1
|
Kunikullaya U K. An integrated approach to understanding the effects of exposome on neuroplasticity. Behav Brain Res 2025; 485:115516. [PMID: 40024484 DOI: 10.1016/j.bbr.2025.115516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 02/08/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Anthropogenic factors are those that occur due to human activities. The exposome is proposed to complement the genome, wherein an individual's exposure begins before birth. The range of exposures includes physical, chemical, dietary, lifestyle, biological, and occupational sources. Exposome has a positive or negative influence on neuroplasticity during different stages of life. A comprehensive study of the exposome is thus necessary to incorporate these factors and their influence on the individual, community, and the population as a whole. Exposomic research and global health present significant opportunities for interdisciplinary research. This review gives an overview of the exposome and its influence on neuroplasticity. It proposes methods to study the exposome on neuroplasticity across the lifespan of the individual. This is possible with the use of self-reported data, large-scale cohort formation, physiological sensors, neuroimaging, omics, molecular biology, and systems approaches. These approaches aim to provide a holistic understanding of an individual's neurological well-being and its implications for the population at large. This will also enable the designing of novel preventive and treatment strategies for managing neurological disorders.
Collapse
Affiliation(s)
- Kirthana Kunikullaya U
- MeDH, Department of Medicine, Huddinge, Karolinska Universitetssjukhuset Huddinge, Stockholm 14186, Sweden.
| |
Collapse
|
2
|
Tscherpel C, Mustin M, Massimini M, Paul T, Ziemann U, Fink GR, Grefkes C. Local neuronal sleep after stroke: The role of cortical bistability in brain reorganization. Brain Stimul 2024; 17:836-846. [PMID: 39019396 DOI: 10.1016/j.brs.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 06/30/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Acute cerebral ischemia triggers a number of cellular mechanisms not only leading to excitotoxic cell death but also to enhanced neuroplasticity, facilitating neuronal reorganization and functional recovery. OBJECTIVE Transferring these cellular mechanisms to neurophysiological correlates adaptable to patients is crucial to promote recovery post-stroke. The combination of TMS and EEG constitutes a promising readout of neuronal network activity in stroke patients. METHODS We used the combination of TMS and EEG to investigate the development of local signal processing and global network alterations in 40 stroke patients with motor deficits alongside neural reorganization from the acute to the chronic phase. RESULTS We show that the TMS-EEG response reflects information about reorganization and signal alterations associated with persistent motor deficits throughout the entire post-stroke period. In the early post-stroke phase and in a subgroup of patients with severe motor deficits, TMS applied to the lesioned motor cortex evoked a sleep-like slow wave response associated with a cortical off-period, a manifestation of cortical bistability, as well as a rapid disruption of the TMS-induced formation of causal network effects. Mechanistically, these phenomena were linked to lesions affecting ascending activating brainstem fibers. Of note, slow waves invariably vanished in the chronic phase, but were highly indicative of a poor functional outcome. CONCLUSION In summary, we found evidence that transient effects of sleep-like slow waves and cortical bistability within ipsilesional M1 resulting in excessive inhibition may interfere with functional reorganization, leading to a less favorable functional outcome post-stroke, pointing to a new therapeutic target to improve recovery of function.
Collapse
Affiliation(s)
- Caroline Tscherpel
- Department of Neurology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany; Medical Faculty, University of Cologne, and Department of Neurology, University Hospital Cologne, Cologne, Germany; Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| | - Maike Mustin
- Medical Faculty, University of Cologne, and Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Marcello Massimini
- Department of Biomedical and Clinical Science 'L. Sacco', University Milan, Milan, Italy; IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Theresa Paul
- Medical Faculty, University of Cologne, and Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Ulf Ziemann
- Department of Neurology & Stroke and Hertie Institute for Clinical Brain Research, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Gereon R Fink
- Medical Faculty, University of Cologne, and Department of Neurology, University Hospital Cologne, Cologne, Germany; Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| | - Christian Grefkes
- Department of Neurology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany; Medical Faculty, University of Cologne, and Department of Neurology, University Hospital Cologne, Cologne, Germany; Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany.
