1
|
Jaggers RM, DiSabato DJ, Loman BR, Kontic D, Spencer KD, Allen JM, Godbout JP, Quan N, Gur TL, Bailey MT. Stressor-Induced Reduction in Cognitive Behavior is Associated with Impaired Colonic Mucus Layer Integrity and is Dependent Upon the LPS-Binding Protein Receptor CD14. J Inflamm Res 2022; 15:1617-1635. [PMID: 35264870 PMCID: PMC8901235 DOI: 10.2147/jir.s332793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/16/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose Commensal microbes are impacted by stressor exposure and are known contributors to cognitive and social behaviors, but the pathways through which gut microbes influence stressor-induced behavioral changes are mostly unknown. A murine social stressor was used to determine whether host-microbe interactions are necessary for stressor-induced inflammation, including neuroinflammation, that leads to reduced cognitive and social behavior. Methods C57BL/6 male mice were exposed to a paired fighting social stressor over a 1 hr period for 6 consecutive days. Y-maze and social interaction behaviors were tested following the last day of the stressor. Serum cytokines and lipopolysaccharide binding protein (LBP) were measured and the number and morphology of hippocampal microglia determined via immunohistochemistry. Intestinal mucous thickness and antimicrobial peptide expression were determined via fluorescent staining and real-time PCR (respectively) and microbial community composition was assessed using 16S rRNA gene amplicon sequencing. To determine whether the microbiota or the LBP receptor (CD14) are necessary for stressor-induced behavioral changes, experiments were performed in mice treated with a broad-spectrum antibiotic cocktail or in CD14-/- mice. Results The stressor reduced Y-maze spontaneous alternations, which was accompanied by increased microglia in the hippocampus, increased circulating cytokines (eg, IL-6, TNF-α) and LBP, and reduced intestinal mucus thickness while increasing antimicrobial peptides and cytokines. These stressor-induced changes were largely prevented in mice given broad-spectrum antibiotics and in CD14-/- mice. In contrast, social stressor-induced alterations of social behavior were not microbe-dependent. Conclusion Stressor-induced cognitive deficits involve enhanced bacterial interaction with the intestine, leading to low-grade, CD14-dependent, inflammation.
Collapse
Affiliation(s)
- Robert M Jaggers
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, 43205, USA
| | - Damon J DiSabato
- Institute for Behavioral Medicine Research, Columbus, OH, 43210, USA
- Department of Neuroscience, The Ohio State University, Columbus, OH, 43210, USA
| | - Brett R Loman
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, 43205, USA
| | - Danica Kontic
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, 43205, USA
| | - Kyle D Spencer
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, 43205, USA
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
- Graduate Partnership Program, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, OH, USA
| | - Jacob M Allen
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, 43205, USA
| | - Jonathan P Godbout
- Institute for Behavioral Medicine Research, Columbus, OH, 43210, USA
- Department of Neuroscience, The Ohio State University, Columbus, OH, 43210, USA
| | - Ning Quan
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, 33458, USA
| | - Tamar L Gur
- Institute for Behavioral Medicine Research, Columbus, OH, 43210, USA
- Department of Psychiatry, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Michael T Bailey
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, 43205, USA
- Institute for Behavioral Medicine Research, Columbus, OH, 43210, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
2
|
Rengarajan S, Knoop KA, Rengarajan A, Chai JN, Grajales-Reyes JG, Samineni VK, Russler-Germain EV, Ranganathan P, Fasano A, Sayuk GS, Gereau RW, Kau AL, Knights D, Kashyap PC, Ciorba MA, Newberry RD, Hsieh CS. A Potential Role for Stress-Induced Microbial Alterations in IgA-Associated Irritable Bowel Syndrome with Diarrhea. CELL REPORTS MEDICINE 2020; 1. [PMID: 33196055 PMCID: PMC7659537 DOI: 10.1016/j.xcrm.2020.100124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Stress is a known trigger for flares of inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS); however, this process is not well understood. Here, we find that restraint stress in mice leads to signs of diarrhea, fecal dysbiosis, and a barrier defect via the opening of goblet-cell associated passages. Notably, stress increases host immunity to gut bacteria as assessed by immunoglobulin A (IgA)-bound gut bacteria. Stress-induced microbial changes are necessary and sufficient to elicit these effects. Moreover, similar to mice, many diarrhea-predominant