1
|
Rieblinger B, Sid H, Duda D, Bozoglu T, Klinger R, Schlickenrieder A, Lengyel K, Flisikowski K, Flisikowska T, Simm N, Grodziecki A, Perleberg C, Bähr A, Carrier L, Kurome M, Zakhartchenko V, Kessler B, Wolf E, Kettler L, Luksch H, Hagag IT, Wise D, Kaufman J, Kaufer BB, Kupatt C, Schnieke A, Schusser B. Cas9-expressing chickens and pigs as resources for genome editing in livestock. Proc Natl Acad Sci U S A 2021; 118:e2022562118. [PMID: 33658378 PMCID: PMC7958376 DOI: 10.1073/pnas.2022562118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Genetically modified animals continue to provide important insights into the molecular basis of health and disease. Research has focused mostly on genetically modified mice, although other species like pigs resemble the human physiology more closely. In addition, cross-species comparisons with phylogenetically distant species such as chickens provide powerful insights into fundamental biological and biomedical processes. One of the most versatile genetic methods applicable across species is CRISPR-Cas9. Here, we report the generation of transgenic chickens and pigs that constitutively express Cas9 in all organs. These animals are healthy and fertile. Functionality of Cas9 was confirmed in both species for a number of different target genes, for a variety of cell types and in vivo by targeted gene disruption in lymphocytes and the developing brain, and by precise excision of a 12.7-kb DNA fragment in the heart. The Cas9 transgenic animals will provide a powerful resource for in vivo genome editing for both agricultural and translational biomedical research, and will facilitate reverse genetics as well as cross-species comparisons.
Collapse
Affiliation(s)
- Beate Rieblinger
- Livestock Biotechnology, Department of Molecular Life Sciences, School of Life Sciences Weihenstephan, Technical University Munich, 85354 Freising, Germany
| | - Hicham Sid
- Reproductive Biotechnology, Department of Molecular Life Sciences, School of Life Sciences Weihenstephan, Technical University Munich, 85354 Freising, Germany
| | - Denise Duda
- Reproductive Biotechnology, Department of Molecular Life Sciences, School of Life Sciences Weihenstephan, Technical University Munich, 85354 Freising, Germany
| | - Tarik Bozoglu
- Clinic and Polyclinic for Internal Medicine I, Klinikum rechts der Isar, Technical University Munich, 81675 Munich, Germany
- Munich Heart Alliance, German Center for Cardiovascular Research, 81675 Munich, Germany
| | - Romina Klinger
- Reproductive Biotechnology, Department of Molecular Life Sciences, School of Life Sciences Weihenstephan, Technical University Munich, 85354 Freising, Germany
| | - Antonina Schlickenrieder
- Reproductive Biotechnology, Department of Molecular Life Sciences, School of Life Sciences Weihenstephan, Technical University Munich, 85354 Freising, Germany
| | - Kamila Lengyel
- Reproductive Biotechnology, Department of Molecular Life Sciences, School of Life Sciences Weihenstephan, Technical University Munich, 85354 Freising, Germany
| | - Krzysztof Flisikowski
- Livestock Biotechnology, Department of Molecular Life Sciences, School of Life Sciences Weihenstephan, Technical University Munich, 85354 Freising, Germany
| | - Tatiana Flisikowska
- Livestock Biotechnology, Department of Molecular Life Sciences, School of Life Sciences Weihenstephan, Technical University Munich, 85354 Freising, Germany
| | - Nina Simm
- Livestock Biotechnology, Department of Molecular Life Sciences, School of Life Sciences Weihenstephan, Technical University Munich, 85354 Freising, Germany
| | - Alessandro Grodziecki
- Livestock Biotechnology, Department of Molecular Life Sciences, School of Life Sciences Weihenstephan, Technical University Munich, 85354 Freising, Germany
| | - Carolin Perleberg
- Livestock Biotechnology, Department of Molecular Life Sciences, School of Life Sciences Weihenstephan, Technical University Munich, 85354 Freising, Germany
| | - Andrea Bähr
- Clinic and Polyclinic for Internal Medicine I, Klinikum rechts der Isar, Technical University Munich, 81675 Munich, Germany
- Munich Heart Alliance, German Center for Cardiovascular Research, 81675 Munich, Germany
| | - Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
- Institute of Experimental Pharmacology and Toxicology, German Centre for Cardiovascular Research, 20246 Hamburg, Germany
| | - Mayuko Kurome
- Gene Center, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- Molecular Animal Breeding and Biotechnology, Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 81377 München, Germany