| |
Collapse
|
3
|
Marín-Medina DS, Arenas-Vargas PA, Arias-Botero JC, Gómez-Vásquez M, Jaramillo-López MF, Gaspar-Toro JM. New approaches to recovery after stroke. Neurol Sci 2024; 45:55-63. [PMID: 37697027 PMCID: PMC10761524 DOI: 10.1007/s10072-023-07012-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/07/2023] [Indexed: 09/13/2023]
Abstract
After a stroke, several mechanisms of neural plasticity can be activated, which may lead to significant recovery. Rehabilitation therapies aim to restore surviving tissue over time and reorganize neural connections. With more patients surviving stroke with varying degrees of neurological impairment, new technologies have emerged as a promising option for better functional outcomes. This review explores restorative therapies based on brain-computer interfaces, robot-assisted and virtual reality, brain stimulation, and cell therapies. Brain-computer interfaces allow for the translation of brain signals into motor patterns. Robot-assisted and virtual reality therapies provide interactive interfaces that simulate real-life situations and physical support to compensate for lost motor function. Brain stimulation can modify the electrical activity of neurons in the affected cortex. Cell therapy may promote regeneration in damaged brain tissue. Taken together, these new approaches could substantially benefit specific deficits such as arm-motor control and cognitive impairment after stroke, and even the chronic phase of recovery, where traditional rehabilitation methods may be limited, and the window for repair is narrow.
Collapse
Affiliation(s)
- Daniel S Marín-Medina
- Grupo de Investigación NeuroUnal, Neurology Unit, Universidad Nacional de Colombia, Bogotá, Colombia.
| | - Paula A Arenas-Vargas
- Grupo de Investigación NeuroUnal, Neurology Unit, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Juan C Arias-Botero
- Grupo de Investigación NeuroUnal, Neurology Unit, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Manuela Gómez-Vásquez
- Grupo de Investigación NeuroUnal, Neurology Unit, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Manuel F Jaramillo-López
- Grupo de Investigación NeuroUnal, Neurology Unit, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Jorge M Gaspar-Toro
- Grupo de Investigación NeuroUnal, Neurology Unit, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
4
|
Geng Y, Li Z, Zhu J, Du C, Yuan F, Cai X, Ali A, Yang J, Tang C, Cong Z, Ma C. Advances in Optogenetics Applications for Central Nervous System Injuries. J Neurotrauma 2023. [PMID: 36305381 DOI: 10.1089/neu.2022.0290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Injuries to the central nervous system (CNS) often lead to severe neurological dysfunction and even death. However, there are still no effective measures to improve functional recovery following CNS injuries. Optogenetics, an ideal method to modulate neural activity, has shown various advantages in controlling neural circuits, promoting neural remapping, and improving cell survival. In particular, the emerging technique of optogenetics has exhibited promising therapeutic methods for CNS injuries. In this review, we introduce the light-sensitive proteins and light stimulation system that are important components of optogenetic technology in detail and summarize the development trends. In addition, we construct a comprehensive picture of the current application of optogenetics in CNS injuries and highlight recent advances for the treatment and functional recovery of neurological deficits. Finally, we discuss the therapeutic challenges and prospective uses of optogenetics therapy by photostimulation/photoinhibition modalities that would be suitable for clinical applications.