IBS (IBS-D) patients from two cohorts display increased antibacterial immunity as assessed by IgA-bound fecal bacteria. This antibacterial IgA response in IBS-D correlates with somatic symptom severity and was distinct from healthy controls or IBD patients. These findings suggest that stress may play an important role in patients with IgA-associated IBS-D by disrupting the intestinal microbial community that alters gastrointestinal function and host immunity to commensal bacteria. Stress in mice causes diarrhea, dysbiosis, barrier defect, increased antibacterial IgA Stress-induced microbial changes are sufficient to elicit the above effects IBS-D patients from two cohorts display increased and unique antibacterial IgA Antibacterial IgA in IBS-D correlates with patient symptom severity
Collapse
Affiliation(s)
- Sunaina Rengarajan
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kathryn A Knoop
- Department of Internal Medicine, Division of Gastroenterology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Arvind Rengarajan
- Department of Internal Medicine, Division of Gastroenterology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jiani N Chai
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jose G Grajales-Reyes
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Vijay K Samineni
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Emilie V Russler-Germain
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Prabha Ranganathan
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alessio Fasano
- Center for Celiac Research and Treatment and Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Gregory S Sayuk
- Department of Internal Medicine, Division of Gastroenterology, Washington University School of Medicine, St. Louis, MO 63110, USA.,Gastroenterology Section, John Cochran Veterans Affairs Medical Center, St. Louis, MO 63125, USA
| | - Robert W Gereau
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew L Kau
- Center for Women's Infectious Disease Research and Department of Internal Medicine, Division of Allergy and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dan Knights
- Biomedical Informatics and Computational Biology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Purna C Kashyap
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Matthew A Ciorba
- Department of Internal Medicine, Division of Gastroenterology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rodney D Newberry
- Department of Internal Medicine, Division of Gastroenterology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chyi-Song Hsieh
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA.,Lead Contact
| |
Collapse
|
3
|
D'Souza D, Sadananda M. Stressor during Early Adolescence in Hyperreactive Female Wistar Kyoto Rats Induces a 'Double Hit' Manifested by Variation in Neurobehaviors and Brain Monoamines. Neuroscience 2019; 414:200-209. [PMID: 31279049 DOI: 10.1016/j.neuroscience.2019.06.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 01/21/2023]
Abstract
Stress is an additive factor in the development of depressive-like profiles that mainly onsets during adolescence. However, effects of early post-weaning stress on developing brain neurochemical pathways in inducing anxiety- and depressive-like profiles in vulnerable females have not been extensively studied. The Wistar Kyoto (WKY) rat, a putative model of adolescent depression and stress-sensitivity could elucidate the pathophysiology of stress-related depression in vulnerability. Through such an approach, links between inherent risk for predisposition to depression and homotypic stress, as in a 'double hit' would unravel endocrine regulation, interference in developing neural pathways and neurobehaviors. Here, early adolescent WKY female rats were subjected to 1-h physical restraint over 7 days followed by neurobehavioral testing in the elevated plus maze (EPM) and forced swim test (FST). The stressor's effectiveness was assayed by plasma corticosterone (CORT) and altered functioning in depression-implicated brain areas by assaying monoamines/metabolites. Homotypic stress induced an anxiolytic-like response in the EPM with learned helplessness and reduced struggling behavior in FST. Significant elevation in CORT levels (p < 0.05) indicated an upregulated HPA axis. Medial prefrontal cortex, a still maturing brain area, exhibited increased serotonin (5-HT) metabolite (p < 0.01) and turnover rates (p < 0.01) indicative of altered/maladaptive serotonergic functioning. Nucleus accumbens (p < 0.05) and dorsal striatum (p < 0.01) also depicted increased 5-HT metabolite, with the latter also demonstrating reduced Dopamine turnover (p < 0.01) as a result of homotypic stress. Hence, female WKY rats could constitute a diathesis-stress model to study underlying mechanisms of stress-related depression.
