1
|
Zhu JP, Zhang JY. Brief memory reactivation may not improve visual perception. Vision Res 2025; 227:108543. [PMID: 39827645 DOI: 10.1016/j.visres.2025.108543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/07/2025] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
Visual perceptual learning often requires a substantial number of trials to observe significant learning effects. Previously Amar-Halpert et al. (2017) have shown that brief reactivation (5 trials/day) is sufficient to improve the performance of the texture discrimination task (TDT), yielding comparable improvements to those achieved through full practice (252 trials/day). The finding is important since it would refine our understanding of learning mechanisms and applications. In the current study, we attempted to replicate these experiments using a larger number of observers and an improved experimental design. Using between-group comparison, we did find significant improvements in the reactivation group and the full-practice group as Amar-Halpert et al. (2017) showed. However, these improvements were comparable to those of the no-reactivation group with no exposure to the TDT task over the same period. Importantly, our within-group comparison showed that both the reactivation and no-reactivation groups exhibited additional significant improvements after further practicing the TDT task for an additional three days, demonstrating that the full-practice effect was significantly superior to the effects of brief memory reactivation or simple test-retest. Besides, when refining the constant stimuli method with fewer stimulus levels and more trials per level, we still observed comparable improvements brought by the reactivation and no-reactivation groups. Therefore, our results suggested that brief memory reactivation may not significantly contribute to the improvement of perceptual learning, and traditional perceptual training could still be a necessary and effective approach for substantial improvements.
Collapse
Affiliation(s)
- Jun-Ping Zhu
- School of Psychological and Cognitive Sciences, and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Jun-Yun Zhang
- School of Psychological and Cognitive Sciences, and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China.
| |
Collapse
|
2
|
Heesbeen EJ, Bijlsma EY, Risseeuw TA, Hessel EVS, Groenink L. A systematic approach to identify gaps in neuroimmunology: TNF-α and fear learning deficits, a worked example. Brain Behav Immun 2025; 123:752-764. [PMID: 39442635 DOI: 10.1016/j.bbi.2024.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/15/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND The pathophysiology of several neurodegenerative and neuropsychiatric disorders is linked to an altered immune system. However, it is often unclear how the immune system specifically affects these disorders since neuroimmune interactions are very complex. In this paper, we introduce an adjusted version of the adverse outcome pathway (AOP) approach from toxicology to the field of neuroimmunology. A review of the effect of TNF-α on fear learning deficits is used as a worked example to demonstrate how an AOP approach can help identify gaps of knowledge and crucial steps in the pathophysiology of neuroimmunological disorders. METHODS The AOP was constructed in five steps. First, the adverse outcome was formulated clearly and specifically. Second, the link between the molecular initiating event and the adverse outcome was established with a preliminary literature search in the Medline database. Third, a systematic literature search was performed in which we identified 95 relevant articles. Fourth, the main biological processes and relevant key events were identified. Fifth, the links between key events were determined and an AOP network was constructed. RESULTS We identified three pathways through which TNF-α may affect fear learning. First, TNF-α receptor activation increases NF-κB levels which increases oxidative stress levels and reduces the activity of glutamate transporters. This alters the synaptic plasticity which is associated with impaired fear acquisition, consolidation, and fear extinction. Second, activation of TNF-α receptors increases the expression and capacity of the serotonin transporter which is linked to impaired fear acquisition, expression, and extinction. Third, TNF-α receptor 1 activation can induce necroptosis, leading to neuroinflammation which is linked to fear learning deficits. CONCLUSION To successfully apply the AOP approach in neuroimmunology we recommend defining adverse outcomes more precisely, establishing stronger connections between key events from various biological processes, incorporating feedforward and feedback loops, and identifying more mechanistic knowledge in later key events. These adjustments are needed to map the complex processes within the field of neuroimmunology and to identify gaps of knowledge.
Collapse
Affiliation(s)
- Elise J Heesbeen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands (the).