Collapse
Affiliation(s)
- Yuanming Geng
- Department of Neurosurgery, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing, China
| | - Zhenxing Li
- Department of Neurosurgery, Jinling Hospital, Nanjing, China.,Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Junhao Zhu
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chaonan Du
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Feng Yuan
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiangming Cai
- School of Medicine, Southeast University, Nanjing, China
| | - Alleyar Ali
- Department of Neurosurgery, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing, China
| | - Jin Yang
- Department of Neurosurgery, Jinling Hospital, Nanjing, China
| | - Chao Tang
- Department of Neurosurgery, Jinling Hospital, Nanjing, China
| | - Zixiang Cong
- Department of Neurosurgery, Jinling Hospital, Nanjing, China
| | - Chiyuan Ma
- Department of Neurosurgery, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing, China.,Department of Neurosurgery, Jinling Hospital, Nanjing, China.,Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China.,Department of Neurosurgery, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University, Nanjing, China
| |
Collapse
|
5
|
Marchi V, Rizzi R, Nevalainen P, Melani F, Lori S, Antonelli C, Vanhatalo S, Guzzetta A. Asymmetry in sleep spindles and motor outcome in infants with unilateral brain injury. Dev Med Child Neurol 2022; 64:1375-1382. [PMID: 35445398 PMCID: PMC9790667 DOI: 10.1111/dmcn.15244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 12/30/2022]
Abstract
AIM To determine whether interhemispheric difference in sleep spindles in infants with perinatal unilateral brain injury could link to a pathological network reorganization that underpins the development of unilateral cerebral palsy (CP). METHOD This was a multicentre retrospective study of 40 infants (19 females, 21 males) with unilateral brain injury. Sleep spindles were detected and quantified with an automated algorithm from electroencephalograph records performed at 2 months to 5 months of age. The clinical outcomes after 18 months were compared to spindle power asymmetry (SPA) between hemispheres in different brain regions. RESULTS We found a significantly increased SPA in infants who later developed unilateral CP (n=13, with the most robust interhemispheric difference seen in the central spindles. The best individual-level prediction of unilateral CP was seen in the centro-occipital spindles with an overall accuracy of 93%. An empiric cut-off level for SPA at 0.65 gave a positive predictive value of 100% and a negative predictive value of 93% for later development of unilateral CP. INTERPRETATION Our data suggest that automated analysis of interhemispheric SPA provides a potential biomarker of unilateral CP at a very early age. This holds promise for guiding the early diagnostic process in infants with a perinatally identified brain injury. WHAT THIS PAPER ADDS Unilateral perinatal brain injury may affect the development of electroencephalogram (EEG) sleep spindles. Interhemispheric asymmetry in sleep spindles can be quantified with automated EEG analysis. Spindle power asymmetry can be a potential biomarker of unilateral cerebral palsy.
Collapse
Affiliation(s)
- Viviana Marchi
- Department of Developmental NeuroscienceIRCCS Stella Maris FoundationPisaItaly
| | - Riccardo Rizzi
- Department of Developmental NeuroscienceIRCCS Stella Maris FoundationPisaItaly
- Department of Neuroscience, PsychologyDrug Research and Child Health NEUROFARBA, University of FlorenceFlorenceItaly
| | - Päivi Nevalainen
- Department of Clinical NeurophysiologyChildren's Hospital, HUS Diagnostic Center, Clinical Neurosciences, Helsinki University Hospital and University of HelsinkiHelsinkiFinland
| | - Federico Melani
- Neuroscience Department, Children's Hospital MeyerUniversity of FlorenceFlorence
| | - Silvia Lori
- Neurophysiology Unit, Neuro‐Musculo‐Skeletal DepartmentUniversity Hospital CareggiFlorenceItaly
| | - Camilla Antonelli
- Department of Developmental NeuroscienceIRCCS Stella Maris FoundationPisaItaly
- Department of Neuroscience, PsychologyDrug Research and Child Health NEUROFARBA, University of FlorenceFlorenceItaly
| | - Sampsa Vanhatalo