Collapse
Affiliation(s)
- Deepthi D'Souza
- Brain Research Laboratory, Biotechnology Unit, Department of Biosciences, Mangalore University, Mangalagangothri- 574 199, Karnataka, India
| | - Monika Sadananda
- Brain Research Laboratory, Biotechnology Unit, Department of Biosciences, Mangalore University, Mangalagangothri- 574 199, Karnataka, India.
| |
Collapse
|
4
|
Gao J, Zhu N, Feng M, Meng X, Sui N. Intra-nucleus-accumbens SKF38393 improved the impaired acquisition of morphine-conditioned place preference in depression-like rats. Psych J 2015; 1:2-14. [PMID: 26272664 DOI: 10.1002/pchj.9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 04/10/2012] [Indexed: 12/25/2022]
Abstract
Dopaminergic activity in the nucleus accumbens (NAc) and the globus pallidus (GP) is important for the interaction between depression and addiction, with D1- and D2-like receptors playing different roles. Here, we address the effect of depression on morphine reward and its underlying D1- and D2-like effects in the NAc and/or the GP. Novelty-seeking behaviors and the forced open-space swimming test were used to assess a depression-like state in rats that had undergone chronic mild restraint. Depression-like rats were then trained with morphine-induced conditioned place preference (CPP, 3 mg/kg, 4 days), and showed impaired acquisition of the CPP compared with controls. To examine the receptor-specific dopaminergic mechanism underlying this phenomenon, we microinjected the D1-like agonist SKF38393 (1 μg/side) or the D2-like agonist quinpirole (1 μg/side) into the NAc or the GP. The impairment in acquisition of CPP was reversed only by injecting the D1- but not the D2-like agonist in the NAc. These results suggest that enhancement of dopaminergic transmission in the NAc (via D1-like receptors) may be effective in recovering impaired reward learning during a depression-like state.
Collapse
Affiliation(s)
- Jun Gao
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Ning Zhu
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Min Feng
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Xiaolu Meng
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Nan Sui
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Liu C, Wang Y, Zhang H, Cheng S, Charreyre C, Audonnet JC, Chen P, He Q. Porcine coronin 1A contributes to nuclear factor-kappa B (NF-κB) inactivation during Haemophilus parasuis infection. PLoS One 2014; 9:e103904. [PMID: 25093672 PMCID: PMC4122374 DOI: 10.1371/journal.pone.0103904] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 07/04/2014] [Indexed: 11/18/2022] Open
Abstract
Haemophilus parasuis (H.parasuis) is the etiological agent of porcine polyserositis and arthritis (Glässer's disease) characterized by fibrinous polyserositis, meningitis and polyarthritis, causing severe economic losses to the swine industry. Currently, the molecular basis of this infection is largely unkonwn. Coronin 1A (Coro1A) plays important roles in host against bacterial infection, yet little is known about porcine Coro1A. In this study, we investigated the molecular characterization of porcine Coro1A, revealing that porcine Coro1A was widely expressed in different tissues. Coro1A could be induced by lipopolysaccharide (LPS), polyinosinic acid-polycytidylic acid [poly (I:C)] and H.parasuis in porcine kidney-15 (PK-15) cells. Functional analyses revealed that porcine Coro1A suppressed the NF-κB activation during H.parasuis infection by inhibiting the degradation of IκBα and nuclear translocation of p65. Overexpression of porcine Coro1A inhibited the transcription of NF-κB-mediated downstream genes [Interleukin-6 (IL-6), Interleukin-8 (IL-8) and COX-2] through down-regulation of NF-κB. The results indicated that porcine Coro1A is an important immunity related gene that helps to inhibit NF-kB activation during H. parasuis infection.
