1
|
Netzley AH, Pelled G. The Pig as a Translational Animal Model for Biobehavioral and Neurotrauma Research. Biomedicines 2023; 11:2165. [PMID: 37626662 PMCID: PMC10452425 DOI: 10.3390/biomedicines11082165] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
In recent decades, the pig has attracted considerable attention as an important intermediary model animal in translational biobehavioral research due to major similarities between pig and human neuroanatomy, physiology, and behavior. As a result, there is growing interest in using pigs to model many human neurological conditions and injuries. Pigs are highly intelligent and are capable of performing a wide range of behaviors, which can provide valuable insight into the effects of various neurological disease states. One area in which the pig has emerged as a particularly relevant model species is in the realm of neurotrauma research. Indeed, the number of investigators developing injury models and assessing treatment options in pigs is ever-expanding. In this review, we examine the use of pigs for cognitive and behavioral research as well as some commonly used physiological assessment methods. We also discuss the current usage of pigs as a model for the study of traumatic brain injury. We conclude that the pig is a valuable animal species for studying cognition and the physiological effect of disease, and it has the potential to contribute to the development of new treatments and therapies for human neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Alesa H. Netzley
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA;
| | - Galit Pelled
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824, USA
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
2
|
Steinmüller JB, Binda KH, Lillethorup TP, Søgaard B, Orlowski D, Landau AM, Bjarkam CR, Sørensen JCH, Glud AN. Quantitative assessment of motor function in minipig models of neurological disorders using a pressure-sensitive gait mat. J Neurosci Methods 2022; 380:109678. [PMID: 35872152 DOI: 10.1016/j.jneumeth.2022.109678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/07/2022] [Accepted: 07/20/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Johannes Bech Steinmüller
- CENSE, Department of Neurosurgery, Aarhus University Hospital, and Department of Clinical Medicine, Faculty of Health, Aarhus University, Palle Juul-Jensens Boulevard 165, Entrance J, DK-8200 Aarhus N, Denmark; Department of Neurosurgery, Aalborg University Hospital, and Department of Clinical Medicine, Aalborg University, Hobrovej 18-22, DK-9000 Aalborg, Denmark.
| | - Karina Henrique Binda
- Department of Nuclear Medicine & PET-Center, Aarhus University, Palle Juul-Jensens Boulevard 165, Entrance J, DK-8200 Aarhus N, Denmark; Translational Neuropsychiatry Unit, Aarhus University, Universitetsbyen 13, 2B, DK-8000 Aarhus, Denmark
| | - Thea Pinholt Lillethorup
- Department of Nuclear Medicine & PET-Center, Aarhus University, Palle Juul-Jensens Boulevard 165, Entrance J, DK-8200 Aarhus N, Denmark; Translational Neuropsychiatry Unit, Aarhus University, Universitetsbyen 13, 2B, DK-8000 Aarhus, Denmark
| | - Bjarke Søgaard
- CENSE, Department of Neurosurgery, Aarhus University Hospital, and Department of Clinical Medicine, Faculty of Health, Aarhus University, Palle Juul-Jensens Boulevard 165, Entrance J, DK-8200 Aarhus N, Denmark
| | - Dariusz Orlowski
- CENSE, Department of Neurosurgery, Aarhus University Hospital, and Department of Clinical Medicine, Faculty of Health, Aarhus University, Palle Juul-Jensens Boulevard 165, Entrance J, DK-8200 Aarhus N, Denmark
| | - Anne M Landau
- Department of Nuclear Medicine & PET-Center, Aarhus University, Palle Juul-Jensens Boulevard 165, Entrance J, DK-8200 Aarhus N, Denmark; Translational Neuropsychiatry Unit, Aarhus University, Universitetsbyen 13, 2B, DK-8000 Aarhus, Denmark
| | - Carsten Reidies Bjarkam
- Department of Neurosurgery, Aalborg University Hospital, and Department of Clinical Medicine, Aalborg University, Hobrovej 18-22, DK-9000 Aalborg, Denmark
| | - Jens Christian Hedemann Sørensen
- CENSE, Department of Neurosurgery, Aarhus University Hospital, and Department of Clinical Medicine, Faculty of Health, Aarhus University, Palle Juul-Jensens Boulevard 165, Entrance J, DK-8200 Aarhus N, Denmark
| | - Andreas Nørgaard Glud
- CENSE, Department of Neurosurgery, Aarhus University Hospital, and Department of Clinical Medicine, Faculty of Health, Aarhus University, Palle Juul-Jensens Boulevard 165, Entrance J, DK-8200 Aarhus N, Denmark
| |
Collapse
|
3
|
|
4
|
