
44
|
Li X, Cui L, Tao S, Chen J, Zhang X, Zhang GQ. HyCLASSS: A Hybrid Classifier for Automatic Sleep Stage Scoring. IEEE J Biomed Health Inform 2018; 22:375-385. [DOI: 10.1109/jbhi.2017.2668993] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Karimzadeh F, Boostani R, Seraj E, Sameni R. A Distributed Classification Procedure for Automatic Sleep Stage Scoring Based on Instantaneous Electroencephalogram Phase and Envelope Features. IEEE Trans Neural Syst Rehabil Eng 2018; 26:362-370. [DOI: 10.1109/tnsre.2017.2775058] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
46
|
Riazy S, Wendler T, Pilz J. Automatic two-channel sleep staging using a predictor-corrector method. Physiol Meas 2018; 39:014006. [PMID: 29231181 DOI: 10.1088/1361-6579/aaa109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE We developed and implemented two predictor-corrector methods for the classification of two-channel EEG data into sleep stages. APPROACH The sequence of sleep stages over the night is modeled by a Markov chain of first and second order, resulting in an informative prior distribution for the new state, given the distribution of the current one. The correction step is realized by applying a Bayes classifier using the (preprocessed) data and this prior. The preprocessing step consists of a frequency analysis, a log transformation and a dimensionality reduction via principal component analysis. MAIN RESULTS The software automatically generates sleep profiles in which it detects wakeful phases as well as the different sleep stages with error rates of 16.5%-31.9% (n = 8, healthy subjects, mean age ± SD: 39 ± 8.1 years, five females), where we compared our results to those of a certified polysomnographic technologist, who used a full polysomnograph and rated according to the American Academy of Sleep Medicine (AASM) criteria. SIGNIFICANCE The method presented relies on considerably less information than visual scoring and is done automatically. Furthermore, the error is comparable to visual scoring, where the inter-rater variability lies around 82%. Therefore, it has the potential to lessen the overheads associated with sleep diagnostics.
Collapse
|
47
|
Sun H, Jia J, Goparaju B, Huang GB, Sourina O, Bianchi MT, Westover MB. Large-Scale Automated Sleep Staging. Sleep 2017; 40:4209286. [PMID: 29029305 PMCID: PMC6251659 DOI: 10.1093/sleep/zsx139] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Study Objectives Automated sleep staging has been previously limited by a combination of clinical and physiological heterogeneity. Both factors are in principle addressable with large data sets that enable robust calibration. However, the impact of sample size remains uncertain. The objectives are to investigate the extent to which machine learning methods can approximate the performance of human scorers when supplied with sufficient training cases and to investigate how staging performance depends on the number of training patients, contextual information, model complexity, and imbalance between sleep stage proportions. Methods A total of 102 features were extracted from six electroencephalography (EEG) channels in routine polysomnography. Two thousand nights were partitioned into equal (n = 1000) training and testing sets for validation. We used epoch-by-epoch Cohen's kappa statistics to measure the agreement between classifier output and human scorer according to American Academy of Sleep Medicine scoring criteria. Results Epoch-by-epoch Cohen's kappa improved with increasing training EEG recordings until saturation occurred (n = ~300). The kappa value was further improved by accounting for contextual (temporal) information, increasing model complexity, and adjusting the model training procedure to account for the imbalance of stage proportions. The final kappa on the testing set was 0.68. Testing on more EEG recordings leads to kappa estimates with lower variance. Conclusion Training with a large data set enables automated sleep staging that compares favorably with human scorers. Because testing was performed on a large and heterogeneous data set, the performance estimate has low variance and is likely to generalize broadly.