| | - Elisabeth Y Bijlsma
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands (the)
| | - Tristan A Risseeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands (the)
| | - Ellen V S Hessel
- Public Health and Health Services, RIVM National Institute for Public Health and the Environment, Bilthoven, Netherlands (the)
| | - Lucianne Groenink
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands (the)
| |
Collapse
|
3
|
Radiske A, Cahill EN, Milton AL, Cammarota M. Editorial: On the destabilization of maladaptive memory: updates and future perspectives. Front Behav Neurosci 2024; 17:1351704. [PMID: 38249126 PMCID: PMC10797033 DOI: 10.3389/fnbeh.2023.1351704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Affiliation(s)
- Andressa Radiske
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
- Edmond and Lily Safra International Institute of Neuroscience, Macaiba, Brazil
| | - Emma N. Cahill
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Amy L. Milton
- Department of Psychology, University of Cambridge, Downing Site, Cambridge, United Kingdom
| | - Martín Cammarota
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
4
|
Milton AL. Drug memory reconsolidation: from molecular mechanisms to the clinical context. Transl Psychiatry 2023; 13:370. [PMID: 38040677 PMCID: PMC10692359 DOI: 10.1038/s41398-023-02666-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 12/03/2023] Open
Abstract
Since its rediscovery at the beginning of the 21st Century, memory reconsolidation has been proposed to be a therapeutic target for reducing the impact of emotional memories that can go awry in mental health disorders such as drug addiction (substance use disorder, SUD). Addiction can be conceptualised as a disorder of learning and memory, in which both pavlovian and instrumental learning systems become hijacked into supporting drug-seeking and drug-taking behaviours. The past two decades of research have characterised the details of the molecular pathways supporting the reconsolidation of pavlovian cue-drug memories, with more recent work indicating that the reconsolidation of instrumental drug-seeking memories also relies upon similar mechanisms. This narrative review considers what is known about the mechanisms underlying the reconsolidation of pavlovian and instrumental memories associated with drug use, how these approaches have translated to experimental medicine studies, and the challenges and opportunities for the clinical use of reconsolidation-based therapies.
Collapse
Affiliation(s)
- Amy L Milton
- Department of Psychology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
5
|
Barak S, Goltseker K. New Approaches for Alcohol Use Disorder Treatment via Memory Retrieval and Reconsolidation Manipulations. Curr Top Behav Neurosci 2023. [PMID: 36627475 DOI: 10.1007/7854_2022_411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Relapse to alcohol seeking and drinking is a major clinical challenge in alcohol use disorder and is frequently brought about by cue-induced craving, caused by exposure to cues that evoke alcohol-related memories. It has been postulated that memories become labile for manipulation shortly after their retrieval and then restabilize in a "memory reconsolidation" process. Disruption or interference with the reconsolidation of drug-associated memories has been suggested as a possible strategy to reduce or even prevent cue-induced craving and relapse. Here, we review literature demonstrating the capacity of behavioral or pharmacological manipulations to reduce relapse in animal models and humans when applied after a short retrieval of memories associated with alcohol, suggestively disrupting the reconsolidation of such memories. We suggest that while there is a clear potential of using post-retrieval manipulations to target specific relapse-evoking memories, future research should be more systematic, standardized, and translational. Specifically, we discuss several critical limitations and boundary conditions, which should be addressed to improve consistency and replicability in the field and lead to the development of an efficient reconsolidation-based relapse prevention therapy.
Collapse
Affiliation(s)
- Segev Barak
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| | - Koral Goltseker
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| |
Collapse
|
6
|
Tavares TF, Bueno JLO, Doyère V. Temporal prediction error triggers amygdala-dependent memory updating in appetitive operant conditioning in rats. Front Behav Neurosci 2023; 16:1060587. [PMID: 36703723 PMCID: PMC9873233 DOI: 10.3389/fnbeh.2022.1060587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Reinforcement learning theories postulate that prediction error, i.e., a discrepancy between the actual and expected outcomes, drives reconsolidation and new learning, inducing an updating of the initial memory. Pavlovian studies have shown that prediction error detection is a fundamental mechanism in triggering amygdala-dependent memory updating, where the temporal relationship between stimuli plays a critical role. However, in contrast to the well-established findings in aversive situations (e.g., fear conditioning), only few studies exist on prediction error in appetitive operant conditioning, and even less with regard to the role of temporal parameters. To explore if temporal prediction error in an appetitive operant paradigm could generate an updating and consequent reconsolidation and/or new learning of temporal association, we ran four experiments in adult male rats. Experiment 1 verified whether an unexpected delay in the time of reward's availability (i.e., a negative temporal prediction error) in a single session produces an updating in long-term memory of temporal expectancy in an appetitive operant conditioning. Experiment 2 showed that negative prediction errors, either due to the temporal change or through reward omission, increased in the basolateral amygdala nucleus (BLA) the activation of a protein that is critical for memory formation. Experiment 3 revealed that the presence of a protein synthesis inhibitor (anisomycin) in the BLA during the session when the reward was delayed (Error session) affected the temporal updating. Finally, Experiment 4 showed that anisomycin, when infused immediately after the Error session, interfered with the long-term memory of the temporal updating. Together, our study demonstrated an involvement of BLA after a change in temporal and reward contingencies, and in the resulting updating in long-term memory in appetitive operant conditioning.