Howland D, Ellederova Z, Aronin N, Fernau D, Gallagher J, Taylor A, Hennebold J, Weiss AR, Gray-Edwards H, McBride J. Large Animal Models of Huntington's Disease: What We Have Learned and Where We Need to Go Next. J Huntingtons Dis 2021; 9:201-216. [PMID: 32925082 PMCID: PMC7597371 DOI: 10.3233/jhd-200425] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Genetically modified rodent models of Huntington’s disease (HD) have been especially valuable to our understanding of HD pathology and the mechanisms by which the mutant HTT gene alters physiology. However, due to inherent differences in genetics, neuroanatomy, neurocircuitry and neurophysiology, animal models do not always faithfully or fully recapitulate human disease features or adequately predict a clinical response to treatment. Therefore, conducting translational studies of candidate HD therapeutics only in a single species (i.e. mouse disease models) may not be sufficient. Large animal models of HD have been shown to be valuable to the HD research community and the expectation is that the need for translational studies that span rodent and large animal models will grow. Here, we review the large animal models of HD that have been created to date, with specific commentary on differences between the models, the strengths and disadvantages of each, and how we can advance useful models to study disease pathophysiology, biomarker development and evaluation of promising therapeutics.
Collapse
Affiliation(s)
| | - Zdenka Ellederova
- Institute of Animal Physiology and Genetics, Libechov, Czech Republic
| | - Neil Aronin
- Horae Gene Therapy Center and RNA Therapeutics Institute at The University of Massachusetts Medical School, Worcester, MA, USA
| | - Deborah Fernau
- Horae Gene Therapy Center and RNA Therapeutics Institute at The University of Massachusetts Medical School, Worcester, MA, USA
| | - Jill Gallagher
- Horae Gene Therapy Center and RNA Therapeutics Institute at The University of Massachusetts Medical School, Worcester, MA, USA
| | - Amanda Taylor
- Diplomate, MedVet, American College of Veterinary Internal Medicine - Neurology, Columbus, OH, USA
| | - Jon Hennebold
- Oregon National Primate Research Center at The Oregon Health and Science University, Portland, OR, USA
| | - Alison R Weiss
- Oregon National Primate Research Center at The Oregon Health and Science University, Portland, OR, USA
| | - Heather Gray-Edwards
- Horae Gene Therapy Center and RNA Therapeutics Institute at The University of Massachusetts Medical School, Worcester, MA, USA
| | - Jodi McBride
- Oregon National Primate Research Center at The Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
5
|
Gatto RG, Weissmann C. Diffusion Tensor Imaging in Preclinical and Human Studies of Huntington's Disease: What Have we Learned so Far? Curr Med Imaging 2020; 15:521-542. [PMID: 32008561 DOI: 10.2174/1573405614666181115113400] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Huntington's Disease is an irreversible neurodegenerative disease characterized by the progressive deterioration of specific brain nerve cells. The current evaluation of cellular and physiological events in patients with HD relies on the development of transgenic animal models. To explore such events in vivo, diffusion tensor imaging has been developed to examine the early macro and microstructural changes in brain tissue. However, the gap in diffusion tensor imaging findings between animal models and clinical studies and the lack of microstructural confirmation by histological methods has questioned the validity of this method. OBJECTIVE This review explores white and grey matter ultrastructural changes associated to diffusion tensor imaging, as well as similarities and differences between preclinical and clinical Huntington's Disease studies. METHODS A comprehensive review of the literature using online-resources was performed (Pub- Med search). RESULTS Similar changes in fractional anisotropy as well as axial, radial and mean diffusivities were observed in white matter tracts across clinical and animal studies. However, comparative diffusion alterations in different grey matter structures were inconsistent between clinical and animal studies. CONCLUSION Diffusion tensor imaging can be related to specific structural anomalies in specific cellular populations. However, some differences between animal and clinical studies could derive from the contrasting neuroanatomy or connectivity across species. Such differences should be considered before generalizing preclinical results into the clinical practice. Moreover, current limitations of this technique to accurately represent complex multicellular events at the single micro scale are real. Future work applying complex diffusion models should be considered.