- Department of Clinical Neurophysiology, BABA CenterChildren's Hospital, Neuroscience Center, HiLIFE, Helsinki University Hospital and University of HelsinkiHelsinkiFinland
| | - Andrea Guzzetta
- Department of Developmental NeuroscienceIRCCS Stella Maris FoundationPisaItaly
- Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| |
Collapse
|
6
|
Howell SN, Griesbach GS. Sleep-wake disturbances in supra-and infratentorial stroke: an analysis of post-acute sleep architecture and apnea. Sleep Med 2021; 88:81-86. [PMID: 34740169 DOI: 10.1016/j.sleep.2021.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/09/2021] [Accepted: 10/12/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE Sleep-wake disturbances (SWD) are common following stroke, and often extend into the post-acute to chronic periods of recovery. Of particular interest to recovery is a reduction in rapid eye movement (REM) sleep, as we know REM sleep to be important for learning and memory. While there is a breadth of evidence linking SWD and stroke, much less work has been done to identify and determine if differences in sleep architecture and apnea severity are dependent on stroke infarct topographies. METHODS A retrospective chart review was conducted of 48 ischemic stroke patients having underwent a full, overnight polysomnography (PSG). All patients were over 30 days post-injury (post-acute) at the time of the PSG. Patients were divided into supra- and infratentorial infarct topography groups based on available medical and imaging records. In addition to sleep study record review, cognitive and outcome measures were examined. RESULTS Results showed that patients with infratentorial stroke had poorer sleep efficiency, decreased REM sleep, and higher apnea hypopnea index (AHI) than those with supratentorial injuries. Longer continuous REM periods were correlated with higher verbal learning/memory scores, higher levels of positive affect, and lower levels of emotional/behavioral dyscontrol. Neither age nor AHI were significantly correlated with the amount or duration of REM. Slow-wave sleep was significantly reduced across both injury topographies. CONCLUSIONS Infratentorial ischemic stroke patients display significant disruptions in sleep architecture and may require close monitoring for SWDs in the post-acute period to maximize outcome potential. REM sleep is particularly affected when compared to supratentorial ischemic stroke.
Collapse
Affiliation(s)
| | - Grace S Griesbach
- Centre for Neuro Skills, Bakersfield, CA, USA; Department of Neurosurgery, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| |
Collapse
|
7
|
Jaramillo V, Jendoubi J, Maric A, Mensen A, Heyse NC, Eberhard-Moscicka AK, Wiest R, Bassetti CLA, Huber R. Thalamic Influence on Slow Wave Slope Renormalization During Sleep. Ann Neurol 2021; 90:821-833. [PMID: 34516002 PMCID: PMC9291607 DOI: 10.1002/ana.26217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 02/01/2023]
Abstract
Objective Slow waves are thought to mediate an overall reduction in synaptic strength during sleep. The specific contribution of the thalamus to this so‐called synaptic renormalization is unknown. Thalamic stroke is associated with daytime sleepiness, along with changes to sleep electroencephalography and cognition, making it a unique “experiment of nature” to assess the relationship between sleep rhythms, synaptic renormalization, and daytime functions. Methods Sleep was studied by polysomnography and high‐density electroencephalography over 17 nights in patients with thalamic (n = 12) and 15 nights in patients with extrathalamic (n = 11) stroke. Sleep electroencephalographic overnight slow wave slope changes and their relationship with subjective daytime sleepiness, cognition, and other functional tests were assessed. Results Thalamic and extrathalamic patients did not differ in terms of age, sleep duration, or apnea–hypopnea index. Conversely, overnight slope changes were reduced in a large cluster of electrodes in thalamic compared to extrathalamic stroke patients. This reduction was related to increased daytime sleepiness. No significant differences were found in other functional tests between the 2 groups. Interpretation In patients with thalamic stroke, a reduction in overnight slow wave slope change and increased daytime sleepiness was found. Sleep‐ and wake‐centered mechanisms for this relationship are discussed. Overall, this study suggests a central role of the thalamus in synaptic renormalization. ANN NEUROL 2021;90:821–833
