1
|
Choi W, Park H, Oh S, Seok S, Yoon DS, Kim J. High-Porosity Sieve-Type Neural Electrodes for Motor Function Recovery and Nerve Signal Acquisition. MICROMACHINES 2024; 15:862. [PMID: 39064373 PMCID: PMC11279187 DOI: 10.3390/mi15070862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
In this study, the effects of electrode porosity on nerve regeneration and functional recovery after sciatic nerve transection in rats was investigated. A sieve-type neural electrode with 70% porosity was designed and compared with an electrode with 30% porosity. Electrodes were fabricated from photosensitive polyimide and implanted into the transected sciatic nerves. Motor function recovery was evaluated using the Sciatic Function Index. The number of active channels and their signal quality were recorded and analyzed to assess the sensory neural signal acquisition. Electrical impedance spectroscopy was used to evaluate the electrode performance. The group implanted with the 70% porosity electrode demonstrated significantly enhanced nerve regeneration and motor function recovery, approaching control group levels by the fifth week. In contrast, the group with the 30% porosity electrode exhibited limited improvement. Immunohistochemical analysis confirmed extensive nerve fiber growth within the 70% porous structure. Moreover, the 70% porosity electrode consistently acquired neural signals from more channels compared to the 30% porosity electrode, demonstrating its superior performance in sensory signal detection. These findings emphasize the importance of optimizing electrode porosity in the development of advanced neural interfaces, with the potential to enhance clinical outcomes in peripheral nerve repair and neuroprosthetic applications.
Collapse
Affiliation(s)
- Wonsuk Choi
- Center for Bionics, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; (W.C.); (H.P.); (S.O.)
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - HyungDal Park
- Center for Bionics, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; (W.C.); (H.P.); (S.O.)
| | - Seonghwan Oh
- Center for Bionics, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; (W.C.); (H.P.); (S.O.)
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Seonho Seok
- Center for Nanoscience and Nanotechnology (C2N), University-Paris-Saclay, 91400 Orsay, France;
| | - Dae Sung Yoon
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jinseok Kim
- Center for Bionics, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; (W.C.); (H.P.); (S.O.)
| |
Collapse
|
2
|
González-González MA, Conde SV, Latorre R, Thébault SC, Pratelli M, Spitzer NC, Verkhratsky A, Tremblay MÈ, Akcora CG, Hernández-Reynoso AG, Ecker M, Coates J, Vincent KL, Ma B. Bioelectronic Medicine: a multidisciplinary roadmap from biophysics to precision therapies. Front Integr Neurosci 2024; 18:1321872. [PMID: 38440417 PMCID: PMC10911101 DOI: 10.3389/fnint.2024.1321872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/10/2024] [Indexed: 03/06/2024] Open
Abstract
Bioelectronic Medicine stands as an emerging field that rapidly evolves and offers distinctive clinical benefits, alongside unique challenges. It consists of the modulation of the nervous system by precise delivery of electrical current for the treatment of clinical conditions, such as post-stroke movement recovery or drug-resistant disorders. The unquestionable clinical impact of Bioelectronic Medicine is underscored by the successful translation to humans in the last decades, and the long list of preclinical studies. Given the emergency of accelerating the progress in new neuromodulation treatments (i.e., drug-resistant hypertension, autoimmune and degenerative diseases), collaboration between multiple fields is imperative. This work intends to foster multidisciplinary work and bring together different fields to provide the fundamental basis underlying Bioelectronic Medicine. In this review we will go from the biophysics of the cell membrane, which we consider the inner core of neuromodulation, to patient care. We will discuss the recently discovered mechanism of neurotransmission switching and how it will impact neuromodulation design, and we will provide an update on neuronal and glial basis in health and disease. The advances in biomedical technology have facilitated the collection of large amounts of data, thereby introducing new challenges in data analysis. We will discuss the current approaches and challenges in high throughput data analysis, encompassing big data, networks, artificial intelligence, and internet of things. Emphasis will be placed on understanding the electrochemical properties of neural interfaces, along with the integration of biocompatible and reliable materials and compliance with biomedical regulations for translational applications. Preclinical validation is foundational to the translational process, and we will discuss the critical aspects of such animal studies. Finally, we will focus on the patient point-of-care and challenges in neuromodulation as the ultimate goal of bioelectronic medicine. This review is a call to scientists from different fields to work together with a common endeavor: accelerate the decoding and modulation of the nervous system in a new era of therapeutic possibilities.