Collapse
Affiliation(s)
- Rodolfo Gabriel Gatto
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60607, United States
| | - Carina Weissmann
- Insituto de Fisiología Biologia Molecular y Neurociencias-IFIBYNE-CONICET, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
6
|
Baxa M, Levinska B, Skrivankova M, Pokorny M, Juhasova J, Klima J, Klempir J, Motlı K J, Juhas S, Ellederova Z. Longitudinal study revealing motor, cognitive and behavioral decline in a transgenic minipig model of Huntington's disease. Dis Model Mech 2019; 13:dmm.041293. [PMID: 31704691 PMCID: PMC6918771 DOI: 10.1242/dmm.041293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/30/2019] [Indexed: 01/15/2023] Open
Abstract
Huntington's disease (HD) is an inherited devastating neurodegenerative disease with no known cure to date. Several therapeutic treatments for HD are in development, but their safety, tolerability and efficacy need to be tested before translation to bedside. The monogenetic nature of this disorder has enabled the generation of transgenic animal models carrying a mutant huntingtin (mHTT) gene causing HD. A large animal model reflecting disease progression in humans would be beneficial for testing the potential therapeutic approaches. Progression of the motor, cognitive and behavioral phenotype was monitored in transgenic Huntington's disease minipigs (TgHD) expressing the N-terminal part of human mHTT. New tests were established to investigate physical activity by telemetry, and to explore the stress-induced behavioral and cognitive changes in minipigs. The longitudinal study revealed significant differences between 6- to 8-year-old TgHD animals and their wild-type (WT) controls in a majority of the tests. The telemetric study showed increased physical activity of 4.6- to 6.5-year-old TgHD boars compared to their WT counterparts during the lunch period as well as in the afternoon. Our phenotypic study indicates progression in adult TgHD minipigs and therefore this model could be suitable for longstanding preclinical studies of HD. This article has an associated First Person interview with the first author of the paper. Summary: The transgenic minipig model of Huntington's disease demonstrates a slow-progressing motor, cognitive and behavioral phenotype with later onset in adulthood.
Collapse
Affiliation(s)
- Monika Baxa
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 277 21 Libechov, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University in Prague, 128 00 Prague, Czech Republic
| | - Bozena Levinska
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 277 21 Libechov, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University in Prague, 128 00 Prague, Czech Republic
| | - Monika Skrivankova
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 277 21 Libechov, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University in Prague, 128 00 Prague, Czech Republic
| | - Matous Pokorny
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 277 21 Libechov, Czech Republic.,Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, 166 27 Prague, Czech Republic
| | - Jana Juhasova
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 277 21 Libechov, Czech Republic
| | - Jiri Klima
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 277 21 Libechov, Czech Republic
| | - Jiri Klempir
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 277 21 Libechov, Czech Republic.,Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, 128 21 Prague, Czech Republic
| | - Jan Motlı K
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 277 21 Libechov, Czech Republic
| | - Stefan Juhas
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 277 21 Libechov, Czech Republic
| | - Zdenka Ellederova
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 277 21 Libechov, Czech Republic
| |
Collapse
|
7
|
Askeland G, Rodinova M, Štufková H, Dosoudilova Z, Baxa M, Smatlikova P, Bohuslavova B, Klempir J, Nguyen TD, Kuśnierczyk A, Bjørås M, Klungland A, Hansikova H, Ellederova Z, Eide L. A transgenic minipig model of Huntington's disease shows early signs of behavioral and molecular pathologies. Dis Model Mech 2018; 11:dmm.035949. [PMID: 30254085 PMCID: PMC6215428 DOI: 10.1242/dmm.035949] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/12/2018] [Indexed: 12/11/2022] Open
Abstract