Collapse
Affiliation(s)
- Tatiane Ferreira Tavares
- Laboratory of Associative Processes, Temporal Control and Memory, Department of Psychology, University of São Paulo, Ribeirão Preto, Brazil,Institut des Neurosciences Paris-Saclay – NeuroPSI CNRS, Université Paris-Saclay, Saclay, France,*Correspondence: Tatiane Ferreira Tavares,
| | - José Lino Oliveira Bueno
- Laboratory of Associative Processes, Temporal Control and Memory, Department of Psychology, University of São Paulo, Ribeirão Preto, Brazil
| | - Valérie Doyère
- Institut des Neurosciences Paris-Saclay – NeuroPSI CNRS, Université Paris-Saclay, Saclay, France,Valérie Doyère,
| |
Collapse
|
7
|
Cheng C, Exton-McGuinness MTJ, Lee JLC. Procedures between training and reactivation influence the destabilization of instrumental sucrose memory. Front Behav Neurosci 2022; 16:953629. [PMID: 36187375 PMCID: PMC9524351 DOI: 10.3389/fnbeh.2022.953629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022] Open
Abstract
Memory destabilization and reconsolidation is hypothesized to be a fundamental mnemonic process that can underpin memory updating. Instrumental memories have been shown recently to be destabilized following a reactivation session that involves a change in instrumental reward contingency. However, the acquisition and performance of an instrumental response occurs in the presence of the learning of other reward-related memories. This may influence the ability of a given reactivation session to destabilize the previously learned instrumental memory. Here we present a series of experiments in male rats involving an instrumental memory trained on an FR1 schedule over 10 days, and then reactivated in a session that imposed a VR5 schedule of reinforcement. When MK-801 was injected prior to the VR5 reactivation session, it reliably impaired subsequent instrumental performance at test only when the reactivation session occurred 48 h, and not 24 h, after the end of training. The interposition between the end of training and the reactivation session of a context extinction session, an additional VR5 reactivation session, or indeed the simple experience of being handled and injected with vehicle, resulted in MK-801 no longer having an amnestic effect on test performance. While we do not have a clear account for the process and mechanism underpinning this apparent selectivity of the effect of the VR5 session to destabilize the instrumental memory, it does additionally highlight the need for greater understanding of the conditions that facilitate reactivation-induced memory destabilization.
Collapse
Affiliation(s)
| | | | - Jonathan L. C. Lee
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
8
|
Pintori N, Piva A, Guardiani V, Decimo I, Chiamulera C. Brief Environmental Enrichment exposure enhances contextual-induced sucrose-seeking with and without memory reactivation in rats. Behav Brain Res 2022; 416:113556. [PMID: 34474039 DOI: 10.1016/j.bbr.2021.113556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/21/2021] [Accepted: 08/23/2021] [Indexed: 12/16/2022]
Abstract
Chronic Environmental Enrichment (EE) has been shown to prevent the relapse to addictive behaviours, such as drug-taking and -seeking. Recently, acute EE was shown to reduce cue-induced sucrose-seeking, but its effects on contextual (Cx)-induced sucrose-seeking is still unknown. Here we report the effects of brief EE exposure on Cx-induced sucrose-seeking with and without prior Cx-memory reactivation. Adult male Sprague-Dawley rats were trained to sucrose self-administration associated to a specific conditioning Cx (CxA), followed by a 7-day extinction in a different Cx (CxB). Afterwards, rats were exposed for 22 h to EE, and 1 h later to either i) Cx-induced sucrose-seeking (1 h, renewal without Cx-memory reactivation), ii) or two different Cx-memory reactivations: short (2-min) and long (15-min) CxA-retrieval session (Cx-Ret). In Cx-Ret experiments, CxA-induced sucrose-seeking test (1 h) was done after a subsequent 3-day extinction phase. The assessment of molecular markers of memory reactivation/reconsolidation, Zif-268 and rpS6P, was performed 2 h after Cx-Ret. Brief EE exposure enhanced Cx-induced sucrose-seeking without and with short but not long Cx-retrieval. Moreover, EE impaired discriminative responding at test prior to long, whereas improved it with or without short Cx-retrieval. Different changes in Zif-268 and rpS6P expression induced by short vs. long Cx-Ret were correlated to behavioural data, suggesting the occurrence of different memory processes affected by EE. Our data show that brief EE exposure may differently affect subsequent appetitive relapse depending on the modality of re-exposure to conditioned context. This finding suggests caution and further studies to understand the proper conditions for the use of EE against appetitive and addiction disorders.
