1
|
Mitsuhashi M, Yamaguchi R, Kawasaki T, Ueno S, Sun Y, Isa K, Takahashi J, Kobayashi K, Onoe H, Takahashi R, Isa T. Stage-dependent role of interhemispheric pathway for motor recovery in primates. Nat Commun 2024; 15:6762. [PMID: 39174504 PMCID: PMC11341697 DOI: 10.1038/s41467-024-51070-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/26/2024] [Indexed: 08/24/2024] Open
Abstract
Whether and how the non-lesional sensorimotor cortex is activated and contributes to post-injury motor recovery is controversial. Here, we investigated the role of interhemispheric pathway from the contralesional to ipsilesional premotor cortex in activating the ipsilesional sensorimotor cortex and promoting recovery after lesioning the lateral corticospinal tract at the cervical cord, by unidirectional chemogenetic blockade in macaques. The blockade impaired dexterous hand movements during the early recovery stage. Electrocorticographical recording showed that the low frequency band activity of the ipsilesional premotor cortex around movement onset was decreased by the blockade during the early recovery stage, while it was increased by blockade during the intact state and late recovery stage. These results demonstrate that action of the interhemispheric pathway changed from inhibition to facilitation, to involve the ipsilesional sensorimotor cortex in hand movements during the early recovery stage. The present study offers insights into the stage-dependent role of the interhemispheric pathway and a therapeutic target in the early recovery stage after lesioning of the corticospinal tract.
Collapse
Affiliation(s)
- Masahiro Mitsuhashi
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Reona Yamaguchi
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, 606-8501, Japan
| | - Toshinari Kawasaki
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Satoko Ueno
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, 606-8501, Japan
| | - Yiping Sun
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Kaoru Isa
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Jun Takahashi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan
- Graduate University of Advanced Studies (SOKENDAI), Hayama, 240-0193, Japan
| | - Hirotaka Onoe
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, 606-8397, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Tadashi Isa
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, 606-8501, Japan.
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, 606-8397, Japan.
| |
Collapse
|
2
|
Lehtinen K, Nokia MS, Takala H. Red Light Optogenetics in Neuroscience. Front Cell Neurosci 2022; 15:778900. [PMID: 35046775 PMCID: PMC8761848 DOI: 10.3389/fncel.2021.778900] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/02/2021] [Indexed: 12/25/2022] Open
Abstract
Optogenetics, a field concentrating on controlling cellular functions by means of light-activated proteins, has shown tremendous potential in neuroscience. It possesses superior spatiotemporal resolution compared to the surgical, electrical, and pharmacological methods traditionally used in studying brain function. A multitude of optogenetic tools for neuroscience have been created that, for example, enable the control of action potential generation via light-activated ion channels. Other optogenetic proteins have been used in the brain, for example, to control long-term potentiation or to ablate specific subtypes of neurons. In in vivo applications, however, the majority of optogenetic tools are operated with blue, green, or yellow light, which all have limited penetration in biological tissues compared to red light and especially infrared light. This difference is significant, especially considering the size of the rodent brain, a major research model in neuroscience. Our review will focus on the utilization of red light-operated optogenetic tools in neuroscience. We first outline the advantages of red light for in vivo studies. Then we provide a brief overview of the red light-activated optogenetic proteins and systems with a focus on new developments in the field. Finally, we will highlight different tools and applications, which further facilitate the use of red light optogenetics in neuroscience.