Collapse
Affiliation(s)
- Chong Liu
- Division of Animal Infectious Diseases, State key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, P. R. China
| | - Yang Wang
- State key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Hengling Zhang
- Division of Animal Infectious Diseases, State key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, P. R. China
| | - Shuang Cheng
- Division of Animal Infectious Diseases, State key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, P. R. China
| | | | | | - Pin Chen
- Division of Animal Infectious Diseases, State key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, P. R. China
| | - Qigai He
- Division of Animal Infectious Diseases, State key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, P. R. China
- * E-mail:
| |
Collapse
|
6
|
Cox SS, Speaker KJ, Beninson LA, Craig WC, Paton MM, Fleshner M. Adrenergic and glucocorticoid modulation of the sterile inflammatory response. Brain Behav Immun 2014; 36:183-92. [PMID: 24321216 DOI: 10.1016/j.bbi.2013.11.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 11/21/2013] [Accepted: 11/26/2013] [Indexed: 12/25/2022] Open
Abstract
Exposure to an intense, acute stressor, in the absence of a pathogen, alters immune function. Exposure to a single bout of inescapable tail shock increases plasma and tissue concentrations of cytokines, chemokines, and the danger associated molecular pattern (DAMP) Hsp72. Although previous studies have demonstrated that adrenergic receptor (ADR) and glucocorticoid receptor (GCR)-mediated pathways alter pathogen or microbial associated molecular pattern (MAMP)-evoked levels of cytokines, chemokines, and Hsp72, far fewer studies have tested the role of these receptors across multiple inflammatory proteins or tissues to elucidate the differences in magnitude of stress-evoked sterile inflammatory responses. The goals of the current study were to (1) compare the sterile inflammatory response in the circulation, liver, spleen, and subcutaneous (SQ) adipose tissue by measuring cytokine, chemokine, and DAMP (Hsp72) responses; and (2) to test the role of alpha-1 (α1), beta-1 (β1), beta-2 (β2), and beta-3 (β3) ADRs, as well as GCRs in signaling the sterile inflammatory response. The data presented indicate plasma and SQ adipose are significantly more stress responsive than the liver and spleen. Further, administration of ADR and GCR-specific antagonists revealed both similarities and differences in the signaling mechanisms of the sterile inflammatory response in the tissues studied. Finally, given the selective increase in the chemokine monocyte chemotactic protein-1 (MCP-1) in SQ tissue, it may be that SQ adipose is an important site of leukocyte migration, possibly in preparation for infection as a consequence of wounding. The current study helps further our understanding of the tissue-specific differences of the stress-induced sterile inflammatory response.
Collapse
Affiliation(s)
- Stewart S Cox
- Department of Integrative Physiology, University of Colorado, Boulder, United States
| | - Kristin J Speaker
- Department of Integrative Physiology, University of Colorado, Boulder, United States
| | - Lida A Beninson
- Department of Integrative Physiology, University of Colorado, Boulder, United States
| | - Wendy C Craig
- Department of Integrative Physiology, University of Colorado, Boulder, United States
| | - Madeline M Paton
- Department of Integrative Physiology, University of Colorado, Boulder, United States
| | - Monika Fleshner
- Department of Integrative Physiology, University of Colorado, Boulder, United States; Center for Neuroscience, University of Colorado, Boulder, United States.
| |
Collapse
|
7
|
The impact of acute-stressor exposure on splenic innate immunity: a gene expression analysis. Brain Behav Immun 2012; 26:142-9. [PMID: 21893187 DOI: 10.1016/j.bbi.2011.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 08/03/2011] [Accepted: 08/22/2011] [Indexed: 01/22/2023] Open
Abstract
Exposure to intense, acute-stressors modulates immune function. We have previously reported, for example, that exposure to a single session of inescapable tailshock suppresses acquired and potentiates innate immune responses mediated by the spleen. The mechanisms for these changes remain unknown, however, they likely involve stress-induced modulation of cytokines. Cytokines operate in coordinated networks that include other immunoregulatory factors. Broad-scoped analyses are required to gain an understanding of the net-impact of stress on these immunoregulatory factors and the immune system. The goal of this study, therefore, is to examine the impact of acute-stressor exposure on network-wide changes in splenic immunoregulatory factor expression. One hundred and sixty-one genes linked to innate immune responses were quantified in the spleen following exposure to tailshock using an RT-PCR based gene array. Expression changes in 17 of the measured genes were confirmed using individual RT-PCR reactions. Further assessment of the expression changes using Exploratory Gene Association Networks (EGAN) identified important ontologies, processes and pathways that are indicative of a broader impact of stress on the immune system. Interestingly, EGAN identified several linkages between immunoregulatory factors that may be important in explaining previous results concerning the functional consequences of stress on splenic immunity. Additional processes, some of which are novel to this study, were also uncovered that may be important in directing future studies examining the impact of stress on the immune system. In this way, these analyses provide a better understanding of how acute stressor exposure modulates splenic immunity and may function as predictive tool for future related studies.