Collapse
Affiliation(s)
- María Alejandra González-González
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Pediatric Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Silvia V. Conde
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NOVA University, Lisbon, Portugal
| | - Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Stéphanie C. Thébault
- Laboratorio de Investigación Traslacional en salud visual (D-13), Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Marta Pratelli
- Neurobiology Department, Kavli Institute for Brain and Mind, UC San Diego, La Jolla, CA, United States
| | - Nicholas C. Spitzer
- Neurobiology Department, Kavli Institute for Brain and Mind, UC San Diego, La Jolla, CA, United States
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- International Collaborative Center on Big Science Plan for Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Cuneyt G. Akcora
- Department of Computer Science, University of Central Florida, Orlando, FL, United States
| | | | - Melanie Ecker
- Department of Biomedical Engineering, University of North Texas, Denton, TX, United States
| | | | - Kathleen L. Vincent
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, United States
| | - Brandy Ma
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
3
|
Ionescu ON, Franti E, Carbunaru V, Moldovan C, Dinulescu S, Ion M, Dragomir DC, Mihailescu CM, Lascar I, Oproiu AM, Neagu TP, Costea R, Dascalu M, Teleanu MD, Ionescu G, Teleanu R. System of Implantable Electrodes for Neural Signal Acquisition and Stimulation for Wirelessly Connected Forearm Prosthesis. BIOSENSORS 2024; 14:31. [PMID: 38248408 PMCID: PMC10813559 DOI: 10.3390/bios14010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024]
Abstract
There is great interest in the development of prosthetic limbs capable of complex activities that are wirelessly connected to the patient's neural system. Although some progress has been achieved in this area, one of the main problems encountered is the selective acquisition of nerve impulses and the closing of the automation loop through the selective stimulation of the sensitive branches of the patient. Large-scale research and development have achieved so-called "cuff electrodes"; however, they present a big disadvantage: they are not selective. In this article, we present the progress made in the development of an implantable system of plug neural microelectrodes that relate to the biological nerve tissue and can be used for the selective acquisition of neuronal signals and for the stimulation of specific nerve fascicles. The developed plug electrodes are also advantageous due to their small thickness, as they do not trigger nerve inflammation. In addition, the results of the conducted tests on a sous scrofa subject are presented.
Collapse
Affiliation(s)
- Octavian Narcis Ionescu
- Faculty of Mechanical and Electrical Engineering, Petroleum and Gas University from Ploiesti, 100680 Ploiesti, Romania; (O.N.I.); (G.I.)
- National Institute for Research and Development for Microtechnology Bucharest, 077190 Bucharest, Romania; (C.M.); (S.D.); (M.I.); (D.C.D.); (C.M.M.)
| | - Eduard Franti
- National Institute for Research and Development for Microtechnology Bucharest, 077190 Bucharest, Romania; (C.M.); (S.D.); (M.I.); (D.C.D.); (C.M.M.)
- ICIA, Centre of New Electronic Architectures, 061071 Bucharest, Romania;
| | - Vlad Carbunaru
- Emergency Clinic Hospital Bucharest, 014461 Bucharest, Romania; (V.C.); (I.L.); (A.M.O.); (T.P.N.)