Collapse
Affiliation(s)
- N Pintori
- Section of Pharmacology, Dept. Diagnostic & Public Health, University of Verona, Verona, Italy.
| | - A Piva
- Section of Pharmacology, Dept. Diagnostic & Public Health, University of Verona, Verona, Italy
| | - V Guardiani
- Section of Pharmacology, Dept. Diagnostic & Public Health, University of Verona, Verona, Italy
| | - I Decimo
- Section of Pharmacology, Dept. Diagnostic & Public Health, University of Verona, Verona, Italy
| | - C Chiamulera
- Section of Pharmacology, Dept. Diagnostic & Public Health, University of Verona, Verona, Italy
| |
Collapse
|
9
|
Chen L, Yan H, Wang Y, He Z, Leng Q, Huang S, Wu F, Feng X, Yan J. The Mechanisms and Boundary Conditions of Drug Memory Reconsolidation. Front Neurosci 2021; 15:717956. [PMID: 34421529 PMCID: PMC8377231 DOI: 10.3389/fnins.2021.717956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
Drug addiction can be seen as a disorder of maladaptive learning characterized by relapse. Therefore, disrupting drug-related memories could be an approach to improving therapies for addiction. Pioneering studies over the last two decades have revealed that consolidated memories are not static, but can be reconsolidated after retrieval, thereby providing candidate pathways for the treatment of addiction. The limbic-corticostriatal system is known to play a vital role in encoding the drug memory engram. Specific structures within this system contribute differently to the process of memory reconsolidation, making it a potential target for preventing relapse. In addition, as molecular processes are also active during memory reconsolidation, amnestic agents can be used to attenuate drug memory. In this review, we focus primarily on the brain structures involved in storing the drug memory engram, as well as the molecular processes involved in drug memory reconsolidation. Notably, we describe reports regarding boundary conditions constraining the therapeutic potential of memory reconsolidation. Furthermore, we discuss the principles that could be employed to modify stored memories. Finally, we emphasize the challenge of reconsolidation-based strategies, but end with an optimistic view on the development of reconsolidation theory for drug relapse prevention.
Collapse
Affiliation(s)
- Liangpei Chen
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
| | - He Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
| | - Yufang Wang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
| | - Ziping He
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Qihao Leng
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Shihao Huang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Feilong Wu
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Xiangyang Feng
- Department of Forensic Science, School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China.,Department of Forensic Science, School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
10
|
Targeting the Reconsolidation of Licit Drug Memories to Prevent Relapse: Focus on Alcohol and Nicotine. Int J Mol Sci 2021; 22:ijms22084090. [PMID: 33920982 PMCID: PMC8071281 DOI: 10.3390/ijms22084090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/29/2022] Open
Abstract
Alcohol and nicotine are widely abused legal substances worldwide. Relapse to alcohol or tobacco seeking and consumption after abstinence is a major clinical challenge, and is often evoked by cue-induced craving. Therefore, disruption of the memory for the cue–drug association is expected to suppress relapse. Memories have been postulated to become labile shortly after their retrieval, during a “memory reconsolidation” process. Interference with the reconsolidation of drug-associated memories has been suggested as a possible strategy to reduce or even prevent cue-induced craving and relapse. Here, we surveyed the growing body of studies in animal models and in humans assessing the effectiveness of pharmacological or behavioral manipulations in reducing relapse by interfering with the reconsolidation of alcohol and nicotine/tobacco memories. Our review points to the potential of targeting the reconsolidation of these memories as a strategy to suppress relapse to alcohol drinking and tobacco smoking. However, we discuss several critical limitations and boundary conditions, which should be considered to improve the consistency and replicability in the field, and for development of an efficient reconsolidation-based relapse-prevention therapy.
Collapse
|
11
|
De Deurwaerdère P, Galati S, Di Giovanni G. Mediterranean Neuroscience Methods 2019. J Neurosci Methods 2020; 348:109010. [PMID: 33242527 DOI: 10.1016/j.jneumeth.2020.109010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
| | - Salvatore Galati
- Parkinson's Disease and Movement Disorders Center, Neurocenter of Southern Switzerland - Institute of Clinical Neuroscience of Southern Switzerland, Lugano, Switzerland; Faculty of Biomedical Sciences, University of Southern Switzerland, Lugano, Switzerland
| | - Giuseppe Di Giovanni
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, UK.
| |
Collapse
|