Huntington's disease (HD) is a monogenic, progressive, neurodegenerative disorder with currently no available treatment. The Libechov transgenic minipig model for HD (TgHD) displays neuroanatomical similarities to humans and exhibits slow disease progression, and is therefore more powerful than available mouse models for the development of therapy. The phenotypic characterization of this model is still ongoing, and it is essential to validate biomarkers to monitor disease progression and intervention. In this study, the behavioral phenotype (cognitive, motor and behavior) of the TgHD model was assessed, along with biomarkers for mitochondrial capacity, oxidative stress, DNA integrity and DNA repair at different ages (24, 36 and 48 months), and compared with age-matched controls. The TgHD minipigs showed progressive accumulation of the mutant huntingtin (mHTT) fragment in brain tissue and exhibited locomotor functional decline at 48 months. Interestingly, this neuropathology progressed without any significant age-dependent changes in any of the other biomarkers assessed. Rather, we observed genotype-specific effects on mitochondrial DNA (mtDNA) damage, mtDNA copy number, 8-oxoguanine DNA glycosylase activity and global level of the epigenetic marker 5-methylcytosine that we believe is indicative of a metabolic alteration that manifests in progressive neuropathology. Peripheral blood mononuclear cells (PBMCs) were relatively spared in the TgHD minipig, probably due to the lack of detectable mHTT. Our data demonstrate that neuropathology in the TgHD model has an age of onset of 48 months, and that oxidative damage and electron transport chain impairment represent later states of the disease that are not optimal for assessing interventions. This article has an associated First Person interview with the first author of the paper. Summary: Here, we show that a minipig model of Huntington's disease mimics human neurodegeneration and holds promise for future intervention studies. However, minipig peripheral blood mononuclear cells express no detectable mutant huntingtin, eliminating their use as monitoring tools.
Collapse
Affiliation(s)
- Georgina Askeland
- Department of Medical Biochemistry, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway.,Department of Microbiology, Oslo University Hospital, 0372 Oslo, Norway
| | - Marie Rodinova
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague 12808, Czech Republic
| | - Hana Štufková
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague 12808, Czech Republic
| | - Zaneta Dosoudilova
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague 12808, Czech Republic
| | - Monika Baxa
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague 12808, Czech Republic
| | - Petra Smatlikova
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov 27721, Czech Republic
| | - Bozena Bohuslavova
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov 27721, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague 12843, Czech Republic
| | - Jiri Klempir
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague 12821, Czech Republic
| | - The Duong Nguyen
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov 27721, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague 12843, Czech Republic
| | - Anna Kuśnierczyk
- Proteomics and Metabolomics Core Facility, PROMEC, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Magnar Bjørås
- Department of Microbiology, Oslo University Hospital, 0372 Oslo, Norway.,Proteomics and Metabolomics Core Facility, PROMEC, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Arne Klungland
- Department of Microbiology, Oslo University Hospital, 0372 Oslo, Norway
| | - Hana Hansikova
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague 12808, Czech Republic
| | - Zdenka Ellederova
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov 27721, Czech Republic
| | - Lars Eide
- Department of Medical Biochemistry, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| |
Collapse
|
8
|
Ulyanova AV, Koch PF, Cottone C, Grovola MR, Adam CD, Browne KD, Weber MT, Russo RJ, Gagnon KG, Smith DH, Isaac Chen H, Johnson VE, Kacy Cullen D, Wolf JA. Electrophysiological Signature Reveals Laminar Structure of the Porcine Hippocampus. eNeuro 2018; 5:ENEURO.0102-18.2018. [PMID: 30229132 PMCID: PMC6142048 DOI: 10.1523/eneuro.0102-18.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 08/26/2018] [Accepted: 09/04/2018] [Indexed: 02/02/2023] Open
Abstract