Collapse
Affiliation(s)
- Valeria Jaramillo
- Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich.,Child Development Center, University Children's Hospital Zurich, University of Zurich, Zurich
| | - Jasmine Jendoubi
- Sleep-Wake-Epilepsy Center, Department of Neurology, University Hospital Bern, University of Bern, Bern, Switzerland.,Center for Experimental Neurology, Department of Neurology, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Angelina Maric
- Department of Neurology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Armand Mensen
- Sleep-Wake-Epilepsy Center, Department of Neurology, University Hospital Bern, University of Bern, Bern, Switzerland.,Center for Experimental Neurology, Department of Neurology, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Natalie C Heyse
- Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich.,Child Development Center, University Children's Hospital Zurich, University of Zurich, Zurich
| | - Aleksandra K Eberhard-Moscicka
- Perception and Eye Movement Laboratory, Departments of Neurology and Biomedical Research, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Roland Wiest
- Department of Neuroradiology, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Claudio L A Bassetti
- Sleep-Wake-Epilepsy Center, Department of Neurology, University Hospital Bern, University of Bern, Bern, Switzerland.,Center for Experimental Neurology, Department of Neurology, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Reto Huber
- Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich.,Child Development Center, University Children's Hospital Zurich, University of Zurich, Zurich.,Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich
| |
Collapse
|
8
|
Ilic K, Mlinac-Jerkovic K, Sedmak G, Rosenzweig I, Kalanj-Bognar S. Neuroplastin in human cognition: review of literature and future perspectives. Transl Psychiatry 2021; 11:394. [PMID: 34282131 PMCID: PMC8289873 DOI: 10.1038/s41398-021-01509-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
Synaptic glycoprotein neuroplastin is involved in synaptic plasticity and complex molecular events underlying learning and memory. Studies in mice and rats suggest that neuroplastin is essential for cognition, as it is needed for long-term potentiation and associative memory formation. Recently, it was found that some of the effects of neuroplastin are related to regulation of calcium homeostasis through interactions with plasma membrane calcium ATPases. Neuroplastin is increasingly seen as a key factor in complex brain functions, but studies in humans remain scarce. Here we summarize present knowledge about neuroplastin in human tissues and argue its genetic association with cortical thickness, intelligence, schizophrenia, and autism; specific immunolocalization depicting hippocampal trisynaptic pathway; potential role in tissue compensatory response in neurodegeneration; and high, almost housekeeping, level of spatio-temporal gene expression in the human brain. We also propose that neuroplastin acts as a housekeeper of neuroplasticity, and that it may be considered as an important novel cognition-related molecule in humans. Several promising directions for future investigations are suggested, which may complete our understanding of neuroplastin actions in molecular basis of human cognition.
Collapse
Affiliation(s)
- Katarina Ilic
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata12, 10000, Zagreb, Croatia
| | - Kristina Mlinac-Jerkovic
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata12, 10000, Zagreb, Croatia
| | - Goran Sedmak
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata12, 10000, Zagreb, Croatia
| | - Ivana Rosenzweig
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London (KCL), Strand, London, WC2R 2LS, UK
- Sleep Disorders Centre, Guy's and St Thomas' Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Svjetlana Kalanj-Bognar
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata12, 10000, Zagreb, Croatia.