Collapse
Affiliation(s)
- Kimmo Lehtinen
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Miriam S. Nokia
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
- Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland
| | - Heikki Takala
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
3
|
Functional interrogation of neural circuits with virally transmitted optogenetic tools. J Neurosci Methods 2020; 345:108905. [PMID: 32795553 DOI: 10.1016/j.jneumeth.2020.108905] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022]
Abstract
The vertebrate brain comprises a plethora of cell types connected by intertwined pathways. Optogenetics enriches the neuroscientific tool set for disentangling these neuronal circuits in a manner which exceeds the spatio-temporal precision of previously existing techniques. Technically, optogenetics can be divided in three types of optical and genetic combinations: (1) it is primarily understood as the manipulation of the activity of genetically modified cells (typically neurons) with light, i.e. optical actuators. (2) A second combination refers to visualizing the activity of genetically modified cells (again typically neurons), i.e. optical sensors. (3) A completely different interpretation of optogenetics refers to the light activated expression of a genetically induced construct. Here, we focus on the first two types of optogenetics, i.e. the optical actuators and sensors in an attempt to give an overview into the topic. We first cover methods to express opsins into neurons and introduce strategies of targeting specific neuronal populations in different animal species. We then summarize combinations of optogenetics with behavioral read out and neuronal imaging. Finally, we give an overview of the current state-of-the-art and an outlook on future perspectives.
Collapse
|
4
|
Sigurdsson SA, Yu Z, Lee J, Nurmikko A. A method for large-scale implantation of 3D microdevice ensembles into brain and soft tissue. MICROSYSTEMS & NANOENGINEERING 2020; 6:97. [PMID: 34567706 PMCID: PMC8433454 DOI: 10.1038/s41378-020-00210-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/11/2020] [Accepted: 08/07/2020] [Indexed: 05/16/2023]
Abstract
Wireless networks of implantable electronic sensors and actuators at the microscale (sub-mm) level are being explored for monitoring and modulation of physiological activity for medical diagnostics and therapeutic purposes. Beyond the requirement of integrating multiple electronic or chemical functions within small device volumes, a key challenge is the development of high-throughput methods for the implantation of large numbers of microdevices into soft tissues with minimal damage. To that end, we have developed a method for high-throughput implantation of ~100-200 µm size devices, which are here simulated by proxy microparticle ensembles. While generally applicable to subdermal tissue, our main focus and experimental testbed is the implantation of microparticles into the brain. The method deploys a scalable delivery tool composed of a 2-dimensional array of polyethylene glycol-tipped microneedles that confine the microparticle payloads. Upon dissolution of the bioresorbable polyethylene glycol, the supporting array structure is retrieved, and the microparticles remain embedded in the tissue, distributed spatially and geometrically according to the design of the microfabricated delivery tool. We first evaluated the method in an agarose testbed in terms of spatial precision and throughput for up to 1000 passive spherical and planar microparticles acting as proxy devices. We then performed the same evaluations by implanting particles into the rat cortex under acute conditions and assessed the tissue injury produced by our method of implantation under chronic conditions.
Collapse
Affiliation(s)
| | - Zeyang Yu
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Joonhee Lee
- Department of Physics and Astronomy, West Virginia University, Morgantown, WV 26506 USA
- Department of Neuroscience, West Virginia University, Morgantown, WV 26506 USA
| | - Arto Nurmikko
- School of Engineering, Brown University, Providence, RI 02912 USA
| |
Collapse
|
5
|
Optogenetic approaches to study the mammalian brain. Curr Opin Struct Biol 2019; 57:157-163. [PMID: 31082625 DOI: 10.1016/j.sbi.2019.04.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 03/30/2019] [Accepted: 04/05/2019] [Indexed: 12/24/2022]
Abstract
Optogenetics has revolutionized neurobiological research by allowing to disentangle intricate neuronal circuits at a spatio-temporal precision unmatched by other techniques. Here, we review current advances of optogenetic applications in mammals, especially focusing on freely moving animals. State-of-the-art strategies allow the targeted expression of opsins in neuronal subpopulations, defined either by genetic cell type or neuronal projection pattern. Optogenetic manipulations of these subpopulations become particularly powerful when combined with behavioral paradigms and neurophysiological readout techniques. Thereby, specific roles can be assigned to identified cells. All-optical approaches with the opportunity to write complex three dimensional patterns into neuronal networks have recently emerged. While clinical implications of the new tool set seem tempting, we emphasize here the role of optogenetics for basic research.
Collapse
|