The hippocampus is integral to working and episodic memory and is a central region of interest in diseases affecting these processes. Pig models are widely used in translational research and may provide an excellent bridge between rodents and nonhuman primates for CNS disease models because of their gyrencephalic neuroanatomy and significant white matter composition. However, the laminar structure of the pig hippocampus has not been well characterized. Therefore, we histologically characterized the dorsal hippocampus of Yucatan miniature pigs and quantified the cytoarchitecture of the hippocampal layers. We then utilized stereotaxis combined with single-unit electrophysiological mapping to precisely place multichannel laminar silicon probes into the dorsal hippocampus without the need for image guidance. We used in vivo electrophysiological recordings of simultaneous laminar field potentials and single-unit activity in multiple layers of the dorsal hippocampus to physiologically identify and quantify these layers under anesthesia. Consistent with previous reports, we found the porcine hippocampus to have the expected archicortical laminar structure, with some anatomical and histological features comparable to the rodent and others to the primate hippocampus. Importantly, we found these distinct features to be reflected in the laminar electrophysiology. This characterization, as well as our electrophysiology-based methodology targeting the porcine hippocampal lamina combined with high-channel-count silicon probes, will allow for analysis of spike-field interactions during normal and disease states in both anesthetized and future awake behaving neurophysiology in this large animal.
Collapse
Affiliation(s)
| | - Paul F. Koch
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
| | - Carlo Cottone
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
| | - Michael R. Grovola
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104
| | - Christopher D. Adam
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104
| | - Kevin D. Browne
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104
| | - Maura T. Weber
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
| | - Robin J. Russo
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
| | - Kimberly G. Gagnon
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
| | - Douglas H. Smith
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
| | - H. Isaac Chen
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104
| | - Victoria E. Johnson
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
| | - D. Kacy Cullen
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104
| | - John A. Wolf
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104
| |
Collapse
|
9
|
Rieke L, Schubert R, Matheis T, Muratori LM, Motlik J, Schramke S, Fels M, Kemper N, Schuldenzucker V, Reilmann R. Vocalisation as a Viable Assessment for Phenotyping Minipigs Transgenic for the Huntington Gene? J Huntingtons Dis 2018; 7:269-278. [PMID: 30103340 DOI: 10.3233/jhd-170284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Large animal models, such as the transgenic (tg) Huntington disease (HD) minipig, have been proposed to improve translational reliability and assessment of safety, efficacy and tolerability in preclinical studies. Minipigs are characterised by high genetic homology and comparable brain structures to humans. In addition, behavioural assessments successfully applied in humans could be explored in minipigs to establish similar endpoints in preclinical and clinical studies. Recently, analysis of voice and speech production was established to characterise HD patients. OBJECTIVE The aim of this study was to investigate whether vocalisation could also serve as a viable marker for phenotyping minipigs transgenic for Huntington's disease (tgHD) and whether tgHD minipigs reveal changes in this domain compared to wildtype (wt) minipigs. METHODS While conducting behavioural testing, incidence of vocalisation was assessed for a cohort of 14 tgHD and 18 wt minipigs. Statistical analyses were performed using Fisher's Exact Test for group comparisons and McNemar's Test for intra-visit differences between tgHD and wt minipigs. RESULTS Vocalisation can easily be documented during phenotyping assessments of minipigs. Differences in vocalisation incidences across behavioural conditions were detected between tgHD and wt minipigs. Influence of the genotype on vocalisation was detectable during a period of 1.5 years. CONCLUSION Vocalisation may be a viable marker for phenotyping minipigs transgenic for the Huntington gene. Documentation of vocalisation provides a non-invasive opportunity to capture potential disease signs and explore phenotypic development including the age of disease manifestation.
