1
|
Hu G, Li H, Zhao W, Hao Y, Bai Z, Nickerson LD, Cong F. Discovering hidden brain network responses to naturalistic stimuli via tensor component analysis of multi-subject fMRI data. Neuroimage 2022; 255:119193. [PMID: 35398543 PMCID: PMC11428080 DOI: 10.1016/j.neuroimage.2022.119193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 02/23/2022] [Accepted: 04/06/2022] [Indexed: 11/19/2022] Open
Abstract
The study of brain network interactions during naturalistic stimuli facilitates a deeper understanding of human brain function. To estimate large-scale brain networks evoked with naturalistic stimuli, a tensor component analysis (TCA) based framework was used to characterize shared spatio-temporal patterns across subjects in a purely data-driven manner. In this framework, a third-order tensor is constructed from the timeseries extracted from all brain regions from a given parcellation, for all participants, with modes of the tensor corresponding to spatial distribution, time series and participants. TCA then reveals spatially and temporally shared components, i.e., evoked networks with the naturalistic stimuli, their time courses of activity and subject loadings of each component. To enhance the reproducibility of the estimation with the adaptive TCA algorithm, a novel spectral clustering method, tensor spectral clustering, was proposed and applied to evaluate the stability of the TCA algorithm. We demonstrated the effectiveness of the proposed framework via simulations and real fMRI data collected during a motor task with a traditional fMRI study design. We also applied the proposed framework to fMRI data collected during passive movie watching to illustrate how reproducible brain networks are evoked by naturalistic movie viewing.
Collapse
Affiliation(s)
- Guoqiang Hu
- School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, China.
| | - Huanjie Li
- School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, China
| | - Wei Zhao
- School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, China
| | - Yuxing Hao
- School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, China
| | - Zonglei Bai
- School of Electronics Engineering and Computer Science, Peking University, Beijing, China
| | - Lisa D Nickerson
- Brain Imaging Center, Mclean Hospital, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| | - Fengyu Cong
- School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, China; School of Artificial Intelligence, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, China; Key Laboratory of Integrated Circuit and Biomedical Electronic System, Liaoning Province. Dalian University of Technology, Dalian, China; Faculty of Information Technology, University of Jyvaskyla, Jyvaskyla, Finland.
| |
Collapse
|