Collapse
|
8
|
Macrophage activation and differentiation signals regulate schlafen-4 gene expression: evidence for Schlafen-4 as a modulator of myelopoiesis. PLoS One 2011; 6:e15723. [PMID: 21249125 PMCID: PMC3017543 DOI: 10.1371/journal.pone.0015723] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 11/28/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The ten mouse and six human members of the Schlafen (Slfn) gene family all contain an AAA domain. Little is known of their function, but previous studies suggest roles in immune cell development. In this report, we assessed Slfn regulation and function in macrophages, which are key cellular regulators of innate immunity. METHODOLOGY/PRINCIPAL FINDINGS Multiple members of the Slfn family were up-regulated in mouse bone marrow-derived macrophages (BMM) by the Toll-like Receptor (TLR)4 agonist lipopolysaccharide (LPS), the TLR3 agonist Poly(I∶C), and in disease-affected joints in the collagen-induced model of rheumatoid arthritis. Of these, the most inducible was Slfn4. TLR agonists that signal exclusively through the MyD88 adaptor protein had more modest effects on Slfn4 mRNA levels, thus implicating MyD88-independent signalling and autocrine interferon (IFN)-β in inducible expression. This was supported by the substantial reduction in basal and LPS-induced Slfn4 mRNA expression in IFNAR-1⁻/⁻ BMM. LPS causes growth arrest in macrophages, and other Slfn family genes have been implicated in growth control. Slfn4 mRNA levels were repressed during macrophage colony-stimulating factor (CSF-1)-mediated differentiation of bone marrow progenitors into BMM. To determine the role of Slfn4 in vivo, we over-expressed the gene specifically in macrophages in mice using a csf1r promoter-driven binary expression system. Transgenic over-expression of Slfn4 in myeloid cells did not alter macrophage colony formation or proliferation in vitro. Monocyte numbers, as well as inflammatory macrophages recruited to the peritoneal cavity, were reduced in transgenic mice that specifically over-expressed Slfn4, while macrophage numbers and hematopoietic activity were increased in the livers and spleens. CONCLUSIONS Slfn4 mRNA levels were up-regulated during macrophage activation but down-regulated during differentiation. Constitutive Slfn4 expression in the myeloid lineage in vivo perturbs myelopoiesis. We hypothesise that the down-regulation of Slfn4 gene expression during macrophage differentiation is a necessary step in development of this lineage.
Collapse
|
9
|
Ashcraft KA, Bonneau RH. Psychological stress exacerbates primary vaginal herpes simplex virus type 1 (HSV-1) infection by impairing both innate and adaptive immune responses. Brain Behav Immun 2008; 22:1231-40. [PMID: 18639627 PMCID: PMC3721735 DOI: 10.1016/j.bbi.2008.06.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 06/09/2008] [Accepted: 06/20/2008] [Indexed: 11/26/2022] Open
Abstract
Chronic psychological stress is generally immunosuppressive and contributes to an increase in herpes simplex virus (HSV) pathogenicity. We have previously shown that mice experiencing stress at the time of intranasal HSV infection have increased levels of infectious virus in their nasal cavity, as compared to control mice that were not subjected to stress. We have extended our studies to determine the effects of stress at another clinically-relevant mucosal site by examining the immune response to and pathogenesis of vaginal HSV infection. Mice experiencing psychological stress during vaginal HSV infection exhibited an increase in both vaginal viral titers and the pathology associated with this HSV infection. We demonstrate that these observations result from the failure of both the innate and HSV-specific adaptive immune responses. At 2 days post-infection, NK cell numbers were significantly decreased in mice experiencing restraint stress. Studies examining the adaptive immune response revealed a decrease in the number of HSV-specific CD8(+) T cells in not only the vaginal tissue itself but also the draining iliac lymph nodes (ILN). Furthermore, the number of functional cells, in terms of both their degranulation and interferon-gamma production, in the ILN of stressed mice was decreased as compared to non-stressed mice. We conclude that psychological stress, through its suppression of both innate and adaptive immune responses, may be an important factor in the ability to control vaginal HSV infection.