| |
Collapse
|
9
|
Sarasso S, D'Ambrosio S, Fecchio M, Casarotto S, Viganò A, Landi C, Mattavelli G, Gosseries O, Quarenghi M, Laureys S, Devalle G, Rosanova M, Massimini M. Local sleep-like cortical reactivity in the awake brain after focal injury. Brain 2021; 143:3672-3684. [PMID: 33188680 PMCID: PMC7805800 DOI: 10.1093/brain/awaa338] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/08/2020] [Accepted: 08/10/2020] [Indexed: 12/23/2022] Open
Abstract
The functional consequences of focal brain injury are thought to be contingent on neuronal alterations extending beyond the area of structural damage. This phenomenon, also known as diaschisis, has clinical and metabolic correlates but lacks a clear electrophysiological counterpart, except for the long-standing evidence of a relative EEG slowing over the injured hemisphere. Here, we aim at testing whether this EEG slowing is linked to the pathological intrusion of sleep-like cortical dynamics within an awake brain. We used a combination of transcranial magnetic stimulation and electroencephalography (TMS/EEG) to study cortical reactivity in a cohort of 30 conscious awake patients with chronic focal and multifocal brain injuries of ischaemic, haemorrhagic and traumatic aetiology. We found that different patterns of cortical reactivity typically associated with different brain states (coma, sleep, wakefulness) can coexist within the same brain. Specifically, we detected the occurrence of prominent sleep-like TMS-evoked slow waves and off-periods—reflecting transient suppressions of neuronal activity—in the area surrounding focal cortical injuries. These perilesional sleep-like responses were associated with a local disruption of signal complexity whereas complex responses typical of the awake brain were present when stimulating the contralesional hemisphere. These results shed light on the electrophysiological properties of the tissue surrounding focal brain injuries in humans. Perilesional sleep-like off-periods can disrupt network activity but are potentially reversible, thus representing a principled read-out for the neurophysiological assessment of stroke patients, as well as an interesting target for rehabilitation.
Collapse
Affiliation(s)
- Simone Sarasso
- Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università degli Studi di Milano, Milan, Italy
| | - Sasha D'Ambrosio
- Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università degli Studi di Milano, Milan, Italy.,Chalfont Centre for Epilepsy, Chalfont St. Peter, UK.,Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Matteo Fecchio
- Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università degli Studi di Milano, Milan, Italy
| | - Silvia Casarotto
- Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università degli Studi di Milano, Milan, Italy
| | - Alessandro Viganò
- Istituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Cristina Landi
- Fondazione Europea per la Ricerca Biomedica Onlus, Milan, Italy
| | | | - Olivia Gosseries
- Coma Science Group, University and University Hospital of Liege, GIGA-Consciousness, 4000 Liege, Belgium
| | - Matteo Quarenghi
- Unità Operativa Radiologia, Azienda Ospedaliera Vizzolo P -Risonanza Magnetica- ASST Melegnano e Martesana, Vizzolo Predabissi, Italy
| | - Steven Laureys
- Coma Science Group, University and University Hospital of Liege, GIGA-Consciousness, 4000 Liege, Belgium
| | - Guya Devalle
- Istituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Mario Rosanova
- Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università degli Studi di Milano, Milan, Italy.,Fondazione Europea per la Ricerca Biomedica Onlus, Milan, Italy
| | - Marcello Massimini
- Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università degli Studi di Milano, Milan, Italy.,Istituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan, Italy
| |
Collapse
|
10
|
Intracerebral hemorrhage in the mouse altered sleep-wake patterns and activated microglia. Exp Neurol 2020; 327:113242. [DOI: 10.1016/j.expneurol.2020.113242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/22/2020] [Accepted: 02/09/2020] [Indexed: 01/06/2023]
|
11
|
Abstract
Sleep duration and lifespan vary greatly across Animalia. Human studies have demonstrated that ageing reduces the ability to obtain deep restorative sleep, and this may play a causative role in the development of age-related neurodegenerative disorders. Animal models are widely used in sleep and ageing studies. Importantly, in contrast to human studies, evidence from laboratory rodents suggests that sleep duration is increased with ageing, while evidence for reduced sleep intensity and consolidation is inconsistent. Here we discuss two possible explanations for these species differences. First, methodological differences between studies in humans and laboratory rodents may prevent straightforward comparison. Second, the role of ecological factors, which have a profound influence on both ageing and sleep, must be taken into account. We propose that the dynamics of sleep across the lifespan reflect both age-dependent changes in the neurobiological substrates of sleep as well as the capacity to adapt to the environment.
Collapse
|
12
|
Bassetti CLA. Sleep and stroke: A bidirectional relationship with clinical implications. Sleep Med Rev 2019; 45:127-128. [PMID: 31080163 DOI: 10.1016/j.smrv.2019.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 04/03/2019] [Indexed: 11/19/2022]
|