1
|
Shashikadze B, Franzmeier S, Hofmann I, Kraetzl M, Flenkenthaler F, Blutke A, Fröhlich T, Wolf E, Hinrichs A. Structural and proteomic repercussions of growth hormone receptor deficiency on the pituitary gland: Lessons from a translational pig model. J Neuroendocrinol 2024; 36:e13277. [PMID: 37160285 DOI: 10.1111/jne.13277] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/11/2023]
Abstract
Growth hormone receptor deficiency (GHRD) results in low serum insulin-like growth factor 1 (IGF1) and high, but non-functional serum growth hormone (GH) levels in human Laron syndrome (LS) patients and animal models. This study investigated the quantitative histomorphological and molecular alterations associated with GHRD. Pituitary glands from 6 months old growth hormone receptor deficient (GHR-KO) and control pigs were analyzed using a quantitative histomorphological approach in paraffin (9 GHR-KO [5 males, 4 females] vs. 11 controls [5 males, 6 females]), ultrathin sections tissue sections (3 male GHR-KO vs. 3 male controls) and label-free proteomics (4 GHR-KO vs. 4 control pigs [2 per sex]). GHR-KO pigs displayed reduced body weights (60% reduction in comparison to controls; p < .0001) and decreased pituitary volumes (54% reduction in comparison to controls; p < .0001). The volume proportion of the adenohypophysis did not differ in GHR-KO and control pituitaries (65% vs. 71%; p = .0506) and GHR-KO adenohypophyses displayed a reduced absolute volume but an unaltered volume density of somatotrophs in comparison to controls (21% vs. 18%; p = .3164). In GHR-KO pigs, somatotroph cells displayed a significantly reduced volume density of granules (23.5%) as compared to controls (67.7%; p < .0001). Holistic proteome analysis of adenohypophysis samples identified 4660 proteins, of which 592 were differentially abundant between the GHR-KO and control groups. In GHR-KO samples, the abundance of somatotropin precursor was decreased, whereas increased abundances of proteins involved in protein production, transport and endoplasmic reticulum (ER) stress were revealed. Increased protein production and secretion as well as significantly reduced proportion of GH-storing granules in somatotroph cells of the adenohypophysis without an increase in volume density of somatotroph cells in the adenohypophysis could explain elevated serum GH levels in GHR-KO pigs.
Collapse
Affiliation(s)
- Bachuki Shashikadze
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sophie Franzmeier
- Institute of Veterinary Pathology at the Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Isabel Hofmann
- Institute of Veterinary Pathology at the Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Martin Kraetzl
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Munich, Germany
- Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, Oberschleissheim, Germany
| | - Florian Flenkenthaler
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Andreas Blutke
- Institute of Veterinary Pathology at the Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Eckhard Wolf
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Munich, Germany
- Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, Oberschleissheim, Germany
| | - Arne Hinrichs
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Munich, Germany
- Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, Oberschleissheim, Germany
| |
Collapse
|
2
|
Yang Y, Xu S, He H, Zhu X, Liu Y, Hu M, Jiang B, Li Y, Ai X, Fu G, Zhang H. Yersinia ruckeri Infection and Enteric Redmouth Disease among Endangered Chinese Sturgeons, China, 2022. Emerg Infect Dis 2024; 30:1125-1132. [PMID: 38781928 PMCID: PMC11138986 DOI: 10.3201/eid3006.231354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
During October 2022, enteric redmouth disease (ERM) affected Chinese sturgeons at a farm in Hubei, China, causing mass mortality. Affected fish exhibited characteristic red mouth and intestinal inflammation. Investigation led to isolation of a prominent bacterial strain, zhx1, from the internal organs and intestines of affected fish. Artificial infection experiments confirmed the role of zhx1 as the pathogen responsible for the deaths. The primary pathologic manifestations consisted of degeneration, necrosis, and inflammatory reactions, resulting in multiple organ dysfunction and death. Whole-genome sequencing of the bacteria identified zhx1 as Yersinia ruckeri, which possesses 135 drug-resistance genes and 443 virulence factor-related genes. Drug-susceptibility testing of zhx1 demonstrated high sensitivity to chloramphenicol and florfenicol but varying degrees of resistance to 18 other antimicrobial drugs. Identifying the pathogenic bacteria associated with ERM in Chinese sturgeons establishes a theoretical foundation for the effective prevention and control of this disease.