Collapse
Affiliation(s)
- Kathleen A. Ashcraft
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033, USA
| | - Robert H. Bonneau
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033, USA,Correspondence should be addressed to: Robert H. Bonneau, Ph.D., Department of Microbiology and Immunology (H107), The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, 500 University Drive, Hershey, Pennsylvania 17033, Telephone: 717-531-4078; Fax: 717-531-6522;
| |
Collapse
|
10
|
Zhao L, Neumann B, Murphy K, Silke J, Gonda TJ. Lack of reproducible growth inhibition by Schlafen1 and Schlafen2 in vitro. Blood Cells Mol Dis 2008; 41:188-93. [PMID: 18479948 DOI: 10.1016/j.bcmd.2008.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 03/24/2008] [Indexed: 11/17/2022]
Abstract
The Schlafen gene family has been implicated in lymphoid and myeloid maturation and differentiation as well as inflammation. However, little is known about the functions of this gene family except that anti-proliferative activities, particularly for Schlafen1, the prototype member of the family, have been reported. This was shown mainly by ectopic expression of Schlafen1 in murine fibroblasts resulting in growth inhibition and a G1 cell cycle arrest apparently via repression of Cyclin D1 expression. However, we have been unable to reproduce these findings. Schlafen1 and Schlafen2 failed to inhibit cell proliferation, cause G1 cell cycle arrest, or affect Cyclin D1 level in murine fibroblasts. This was regardless of whether overexpression was constitutive, induced or from transient transfections. Moreover, in our hands, Schlafen1 and -2 do not appear to regulate the activity of Cyclin D1 promoter. Importantly, we also showed that Schlafen1 and -2 do not play anti-proliferative roles in more physiologically-relevant myeloid cell lines. We therefore suggest that Schlafen1 and Schlafen2 might not have obligatory anti-proliferative activities, at least in vitro, and that efforts to explore their functions should be directed to other aspects, such as haemopoietic development and immune response.
Collapse
Affiliation(s)
- Liang Zhao
- University of Queensland Diamantina Institute for Cancer, Immunology and Metabolic Medicine, Brisbane, Australia
| | | | | | | | | |
Collapse
|
11
|
Stress-induced differences in primary and secondary resistance against bacterial sepsis corresponds with diverse corticotropin releasing hormone receptor expression by pulmonary CD11c+ MHC II+ and CD11c- MHC II+ APCs. Brain Behav Immun 2008; 22:552-64. [PMID: 18166336 PMCID: PMC2849292 DOI: 10.1016/j.bbi.2007.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 11/05/2007] [Accepted: 11/19/2007] [Indexed: 02/04/2023] Open
Abstract
Stress responses have been associated with altered immunity and depending upon the type of stressor, can have diverse effects on disease outcomes. As the first line of defense against potential pathogens, alterations in cellular immune responses along the respiratory tract can have a significant impact on the manifestation of local and systemic disease. Utilizing a murine model of respiratory pneumonia, the current study investigated the effects of restraint stress on the induction of primary and secondary immunity along the respiratory tract, influencing host susceptibility. Female CD-1 mice were subjected to three hours of restraint stress over a period of four days followed by primary and secondary Streptococcus pneumoniae infection via intranasal route. Stress exposure led to increased retention of bacterial carriage in the lungs, enhanced polymorphonuclear cells and a preferential decrease in pulmonary CD11c(+) MHC II(+) cells resulting in delayed lethality during primary infection but significant impairment of acquired immune protection after secondary infection. We also provide evidence to support a role for lung-associated corticotropin releasing hormone regulation through peripheral CRH and diverse CRH receptor expression by MHC II(+) antigen presenting cells (APCs). We conclude that repeated restraint stress has distinct influences on immune cell populations that appear to be important in the generation of innate and adaptive immune responses along the respiratory tract with the potential to influence local and systemic protection against disease pathogenesis.
Collapse
|
12
|
Subcellular localization of the Schlafen protein family. Biochem Biophys Res Commun 2008; 370:62-6. [PMID: 18355440 DOI: 10.1016/j.bbrc.2008.03.032] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 03/05/2008] [Indexed: 11/23/2022]
Abstract
Although the first members of the Schlafen gene family were first described almost 10 years ago, the precise molecular/biochemical functions of the proteins they encode still remain largely unknown. Roles in cell growth, haematopoietic cell differentiation, and T cell development/maturation have, with some experimental support, been postulated, but none have been conclusively verified. Here, we have determined the subcellular localization of Schlafens 1, 2, 4, 5, 8, and 9, representing all three of the murine subgroups. We show that the proteins from subgroups I and II localize to the cytoplasm, while the longer forms in subgroup III localize exclusively to the nuclear compartment. We also demonstrate upregulation of Schlafen2 upon differentiation of haematopoietic cells and show this endogenous protein localizes to the cytoplasm. Thus, we propose the different subgroups of Schlafen proteins are likely to have functionally distinct roles, reflecting their differing localizations within the cell.
Collapse
|