| | - Valeri Zakhartchenko
- Gene Center, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- Molecular Animal Breeding and Biotechnology, Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 81377 München, Germany
| | - Barbara Kessler
- Gene Center, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- Molecular Animal Breeding and Biotechnology, Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 81377 München, Germany
| | - Eckhard Wolf
- Gene Center, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- Molecular Animal Breeding and Biotechnology, Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 81377 München, Germany
| | - Lutz Kettler
- Zoology, Department of Molecular Life Sciences, School of Life Sciences Weihenstephan, Technical University Munich, 85354 Freising, Germany
| | - Harald Luksch
- Zoology, Department of Molecular Life Sciences, School of Life Sciences Weihenstephan, Technical University Munich, 85354 Freising, Germany
| | - Ibrahim T Hagag
- Department of Veterinary Medicine, Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany
| | - Daniel Wise
- Department of Pathology, University of Cambridge, CB2 1QP Cambridge, United Kingdom
| | - Jim Kaufman
- Department of Pathology, University of Cambridge, CB2 1QP Cambridge, United Kingdom
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, EH9 3FL Edinburgh, United Kingdom
| | - Benedikt B Kaufer
- Department of Veterinary Medicine, Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany;
| | - Christian Kupatt
- Clinic and Polyclinic for Internal Medicine I, Klinikum rechts der Isar, Technical University Munich, 81675 Munich, Germany;
- Munich Heart Alliance, German Center for Cardiovascular Research, 81675 Munich, Germany
| | - Angelika Schnieke
- Livestock Biotechnology, Department of Molecular Life Sciences, School of Life Sciences Weihenstephan, Technical University Munich, 85354 Freising, Germany;
| | - Benjamin Schusser
- Reproductive Biotechnology, Department of Molecular Life Sciences, School of Life Sciences Weihenstephan, Technical University Munich, 85354 Freising, Germany;
| |
Collapse
|
3
|
Kloos M, Weigel S, Luksch H. Anatomy and Physiology of Neurons in Layer 9 of the Chicken Optic Tectum. Front Neural Circuits 2019; 13:63. [PMID: 31680877 PMCID: PMC6802604 DOI: 10.3389/fncir.2019.00063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 09/18/2019] [Indexed: 12/03/2022] Open
Abstract
Visual information in birds is to great extent processed in the optic tectum (TeO), a prominent laminated midbrain structure. Retinal input enters the TeO in its superficial layers, while output is limited to intermediate and deeper layers. In addition to visual information, the TeO receives multimodal input from the auditory and somatosensory pathway. The TeO gives rise to a major ascending tectofugal projection where neurons of tectal layer 13 project to the thalamic nucleus rotundus, which then projects to the entopallium. A second tectofugal projection system, called the accessory pathway, has however not been studied as thoroughly. Again, cells of tectal layer 13 form an ascending projection that targets a nucleus known as either the caudal part of the nucleus dorsolateralis posterior of the thalamus (DLPc) or nucleus uveaformis (Uva). This nucleus is known for multimodal integration and receives additional input from the lateral pontine nucleus (PL), which in turn receives projections from layer 8–15 of the TeO. Here, we studied a particular cell type afferent to the PL that consists of radially oriented neurons in layer 9. We characterized these neurons with respect to their anatomy, their retinal input, and the modulation of retinal input by local circuits. We found that comparable to other radial neurons in the tectum, cells of layer 9 have columnar dendritic fields and reach up to layer 2. Sholl analysis demonstrated that dendritic arborization concentrates on retinorecipient layers 2 and 4, with additional arborization in layers 9 and 10. All neurons recorded in layer 9 received retinal input via glutamatergic synapses. We analyzed the influence of modulatory circuits of the TeO by application of antagonists to γ-aminobutyric acid (GABA) and acetylcholine (ACh). Our data show that the neurons of layer 9 are integrated in a network under strong GABAergic inhibition, which is controlled by local cholinergic activation. Output to the PL and to the accessory tectofugal pathway thus appears to be under strict control of local tectal networks, the relevance of which for multimodal integration is discussed.
