1
|
Sibille J, Gehr C, Kremkow J. Efficient mapping of the thalamocortical monosynaptic connectivity in vivo by tangential insertions of high-density electrodes in the cortex. Proc Natl Acad Sci U S A 2024; 121:e2313048121. [PMID: 38241439 PMCID: PMC10823237 DOI: 10.1073/pnas.2313048121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 12/13/2023] [Indexed: 01/21/2024] Open
Abstract
The thalamus provides the principal input to the cortex and therefore understanding the mechanisms underlying cortical integration of sensory inputs requires to characterize the thalamocortical connectivity in behaving animals. Here, we propose tangential insertions of high-density electrodes into mouse cortical layer 4 as a method to capture the activity of thalamocortical axons simultaneously with their synaptically connected cortical neurons. This technique can reliably monitor multiple parallel thalamic synaptic inputs to cortical neurons, providing an efficient approach to map thalamocortical connectivity in both awake and anesthetized mice.
Collapse
Affiliation(s)
- Jérémie Sibille
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Berlin10117, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin10115, Germany
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin10115, Germany
- Einstein Center for Neurosciences Berlin, Berlin10117, Germany
| | - Carolin Gehr
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Berlin10117, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin10115, Germany
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin10115, Germany
- Einstein Center for Neurosciences Berlin, Berlin10117, Germany
| | - Jens Kremkow
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Berlin10117, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin10115, Germany
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin10115, Germany
- Einstein Center for Neurosciences Berlin, Berlin10117, Germany
| |
Collapse
|
2
|
Gehr C, Sibille J, Kremkow J. Retinal input integration in excitatory and inhibitory neurons in the mouse superior colliculus in vivo. eLife 2023; 12:RP88289. [PMID: 37682267 PMCID: PMC10491433 DOI: 10.7554/elife.88289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023] Open
Abstract
The superior colliculus (SC) is a midbrain structure that receives inputs from retinal ganglion cells (RGCs). The SC contains one of the highest densities of inhibitory neurons in the brain but whether excitatory and inhibitory SC neurons differentially integrate retinal activity in vivo is still largely unknown. We recently established a recording approach to measure the activity of RGCs simultaneously with their postsynaptic SC targets in vivo, to study how SC neurons integrate RGC activity. Here, we employ this method to investigate the functional properties that govern retinocollicular signaling in a cell type-specific manner by identifying GABAergic SC neurons using optotagging in VGAT-ChR2 mice. Our results demonstrate that both excitatory and inhibitory SC neurons receive comparably strong RGC inputs and similar wiring rules apply for RGCs innervation of both SC cell types, unlike the cell type-specific connectivity in the thalamocortical system. Moreover, retinal activity contributed more to the spiking activity of postsynaptic excitatory compared to inhibitory SC neurons. This study deepens our understanding of cell type-specific retinocollicular functional connectivity and emphasizes that the two major brain areas for visual processing, the visual cortex and the SC, differently integrate sensory afferent inputs.
Collapse
Affiliation(s)
- Carolin Gehr
- Neuroscience Research Center, Charité-Universitätsmedizin BerlinBerlinGermany
- Bernstein Center for Computational Neuroscience BerlinBerlinGermany
- Institute for Theoretical Biology, Humboldt-Universität zu BerlinBerlinGermany
- Einstein Center for Neurosciences BerlinBerlinGermany
| | - Jeremie Sibille
- Neuroscience Research Center, Charité-Universitätsmedizin BerlinBerlinGermany
- Bernstein Center for Computational Neuroscience BerlinBerlinGermany
- Institute for Theoretical Biology, Humboldt-Universität zu BerlinBerlinGermany
- Einstein Center for Neurosciences BerlinBerlinGermany
| | - Jens Kremkow
- Neuroscience Research Center, Charité-Universitätsmedizin BerlinBerlinGermany
- Bernstein Center for Computational Neuroscience BerlinBerlinGermany
- Institute for Theoretical Biology, Humboldt-Universität zu BerlinBerlinGermany
- Einstein Center for Neurosciences BerlinBerlinGermany
| |
Collapse
|
3
|
Teh KL, Sibille J, Gehr C, Kremkow J. Retinal waves align the concentric orientation map in mouse superior colliculus to the center of vision. SCIENCE ADVANCES 2023; 9:eadf4240. [PMID: 37172095 PMCID: PMC10181181 DOI: 10.1126/sciadv.adf4240] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Neurons in the mouse superior colliculus (SC) are arranged in a concentric orientation map, which is aligned to the center of vision and the optic flow experienced by the mouse. The origin of this map remains unclear. Here, we propose that spontaneous retinal waves during development provide a scaffold to establish the concentric orientation map within the SC and its alignment to the optic flow. We test this hypothesis by modeling the orientation-tuned SC neurons that receive ON/OFF retinal inputs. Our model suggests that the propagation direction bias of stage III retinal waves, together with OFF-delayed responses, shapes the spatial organization of the orientation map. The OFF delay establishes orientation-tuned neurons by segregating their ON/OFF receptive subfields, the wave-like activities form the concentric pattern, and the direction biases align the map to the center of vision. Together, retinal waves may play an instructive role in establishing functional properties of single SC neurons and their spatial organization within maps.