- University of Medicine and Pharmacy UMF Carol Davila, 050474 Bucharest, Romania; (M.D.T.); (R.T.)
| | - Carmen Moldovan
- National Institute for Research and Development for Microtechnology Bucharest, 077190 Bucharest, Romania; (C.M.); (S.D.); (M.I.); (D.C.D.); (C.M.M.)
| | - Silviu Dinulescu
- National Institute for Research and Development for Microtechnology Bucharest, 077190 Bucharest, Romania; (C.M.); (S.D.); (M.I.); (D.C.D.); (C.M.M.)
| | - Marian Ion
- National Institute for Research and Development for Microtechnology Bucharest, 077190 Bucharest, Romania; (C.M.); (S.D.); (M.I.); (D.C.D.); (C.M.M.)
| | - David Catalin Dragomir
- National Institute for Research and Development for Microtechnology Bucharest, 077190 Bucharest, Romania; (C.M.); (S.D.); (M.I.); (D.C.D.); (C.M.M.)
| | - Carmen Marinela Mihailescu
- National Institute for Research and Development for Microtechnology Bucharest, 077190 Bucharest, Romania; (C.M.); (S.D.); (M.I.); (D.C.D.); (C.M.M.)
| | - Ioan Lascar
- Emergency Clinic Hospital Bucharest, 014461 Bucharest, Romania; (V.C.); (I.L.); (A.M.O.); (T.P.N.)
- University of Medicine and Pharmacy UMF Carol Davila, 050474 Bucharest, Romania; (M.D.T.); (R.T.)
| | - Ana Maria Oproiu
- Emergency Clinic Hospital Bucharest, 014461 Bucharest, Romania; (V.C.); (I.L.); (A.M.O.); (T.P.N.)
- University of Medicine and Pharmacy UMF Carol Davila, 050474 Bucharest, Romania; (M.D.T.); (R.T.)
| | - Tiberiu Paul Neagu
- Emergency Clinic Hospital Bucharest, 014461 Bucharest, Romania; (V.C.); (I.L.); (A.M.O.); (T.P.N.)
- University of Medicine and Pharmacy UMF Carol Davila, 050474 Bucharest, Romania; (M.D.T.); (R.T.)
| | - Ruxandra Costea
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania;
| | - Monica Dascalu
- ICIA, Centre of New Electronic Architectures, 061071 Bucharest, Romania;
- Faculty of Electronics, Telecommunications and Information Technology, National University of Science and Technology Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Mihai Daniel Teleanu
- University of Medicine and Pharmacy UMF Carol Davila, 050474 Bucharest, Romania; (M.D.T.); (R.T.)
| | - Gabriela Ionescu
- Faculty of Mechanical and Electrical Engineering, Petroleum and Gas University from Ploiesti, 100680 Ploiesti, Romania; (O.N.I.); (G.I.)
| | - Raluca Teleanu
- University of Medicine and Pharmacy UMF Carol Davila, 050474 Bucharest, Romania; (M.D.T.); (R.T.)
| |
Collapse
|
4
|
Fisher LE, Gaunt RA, Huang H. Sensory Restoration for Improved Motor Control of Prostheses. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2023; 28:100498. [PMID: 37860289 PMCID: PMC10583965 DOI: 10.1016/j.cobme.2023.100498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Somatosensory neuroprostheses are devices with the potential to restore the senses of touch and movement from prosthetic limbs for people with limb amputation or paralysis. By electrically stimulating the peripheral or central nervous system, these devices evoke sensations that appear to emanate from the missing or insensate limb, and when paired with sensors on the prosthesis, they can improve the functionality and embodiment of the prosthesis. There have been major advances in the design of these systems over the past decade, although several important steps remain before they can achieve widespread clinical adoption outside the lab setting. Here, we provide a brief overview of somatosensory neuroprostheses and explores these hurdles and potential next steps towards clinical translation.