Collapse
Affiliation(s)
- Lorena Rieke
- George-Huntington-Institute, Technology Park Muenster, Muenster, Germany.,Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Robin Schubert
- George-Huntington-Institute, Technology Park Muenster, Muenster, Germany
| | - Tamara Matheis
- George-Huntington-Institute, Technology Park Muenster, Muenster, Germany.,Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Lisa M Muratori
- George-Huntington-Institute, Technology Park Muenster, Muenster, Germany.,Department of Physical Therapy, School of Health Technology and Management, Stony Brook University, Stony Brook, NY, USA
| | - Jan Motlik
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, v.v.i., AS CR, Libechov, Czech Republic
| | - Sarah Schramke
- George-Huntington-Institute, Technology Park Muenster, Muenster, Germany
| | - Michaela Fels
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Nicole Kemper
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Verena Schuldenzucker
- George-Huntington-Institute, Technology Park Muenster, Muenster, Germany.,Institute of Zoology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Ralf Reilmann
- George-Huntington-Institute, Technology Park Muenster, Muenster, Germany.,Department of Radiology, Universitaetsklinikum Muenster, Albert-Schweitzer Campus, Muenster, Germany.,Department of Neurodegenerative Diseases and Hertie-Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
10
|
Schuldenzucker V, Schubert R, Muratori LM, Freisfeld F, Rieke L, Matheis T, Schramke S, Motlik J, Kemper N, Radespiel U, Reilmann R. Behavioral Assessment of Stress Compensation in Minipigs Transgenic for the Huntington Gene Using Cortisol Levels: A Proof-of-Concept Study. J Huntingtons Dis 2018; 7:151-161. [DOI: 10.3233/jhd-180285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Verena Schuldenzucker
- George-Huntington-Institute, Technology-Park, Muenster, Germany
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Robin Schubert
- George-Huntington-Institute, Technology-Park, Muenster, Germany
| | - Lisa M. Muratori
- George-Huntington-Institute, Technology-Park, Muenster, Germany
- Department of Physical Therapy, School of Health Technology and Management, Stony Brook University, Stony Brook, NY, USA
| | - Frauke Freisfeld
- George-Huntington-Institute, Technology-Park, Muenster, Germany
- Department of Clinical Radiology, University of Muenster, Muenster, Germany
| | - Lorena Rieke
- George-Huntington-Institute, Technology-Park, Muenster, Germany
- Institute of Animal Hygiene, Animal Welfare and Farm Animal Behavior, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Tamara Matheis
- George-Huntington-Institute, Technology-Park, Muenster, Germany
- Institute of Animal Hygiene, Animal Welfare and Farm Animal Behavior, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Sarah Schramke
- George-Huntington-Institute, Technology-Park, Muenster, Germany
| | - Jan Motlik
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, v.v.i., AS CR, Libechov, Czech Republic
| | - Nicole Kemper
- Institute of Animal Hygiene, Animal Welfare and Farm Animal Behavior, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ute Radespiel
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ralf Reilmann
- George-Huntington-Institute, Technology-Park, Muenster, Germany
- Department of Clinical Radiology, University of Muenster, Muenster, Germany
- Department of Neurodegenerative Diseases and Hertie-Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
11
|
Kieburtz K, Reilmann R, Olanow CW. Huntington's disease: Current and future therapeutic prospects. Mov Disord 2018; 33:1033-1041. [DOI: 10.1002/mds.27363] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 01/04/2023] Open
|
12
|
Reilmann R, Schuldenzucker V. Minipigs as a Large-Brained Animal Model for Huntington's Disease: From Behavior and Imaging to Gene Therapy. Methods Mol Biol 2018; 1780:241-266. [PMID: 29856023 DOI: 10.1007/978-1-4939-7825-0_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Large animal models offer novel opportunities in exploring safety, biology, and efficacy of novel therapeutic approaches for Huntington's disease (HD). Challenges in the development of, for example, gene therapy, such as delivery, distribution, and persistence of virus vectors or oligo sense nucleotides, can be explored in large brains and organisms approaching human size. We here introduce the transgenic Libechov minipig as a large animal model of HD. Methods developed to assess motor, cognitive, and behavioral features expected to manifest in an HD model are described. We also outline established protocols for magnetic resonance imaging (MRI) including magnetic resonance spectroscopy (MRS) for minipigs. The successful conduct of long-term follow-up studies over several years with repeated behavioral testing and imaging is reported. We discuss the advantages and limitations of using this model with regard to translational reliability, homology to humans and with respect to feasibility, breeding, housing, handling, and finally ethical considerations. It is concluded that minipigs can fulfill an important role in preclinical development to bridge the gap between rodents and nonhuman primate research in the translation to humans.