Collapse
Affiliation(s)
- Marinus Kloos
- Department of Animal Sciences, Chair of Zoology, Technical University of Munich, Freising, Germany.,Institute of Neuroscience, Technical University of Munich, Munich, Germany
| | - Stefan Weigel
- Department of Animal Sciences, Chair of Zoology, Technical University of Munich, Freising, Germany
| | - Harald Luksch
- Department of Animal Sciences, Chair of Zoology, Technical University of Munich, Freising, Germany
| |
Collapse
|
4
|
Wang A, Feng J, Li Y, Zou P. Beyond Fluorescent Proteins: Hybrid and Bioluminescent Indicators for Imaging Neural Activities. ACS Chem Neurosci 2018; 9:639-650. [PMID: 29482322 DOI: 10.1021/acschemneuro.7b00455] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Optical biosensors have been invaluable tools in neuroscience research, as they provide the ability to directly visualize neural activity in real time, with high specificity, and with exceptional spatial and temporal resolution. Notably, a majority of these sensors are based on fluorescent protein scaffolds, which offer the ability to target specific cell types or even subcellular compartments. However, fluorescent proteins are intrinsically bulky tags, often insensitive to the environment, and always require excitation light illumination. To address these limitations, there has been a proliferation of alternative sensor scaffolds developed in recent years, including hybrid sensors that combine the advantages of synthetic fluorophores and genetically encoded protein tags, as well as bioluminescent probes. While still in their early stage of development as compared with fluorescent protein-based sensors, these novel probes have offered complementary solutions to interrogate various aspects of neuronal communication, including transmitter release, changes in membrane potential, and the production of second messengers. In this Review, we discuss these important new developments with a particular focus on design strategies.
Collapse
Affiliation(s)
- Anqi Wang
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Peng Zou
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Lee S, Piao HH, Sepheri-Rad M, Jung A, Sung U, Song YK, Baker BJ. Imaging Membrane Potential with Two Types of Genetically Encoded Fluorescent Voltage Sensors. J Vis Exp 2016:e53566. [PMID: 26890551 PMCID: PMC4781727 DOI: 10.3791/53566] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Genetically encoded voltage indicators (GEVIs) have improved to the point where they are beginning to be useful for in vivo recordings. While the ultimate goal is to image neuronal activity in vivo, one must be able to image activity of a single cell to ensure successful in vivo preparations. This procedure will describe how to image membrane potential in a single cell to provide a foundation to eventually image in vivo. Here we describe methods for imaging GEVIs consisting of a voltage-sensing domain fused to either a single fluorescent protein (FP) or two fluorescent proteins capable of Förster resonance energy transfer (FRET) in vitro. Using an image splitter enables the projection of images created by two different wavelengths onto the same charge-coupled device (CCD) camera simultaneously. The image splitter positions a second filter cube in the light path. This second filter cube consists of a dichroic and two emission filters to separate the donor and acceptor fluorescent wavelengths depending on the FPs of the GEVI. This setup enables the simultaneous recording of both the acceptor and donor fluorescent partners while the membrane potential is manipulated via whole cell patch clamp configuration. When using a GEVI consisting of a single FP, the second filter cube can be removed allowing the mirrors in the image splitter to project a single image onto the CCD camera.
Collapse
Affiliation(s)
- Sungmoo Lee
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University; Center for Functional Connectomics, Korea Institute of Science and Technology
| | - Hong Hua Piao
- Center for Functional Connectomics, Korea Institute of Science and Technology
| | - Masoud Sepheri-Rad
- Center for Functional Connectomics, Korea Institute of Science and Technology
| | - Arong Jung
- Center for Functional Connectomics, Korea Institute of Science and Technology; College of Life Sciences and Biotechnology, Korea University
| | - Uhna Sung
- Center for Functional Connectomics, Korea Institute of Science and Technology
| | - Yoon-Kyu Song
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University; Advanced Institutes of Convergence Technology
| | - Bradley J Baker
- Center for Functional Connectomics, Korea Institute of Science and Technology;
| |
Collapse
|