Collapse
Affiliation(s)
- Lee E. Fisher
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Neural Basis of Cognition, Pittsburgh, PA 15213, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Robert A. Gaunt
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Neural Basis of Cognition, Pittsburgh, PA 15213, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - He Huang
- UNC/NC State Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695, USA
- UNC/NC State Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
5
|
Akouissi O, Lacour SP, Micera S, DeSimone A. A finite element model of the mechanical interactions between peripheral nerves and intrafascicular implants. J Neural Eng 2022; 19. [PMID: 35861557 DOI: 10.1088/1741-2552/ac7d0e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 06/29/2022] [Indexed: 11/11/2022]
Abstract
Objective.Intrafascicular peripheral nerve implants are key components in the development of bidirectional neuroprostheses such as touch-enabled bionic limbs for amputees. However, the durability of such interfaces is hindered by the immune response following the implantation. Among the causes linked to such reaction, the mechanical mismatch between host nerve and implant is thought to play a decisive role, especially in chronic settings.Approach.Here we focus on modeling mechanical stresses induced on the peripheral nerve by the implant's micromotion using finite element analysis. Through multiple parametric sweeps, we analyze the role of the implant's material, geometry (aspect-ratio and shape), and surface coating, deriving a set of parameters for the design of better-integrated implants.Main results.Our results indicate that peripheral nerve implants should be designed and manufactured with smooth edges, using materials at most three orders of magnitude stiffer than the nerve, and with innovative geometries to redistribute micromotion-associated loads to less delicate parts of the nerve such as the epineurium.Significance.Overall, our model is a useful tool for the peripheral nerve implant designer that is mindful of the importance of implant mechanics for long term applications.
Collapse
Affiliation(s)
- Outman Akouissi
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, 1202, Switzerland.,Bertarelli Foundation Chair in Translational Neuroengineering, Translational Neural Engineering Laboratory, Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, 1202, Switzerland
| | - Stéphanie P Lacour
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, 1202, Switzerland
| | - Silvestro Micera
- Bertarelli Foundation Chair in Translational Neuroengineering, Translational Neural Engineering Laboratory, Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, 1202, Switzerland.,The Biorobotics Institute and Department of Excellence in Robotics & AI, Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Antonio DeSimone
- The Biorobotics Institute and Department of Excellence in Robotics & AI, Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Pisa, Italy.,SISSA-International School for Advanced Studies, 34136 Trieste, Italy
| |
Collapse
|
6
|
Del Bono F, Rapeaux A, Demarchi D, Constandinou TG. Translating node of Ranvier currents to extraneural electrical fields: a flexible FEM modeling approach. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:4268-4272. [PMID: 34892165 DOI: 10.1109/embc46164.2021.9629677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Simulations of electroneurogram recording could help find the optimal set of electrodes and algorithms for selective neural recording. However, no flexible methods are established for selective neural recording as for neural stimulation. This paper proposes a method to couple a compartmental and a FEM nerve model, implemented in NEURON and COMSOL, respectively, to translate Node of Ranvier currents into extraneural electric fields. The study simulate ex-vivo experimental conditions, and the method allows flexibility in electrode geometries and nerve topologies. This model has been made available in a public repository4. So far, the model behavior complies with available experimental results and expectations from literature. There is good agreement in terms of signal amplitude and waveform, and computational times are acceptable, leaving room for flexible simulation studies complementary to animal tests.
Collapse
|
7
|
Millevolte AXT, Dingle AM, Ness JP, Novello J, Zeng W, Lu Y, Minor RL, Nemke B, Markel MD, Suminski AJ, Williams JC, Poore SO. Improving the Selectivity of an Osseointegrated Neural Interface: Proof of Concept For Housing Sieve Electrode Arrays in the Medullary Canal of Long Bones. Front Neurosci 2021; 15:613844. [PMID: 33790731 PMCID: PMC8006940 DOI: 10.3389/fnins.2021.613844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 02/16/2021] [Indexed: 01/15/2023] Open
Abstract
Sieve electrodes stand poised to deliver the selectivity required for driving advanced prosthetics but are considered inherently invasive and lack the stability required for a chronic solution. This proof of concept experiment investigates the potential for the housing and engagement of a sieve electrode within the medullary canal as part of an osseointegrated neural interface (ONI) for greater selectivity toward improving prosthetic control. The working hypotheses are that (A) the addition of a sieve interface to a cuff electrode housed within the medullary canal of the femur as part of an ONI would be capable of measuring efferent and afferent compound nerve action potentials (CNAPs) through a greater number of channels; (B) that signaling improves over time; and (C) that stimulation at this interface generates measurable cortical somatosensory evoked potentials through a greater number of channels. The modified ONI was tested in a rabbit (n = 1) amputation model over 12 weeks, comparing the sieve component to the cuff, and subsequently compared to historical data. Efferent CNAPs were successfully recorded from the sieve demonstrating physiological improvements in CNAPs between weeks 3 and 5, and somatosensory cortical responses recorded at 12 weeks postoperatively. This demonstrates that sieve electrodes can be housed and function within the medullary canal, demonstrated by improved nerve engagement and distinct cortical sensory feedback. This data presents the conceptual framework for housing more sophisticated sieve electrodes in bone as part of an ONI for improving selectivity with percutaneous connectivity toward improved prosthetic control.