Collapse
Affiliation(s)
- Ralf Reilmann
- George-Huntington-Institute, Muenster, Germany.
- Department of Clinical Radiology, University of Muenster, Muenster, Germany.
- Department of Neurodegenerative Diseases and The Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany.
| | - Verena Schuldenzucker
- George-Huntington-Institute, Muenster, Germany
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
13
|
Abstract
The limitations of using small-brained rodents to model diseases that affect large-brain humans are becoming increasingly obvious as novel therapies emerge. Huntington's disease (HD) is one such disease. In recent years, the desirability of a large-brained, long-lived animal model of HD for preclinical testing has changed into a necessity. Treatment involving gene therapy in particular presents delivery challenges that are currently unsolved. Models using long-lived, large-brained animals would be useful, not only for refining methods of delivery (particularly for gene and other therapies that do not involve small molecules) but also for measuring long-term "off-target" effects, and assessing the efficacy of therapies. With their large brains and convoluted cortices, sheep are emerging as feasible experimental subjects that can be used to bridge the gap between rodents and humans in preclinical drug development. Sheep are readily available, economical to use, and easy to care for in naturalistic settings. With brains of a similar size to a large rhesus macaque, they have much to offer. The only thing that was missing until recently was the means of testing their neurological function and behavior using approaches and methods that are relevant to HD. In this chapter, I will outline the present and future possibilities of using sheep and testing as large animal models of HD.
Collapse
Affiliation(s)
- A J Morton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
14
|
Schuldenzucker V, Schubert R, Muratori LM, Freisfeld F, Rieke L, Matheis T, Schramke S, Motlik J, Kemper N, Radespiel U, Reilmann R. Behavioral testing of minipigs transgenic for the Huntington gene-A three-year observational study. PLoS One 2017; 12:e0185970. [PMID: 29016656 PMCID: PMC5633197 DOI: 10.1371/journal.pone.0185970] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/24/2017] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Large animal models of Huntington's disease (HD) may increase the reliability of translating preclinical findings to humans. Long live expectancy offers opportunities particularly for disease modifying approaches, but also challenges. The transgenic (tg) HD minipig model assessed in this study exhibits a high genetic homology with humans, similar body weight, and comparable brain structures. To test long-term safety, tolerability, and efficacy of novel therapeutic approaches in this model reliable assessments applicable longitudinally for several years are warranted for all phenotypical domains relevant in HD. OBJECTIVE To investigate whether the tests proposed assessing motor, cognitive and behavioral domains can be applied repetitively over a 3-year period in minipigs with acceptable variability or learning effects and whether tgHD minipigs reveal changes in these domains compared to wildtype (wt) minipigs suggesting the development of an HD phenotype. METHODS A cohort of 14 tgHD and 18 wt minipigs was followed for three years. Tests applied every six months included a tongue coordination and hurdle test for the motor domain, a color discrimination test for cognition, and a dominance test for assessing behavior. Statistical analyses were performed using repeated ANOVA for longitudinal group comparisons and Wilcoxon-tests for intra-visit differences between tgHD and wt minipigs. RESULTS All tests applied demonstrated feasibility, acceptable variance and good consistency during the three-year period. No significant differences between tgHD and wt minipigs were detected suggesting lack of a phenotype before the age of four years. CONCLUSIONS The assessment battery presented offers measures in all domains relevant for HD and can be applied in long-term phenotyping studies with tgHD minipigs. The observation of this cohort should be continued to explore the timeline of phenotype development and provide information for future interventional studies.