Collapse
Affiliation(s)
- Kai Lun Teh
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Charitéplatz 1, Berlin 10117, Germany
- Bernstein Center for Computational Neuroscience Berlin, Philippstraße 13, Berlin 10115, Germany
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Philippstraße 13, Berlin 10115, Germany
- Einstein Center for Neurosciences Berlin, Charitéplatz 1, Berlin, Germany
| | - Jérémie Sibille
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Charitéplatz 1, Berlin 10117, Germany
- Bernstein Center for Computational Neuroscience Berlin, Philippstraße 13, Berlin 10115, Germany
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Philippstraße 13, Berlin 10115, Germany
- Einstein Center for Neurosciences Berlin, Charitéplatz 1, Berlin, Germany
| | - Carolin Gehr
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Charitéplatz 1, Berlin 10117, Germany
- Bernstein Center for Computational Neuroscience Berlin, Philippstraße 13, Berlin 10115, Germany
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Philippstraße 13, Berlin 10115, Germany
- Einstein Center for Neurosciences Berlin, Charitéplatz 1, Berlin, Germany
| | - Jens Kremkow
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Charitéplatz 1, Berlin 10117, Germany
- Bernstein Center for Computational Neuroscience Berlin, Philippstraße 13, Berlin 10115, Germany
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Philippstraße 13, Berlin 10115, Germany
- Einstein Center for Neurosciences Berlin, Charitéplatz 1, Berlin, Germany
| |
Collapse
|
4
|
Sibille J, Gehr C, Benichov JI, Balasubramanian H, Teh KL, Lupashina T, Vallentin D, Kremkow J. High-density electrode recordings reveal strong and specific connections between retinal ganglion cells and midbrain neurons. Nat Commun 2022; 13:5218. [PMID: 36064789 PMCID: PMC9445019 DOI: 10.1038/s41467-022-32775-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 08/16/2022] [Indexed: 11/29/2022] Open
Abstract
The superior colliculus is a midbrain structure that plays important roles in visually guided behaviors in mammals. Neurons in the superior colliculus receive inputs from retinal ganglion cells but how these inputs are integrated in vivo is unknown. Here, we discovered that high-density electrodes simultaneously capture the activity of retinal axons and their postsynaptic target neurons in the superior colliculus, in vivo. We show that retinal ganglion cell axons in the mouse provide a single cell precise representation of the retina as input to superior colliculus. This isomorphic mapping builds the scaffold for precise retinotopic wiring and functionally specific connection strength. Our methods are broadly applicable, which we demonstrate by recording retinal inputs in the optic tectum in zebra finches. We find common wiring rules in mice and zebra finches that provide a precise representation of the visual world encoded in retinal ganglion cells connections to neurons in retinorecipient areas.
Collapse
Affiliation(s)
- Jérémie Sibille
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Philippstraße 13, 10115, Berlin, Germany
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Philippstraße 13, 10115, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Carolin Gehr
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Philippstraße 13, 10115, Berlin, Germany
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Philippstraße 13, 10115, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Jonathan I Benichov
- Max Planck Institute for Ornithology, Eberhard-Gwinner Straße, 82319, Seewiesen, Germany
- Max Planck Institute for Biological Intelligence (in foundation), Eberhard-Gwinner Straße, 82319, Seewiesen, Germany
| | - Hymavathy Balasubramanian
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Philippstraße 13, 10115, Berlin, Germany
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Philippstraße 13, 10115, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Kai Lun Teh
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Philippstraße 13, 10115, Berlin, Germany
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Philippstraße 13, 10115, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Tatiana Lupashina
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Philippstraße 13, 10115, Berlin, Germany
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Philippstraße 13, 10115, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Daniela Vallentin
- Max Planck Institute for Ornithology, Eberhard-Gwinner Straße, 82319, Seewiesen, Germany
- Max Planck Institute for Biological Intelligence (in foundation), Eberhard-Gwinner Straße, 82319, Seewiesen, Germany
| | - Jens Kremkow
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Bernstein Center for Computational Neuroscience Berlin, Philippstraße 13, 10115, Berlin, Germany.
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Philippstraße 13, 10115, Berlin, Germany.
- Einstein Center for Neurosciences Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|