Collapse
Affiliation(s)
- Haoqi Sun
- Energy Research Institute @ NTU, Interdisciplinary Graduate School, Nanyang Technological University, 639798, Singapore
- Fraunhofer IDM @ NTU, Nanyang Technological University, 639798, Singapore
| | - Jian Jia
- School of Mathematics, Northwest University, Xi’an, Shaanxi, 710127China
| | - Balaji Goparaju
- Massachusetts General Hospital, Neurology Department,Boston, MA
| | - Guang-Bin Huang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798,Singapore.
| | - Olga Sourina
- Fraunhofer IDM @ NTU, Nanyang Technological University, 639798, Singapore
| | | | | |
Collapse
|
48
|
Shokoueinejad M, Fernandez C, Carroll E, Wang F, Levin J, Rusk S, Glattard N, Mulchrone A, Zhang X, Xie A, Teodorescu M, Dempsey J, Webster J. Sleep apnea: a review of diagnostic sensors, algorithms, and therapies. Physiol Meas 2017; 38:R204-R252. [PMID: 28820743 DOI: 10.1088/1361-6579/aa6ec6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
While public awareness of sleep related disorders is growing, sleep apnea syndrome (SAS) remains a public health and economic challenge. Over the last two decades, extensive controlled epidemiologic research has clarified the incidence, risk factors including the obesity epidemic, and global prevalence of obstructive sleep apnea (OSA), as well as establishing a growing body of literature linking OSA with cardiovascular morbidity, mortality, metabolic dysregulation, and neurocognitive impairment. The US Institute of Medicine Committee on Sleep Medicine estimates that 50-70 million US adults have sleep or wakefulness disorders. Furthermore, the American Academy of Sleep Medicine (AASM) estimates that more than 29 million US adults suffer from moderate to severe OSA, with an estimated 80% of those individuals living unaware and undiagnosed, contributing to more than $149.6 billion in healthcare and other costs in 2015. Although various devices have been used to measure physiological signals, detect apneic events, and help treat sleep apnea, significant opportunities remain to improve the quality, efficiency, and affordability of sleep apnea care. As our understanding of respiratory and neurophysiological signals and sleep apnea physiological mechanisms continues to grow, and our ability to detect and process biomedical signals improves, novel diagnostic and treatment modalities emerge. OBJECTIVE This article reviews the current engineering approaches for the detection and treatment of sleep apnea. APPROACH It discusses signal acquisition and processing, highlights the current nonsurgical and nonpharmacological treatments, and discusses potential new therapeutic approaches. MAIN RESULTS This work has led to an array of validated signal and sensor modalities for acquiring, storing and viewing sleep data; a broad class of computational and signal processing approaches to detect and classify SAS disease patterns; and a set of distinctive therapeutic technologies whose use cases span the continuum of disease severity. SIGNIFICANCE This review provides a current perspective of the classes of tools at hand, along with a sense of their relative strengths and areas for further improvement.
Collapse
Affiliation(s)
- Mehdi Shokoueinejad
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1550 Engineering Drive, Madison, WI 53706-1609, United States of America. Department of Population Health Sciences, University of Wisconsin-Madison, 610 Walnut St 707, Madison, WI 53726, United States of America. EnsoData Research, EnsoData Inc., 111 N Fairchild St, Suite 240, Madison, WI 53703, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Olesen AN, Christensen JAE, Sorensen HBD, Jennum PJ. A Noise-Assisted Data Analysis Method for Automatic EOG-Based Sleep Stage Classification Using Ensemble Learning. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:3769-3772. [PMID: 28269109 DOI: 10.1109/embc.2016.7591548] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Reducing the number of recording modalities for sleep staging research can benefit both researchers and patients, under the condition that they provide as accurate results as conventional systems. This paper investigates the possibility of exploiting the multisource nature of the electrooculography (EOG) signals by presenting a method for automatic sleep staging using the complete ensemble empirical mode decomposition with adaptive noise algorithm, and a random forest classifier. It achieves a high overall accuracy of 82% and a Cohen's kappa of 0.74 indicating substantial agreement between automatic and manual scoring.
Collapse
|
50
|
Hassan AR, Subasi A. A decision support system for automated identification of sleep stages from single-channel EEG signals. Knowl Based Syst 2017. [DOI: 10.1016/j.knosys.2017.05.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|