Collapse
Affiliation(s)
- Verena Schuldenzucker
- George-Huntington-Institute, Technology-Park, Muenster, Germany
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Robin Schubert
- George-Huntington-Institute, Technology-Park, Muenster, Germany
| | - Lisa M. Muratori
- George-Huntington-Institute, Technology-Park, Muenster, Germany
- Department of Physical Therapy, School of Health Technology and Management, Stony Brook University, Stony Brook, New York, United States of America
| | - Frauke Freisfeld
- George-Huntington-Institute, Technology-Park, Muenster, Germany
- Department of Clinical Radiology, University of Muenster, Albert-Schweitzer-Campus 1, Muenster, Germany
| | - Lorena Rieke
- George-Huntington-Institute, Technology-Park, Muenster, Germany
- Institute of Animal Hygiene, Animal Welfare and Farm Animal Behavior, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Tamara Matheis
- George-Huntington-Institute, Technology-Park, Muenster, Germany
- Institute of Animal Hygiene, Animal Welfare and Farm Animal Behavior, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Sarah Schramke
- George-Huntington-Institute, Technology-Park, Muenster, Germany
| | - Jan Motlik
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, v.v.i., AS CR, Libechov, Czech Republic
| | - Nicole Kemper
- Institute of Animal Hygiene, Animal Welfare and Farm Animal Behavior, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ute Radespiel
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ralf Reilmann
- George-Huntington-Institute, Technology-Park, Muenster, Germany
- Department of Clinical Radiology, University of Muenster, Albert-Schweitzer-Campus 1, Muenster, Germany
- Department of Neurodegenerative Diseases and Hertie-Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
15
|
Leuchter MK, Donzis EJ, Cepeda C, Hunter AM, Estrada-Sánchez AM, Cook IA, Levine MS, Leuchter AF. Quantitative Electroencephalographic Biomarkers in Preclinical and Human Studies of Huntington's Disease: Are They Fit-for-Purpose for Treatment Development? Front Neurol 2017; 8:91. [PMID: 28424652 PMCID: PMC5371600 DOI: 10.3389/fneur.2017.00091] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 02/27/2017] [Indexed: 01/30/2023] Open
Abstract
A major focus in development of novel therapies for Huntington's disease (HD) is identification of treatments that reduce the burden of mutant huntingtin (mHTT) protein in the brain. In order to identify and test the efficacy of such therapies, it is essential to have biomarkers that are sensitive to the effects of mHTT on brain function to determine whether the intervention has been effective at preventing toxicity in target brain systems before onset of clinical symptoms. Ideally, such biomarkers should have a plausible physiologic basis for detecting the effects of mHTT, be measureable both in preclinical models and human studies, be practical to measure serially in clinical trials, and be reliably measurable in HD gene expansion carriers (HDGECs), among other features. Quantitative electroencephalography (qEEG) fulfills many of these basic criteria of a "fit-for-purpose" biomarker. qEEG measures brain oscillatory activity that is regulated by the brain structures that are affected by mHTT in premanifest and early symptom individuals. The technology is practical to implement in the laboratory and is well tolerated by humans in clinical trials. The biomarkers are measureable across animal models and humans, with findings that appear to be detectable in HDGECs and translate across species. We review here the literature on recent developments in both preclinical and human studies of the use of qEEG biomarkers in HD, and the evidence for their usefulness as biomarkers to help guide development of novel mHTT lowering treatments.
Collapse
Affiliation(s)
- Michael K Leuchter
- David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Elissa J Donzis
- David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA.,Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles (UCLA), Los Angeles, CA, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Carlos Cepeda
- David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA.,Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles (UCLA), Los Angeles, CA, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Aimee M Hunter
- David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA.,Neuromodulation Division, Laboratory of Brain, Behavior, and Pharmacology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Ana María Estrada-Sánchez
- David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA.,Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles (UCLA), Los Angeles, CA, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Ian A Cook
- David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA.,Neuromodulation Division, Laboratory of Brain, Behavior, and Pharmacology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles (UCLA), Los Angeles, CA, USA.,Department of Bioengineering, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Michael S Levine
- David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA.,Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles (UCLA), Los Angeles, CA, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Andrew F Leuchter
- David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA.,Neuromodulation Division, Laboratory of Brain, Behavior, and Pharmacology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|