Collapse
|
3
|
Yang Y, Xu S, He H, Zhu X, Liu Y, Ai X, Chen Y. Mechanism of sturgeon intestinal inflammation induced by Yersinia ruckeri and the effect of florfenicol intervention. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116138. [PMID: 38394759 DOI: 10.1016/j.ecoenv.2024.116138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/29/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
The mechanism by which Y. ruckeri infection induces enteritis in Chinese sturgeon remains unclear, and the efficacy of drug prevention and control measures is not only poor but also plagued with numerous issues. We conducted transcriptomic and 16 S rRNA sequencing analyses to examine the differences in the intestinal tract of hybrid sturgeon before and after Y. ruckeri infection and florfenicol intervention. Our findings revealed that Y. ruckeri induced the expression of multiple inflammatory factors, including il1β, il6, and various chemokines, as well as casp3, casp8, and multiple tumor necrosis factor family members, resulting in pathological injury to the body. Additionally, at the phylum level, the relative abundance of Firmicutes and Bacteroidota increased, while the abundance of Plesiomonas and Cetobacterium decreased at the genus level, altering the composition of the intestinal flora. Following florfenicol intervention, the expression of multiple apoptosis and inflammation-related genes was down-regulated, promoting tissue repair. However, the flora became further dysregulated, increasing the risk of infection. In conclusion, our analysis of the transcriptome and intestinal microbial composition demonstrated that Y. ruckeri induces intestinal pathological damage by triggering apoptosis and altering the composition of the intestinal microbiota. Florfenicol intervention can repair pathological damage, but it also exacerbates flora imbalance, leading to a higher risk of infection. These findings help elucidate the molecular mechanism of Y. ruckeri-induced enteritis in sturgeon and evaluate the therapeutic effect of drugs on intestinal inflammation in sturgeon.
Collapse
Affiliation(s)
- Yibin Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; Key Laboratory of Sturgeon Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hangzhou Qiandao Lake Sturgeon Technology Co., Ltd., Hangzhou 311799, China
| | - Shijian Xu
- Key Laboratory of Sturgeon Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hangzhou Qiandao Lake Sturgeon Technology Co., Ltd., Hangzhou 311799, China.
| | - Hao He
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Xia Zhu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yongtao Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| | - Yuhua Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
4
|
Yang Y, Zhu X, Liu Y, Xu N, Kong W, Ai X, Zhang H. Effect of Agaricus bisporus Polysaccharides (ABPs) on anti-CCV immune response of channel catfish. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109051. [PMID: 37689228 DOI: 10.1016/j.fsi.2023.109051] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023]
Abstract
Herein, the effects of Agaricus bisporus Polysaccharides (ABPs) on anti-channel catfish virus (CCV) infections to promote their application in channel catfish culture were explored. Transcriptome and metabolome analyses were conducted on the spleen of a CCV-infected channel catfish model fed with or without ABPs. CCV infections upregulated many immune and apoptosis-related genes, such as IL-6, IFN-α3, IFN-γ1, IL-26, Casp3, Casp8, and IL-10, and activated specific immunity mediated by B cells. However, after adding ABPs, the expression of inflammation-related genes decreased in CCV-infected channel catfish, and the inflammatory inhibitors NLRC3 were upregulated. Meanwhile, the expression of apoptosis-related genes was reduced, indicating that ABPs can more rapidly and strongly enhance the immunity of channel catfish to resist viral infection. Moreover, the metabonomic analysis showed that channel catfish had a high energy requirement during CCV infection, and ABPs could enhance the immune function of channel catfish. In conclusion, ABPs can enhance the antiviral ability of channel catfish by enhancing immune response and regulating inflammation. Thus, these findings provided new insights into the antiviral response effects of ABPs, which might support their application in aquaculture.
Collapse
Affiliation(s)
- Yibin Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Xia Zhu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Yongtao Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Ning Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Weiguang Kong
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| | - Hongyu Zhang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, 100141, China.
| |
Collapse
|
5
|
Yang Y, Zhu X, Liu Y, Xu N, Ai X, Zhang H. Effects of diets rich in Agaricus bisporus polysaccharides on the growth, antioxidant, immunity, and resistance to Yersinia ruckeri in channel catfish. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108941. [PMID: 37463648 DOI: 10.1016/j.fsi.2023.108941] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023]
Abstract
To promote the application of Agaricus bisporus polysaccharides (ABPs) in channel catfish (Ictalurus punctatus) culture, we evaluated the effects of ABPs on the growth, immunity, antioxidant, and antibacterial activity of channel catfish. When the amount of ABPs was 250 mg/kg, channel catfish's weight gain and specific growth rates increased significantly while the feed coefficient decreased. We also found that adding ABPs in the feed effectively increased the activities of ACP, MDA, T-SOD, AKP, T-AOC, GSH, and CAT enzymes and immune-related genes such as IL-1β, Hsp70, and IgM in the head kidney of channel catfish. Besides, long-term addition will not cause pathological damage to the head kidney. When the amount of ABPs was over 125 mg/kg, the protection rate of channel catfish was more than 60%. According to the intestinal transcriptome analysis, the addition of ABPs promoted the expression of intestinal immunity genes and growth metabolism-related genes and enriched multiple related KEEG pathways. When challenged by Yersinia ruckeri infection, the immune response of channel catfish fed with ABPs was intenser and quicker. Additionally, the 16S rRNA gene sequencing analysis showed that the composition of the intestinal microbial community of channel catfish treated with ABPs significantly changed, and the abundance of microorganisms beneficial to channel catfish growth, such as Firmicutes and Bacteroidota increased. In conclusion, feeding channel catfish with ABPs promoted growth, enhanced immunity and antioxidant, and improved resistance to bacterial infections. Our current results might promote the use of ABPs in channel catfish and even other aquacultured fish species.
Collapse
Affiliation(s)
- Yibin Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| | - Xia Zhu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Yongtao Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Ning Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| | - Hongyu Zhang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, 100141, China.
| |
Collapse
|