Collapse
Affiliation(s)
- Augusto X T Millevolte
- Division of Plastic Surgery, Department of Surgery, University of Wisconsin - Madison, Madison, WI, United States.,Department of Biomedical Engineering, College of Engineering, University of Wisconsin - Madison, Madison, WI, United States
| | - Aaron M Dingle
- Division of Plastic Surgery, Department of Surgery, University of Wisconsin - Madison, Madison, WI, United States
| | - Jared P Ness
- Department of Biomedical Engineering, College of Engineering, University of Wisconsin - Madison, Madison, WI, United States
| | - Joseph Novello
- Department of Biomedical Engineering, College of Engineering, University of Wisconsin - Madison, Madison, WI, United States
| | - Weifeng Zeng
- Division of Plastic Surgery, Department of Surgery, University of Wisconsin - Madison, Madison, WI, United States
| | - Yan Lu
- Department of Medical Sciences, University of Wisconsin - Madison, Madison, WI, United States
| | - Rashea L Minor
- Department of Medical Sciences, University of Wisconsin - Madison, Madison, WI, United States
| | - Brett Nemke
- Department of Medical Sciences, University of Wisconsin - Madison, Madison, WI, United States
| | - Mark D Markel
- Department of Medical Sciences, University of Wisconsin - Madison, Madison, WI, United States
| | - Aaron J Suminski
- Department of Biomedical Engineering, College of Engineering, University of Wisconsin - Madison, Madison, WI, United States.,Department of Medical Sciences, University of Wisconsin - Madison, Madison, WI, United States.,Department of Neurological Surgery, University of Wisconsin - Madison, Madison, WI, United States
| | - Justin C Williams
- Department of Biomedical Engineering, College of Engineering, University of Wisconsin - Madison, Madison, WI, United States.,Department of Neurological Surgery, University of Wisconsin - Madison, Madison, WI, United States
| | - Samuel O Poore
- Division of Plastic Surgery, Department of Surgery, University of Wisconsin - Madison, Madison, WI, United States.,Department of Biomedical Engineering, College of Engineering, University of Wisconsin - Madison, Madison, WI, United States
| |
Collapse
|
8
|
Abstract
Peripheral nerve interfaces (PNIs) record and/or modulate neural activity of nerves, which are responsible for conducting sensory-motor information to and from the central nervous system, and for regulating the activity of inner organs. PNIs are used both in neuroscience research and in therapeutical applications such as precise closed-loop control of neuroprosthetic limbs, treatment of neuropathic pain and restoration of vital functions (e.g. breathing and bladder management). Implantable interfaces represent an attractive solution to directly access peripheral nerves and provide enhanced selectivity both in recording and in stimulation, compared to their non-invasive counterparts. Nevertheless, the long-term functionality of implantable PNIs is limited by tissue damage, which occurs at the implant-tissue interface, and is thus highly dependent on material properties, biocompatibility and implant design. Current research focuses on the development of mechanically compliant PNIs, which adapt to the anatomy and dynamic movements of nerves in the body thereby limiting foreign body response. In this paper, we review recent progress in the development of flexible and implantable PNIs, highlighting promising solutions related to materials selection and their associated fabrication methods, and integrated functions. We report on the variety of available interface designs (intraneural, extraneural and regenerative) and different modulation techniques (electrical, optical, chemical) emphasizing the main challenges associated with integrating such systems on compliant substrates.
Collapse
Affiliation(s)
- Valentina Paggi
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland. Equally contributing authors
| | | | | | | |
Collapse
|
9
|
Interfacing with the Peripheral Nervous System. J Neurosci Methods 2020; 340:108745. [DOI: 10.1016/j.jneumeth.2020.108745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|