1
|
Dhaiban S, Al-Ani M, Elemam NM, Maghazachi AA. Targeting Chemokines and Chemokine Receptors in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. J Inflamm Res 2020; 13:619-633. [PMID: 33061527 PMCID: PMC7532903 DOI: 10.2147/jir.s270872] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated and neurodegenerative disorder that results in inflammation and demyelination of the central nervous system (CNS). MS symptoms include walking difficulties, visual weakening, as well as learning and memory impairment, thus affecting the quality of the patient's life. Chemokines and chemokine receptors are expressed on the immune cells as well as the CNS resident cells. Several sets of chemokine receptors and their ligands tend to be pathogenic players in MS, including CCL2, CCL3, CCL4, CCL5, CCL7, CCL8, CCL11, CCL17, CCL19, CCL21, CCL22, CXCL1, CXCL8, CXCL9, CXCL10, CXCL11, and CXCL16. Furthermore, current modulatory drugs that are used in the treatment of MS and its animal model, the experimental autoimmune encephalomyelitis (EAE), affect the expression of several chemokine and chemokine receptors. In this review, we highlight the pathogenic roles of chemokines and their receptors as well as utilizing them as potential therapeutic targets through selective agents, such as specific antibodies and receptor blockers, or indirectly through MS or EAE immunomodulatory drugs.
Collapse
Affiliation(s)
- Sarah Dhaiban
- College of Medicine and Immuno-Oncology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Mena Al-Ani
- College of Medicine and Immuno-Oncology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Noha Mousaad Elemam
- College of Medicine and Immuno-Oncology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Azzam A Maghazachi
- College of Medicine and Immuno-Oncology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
2
|
Aaes TL, Verschuere H, Kaczmarek A, Heyndrickx L, Wiernicki B, Delrue I, De Craene B, Taminau J, Delvaeye T, Bertrand MJM, Declercq W, Berx G, Krysko DV, Adjemian S, Vandenabeele P. Immunodominant AH1 Antigen-Deficient Necroptotic, but Not Apoptotic, Murine Cancer Cells Induce Antitumor Protection. THE JOURNAL OF IMMUNOLOGY 2020; 204:775-787. [DOI: 10.4049/jimmunol.1900072] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 12/11/2019] [Indexed: 11/19/2022]
|
3
|
Macaron G, Ontaneda D. Diagnosis and Management of Progressive Multiple Sclerosis. Biomedicines 2019; 7:E56. [PMID: 31362384 PMCID: PMC6784028 DOI: 10.3390/biomedicines7030056] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis is a chronic autoimmune disease of the central nervous system that results in varying degrees of disability. Progressive multiple sclerosis, characterized by a steady increase in neurological disability independently of relapses, can occur from onset (primary progressive) or after a relapsing-remitting course (secondary progressive). As opposed to active inflammation seen in the relapsing-remitting phases of the disease, the gradual worsening of disability in progressive multiple sclerosis results from complex immune mechanisms and neurodegeneration. A few anti-inflammatory disease-modifying therapies with a modest but significant effect on measures of disease progression have been approved for the treatment of progressive multiple sclerosis. The treatment effect of anti-inflammatory agents is particularly observed in the subgroup of patients with younger age and evidence of disease activity. For this reason, a significant effort is underway to develop molecules with the potential to induce myelin repair or halt the degenerative process. Appropriate trial methodology and the development of clinically meaningful disability outcome measures along with imaging and biological biomarkers of progression have a significant impact on the ability to measure the efficacy of potential medications that may reverse disease progression. In this issue, we will review current evidence on the physiopathology, diagnosis, measurement of disability, and treatment of progressive multiple sclerosis.
Collapse
Affiliation(s)
- Gabrielle Macaron
- Mellen Center for Multiple Sclerosis, Neurological Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis, Neurological Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
| |
Collapse
|
4
|
Napier J, Rose L, Adeoye O, Hooker E, Walsh KB. Modulating acute neuroinflammation in intracerebral hemorrhage: the potential promise of currently approved medications for multiple sclerosis. Immunopharmacol Immunotoxicol 2019; 41:7-15. [PMID: 30702002 DOI: 10.1080/08923973.2019.1566361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The secondary inflammatory injury following intracerebral hemorrhage (ICH) results in increased morbidity and mortality. White blood cells have been implicated as critical mediators of this inflammatory injury. Currently, no medications have been clinically proven to ameliorate or beneficially modulate inflammation, or to improve outcomes by any mechanism, following ICH. However, other neuroinflammatory conditions, such as multiple sclerosis, have approved pharmacologic therapies that modulate the inflammatory response and minimize the damage caused by inflammatory cells. Thus, there is substantial interest in existing therapies for neuroinflammation and their potential applicability to other acute neurological diseases such as ICH. In this review, we examined the mechanism of action of twelve currently approved medications for multiple sclerosis: alemtuzumab, daclizumab, dimethyl fumarate, fingolimod, glatiramer acetate, interferon beta-1a, interferon beta-1b, mitoxantrone, natalizumab, ocrelizumab, rituximab, teriflunomide. We analyzed the existing literature pertaining to the effects of these medications on various leukocytes and also with emphasis on mechanisms of action during the acute period following initiation of therapy. As a result, we provide a valuable summary of the current body of knowledge regarding these therapies and evidence that supports or refutes their likely promise for treating neuroinflammation following ICH.
Collapse
Affiliation(s)
- Jarred Napier
- a College of Medicine , University of Cincinnati , Cincinnati , OH , USA
| | - Lucas Rose
- a College of Medicine , University of Cincinnati , Cincinnati , OH , USA
| | - Opeolu Adeoye
- b Department of Emergency Medicine , University of Cincinnati , Cincinnati , OH , USA.,c Gardner Neuroscience Institute , University of Cincinnati , Cincinnati , OH , USA
| | - Edmond Hooker
- b Department of Emergency Medicine , University of Cincinnati , Cincinnati , OH , USA
| | - Kyle B Walsh
- b Department of Emergency Medicine , University of Cincinnati , Cincinnati , OH , USA.,c Gardner Neuroscience Institute , University of Cincinnati , Cincinnati , OH , USA
| |
Collapse
|
5
|
Grey (née Cotte) S, Salmen (née Stroet) A, von Ahsen N, Starck M, Winkelmann A, Zettl UK, Comabella M, Montalban X, Zipp F, Fleischer V, Kruse N, Gold R, Chan A. Lack of efficacy of mitoxantrone in primary progressive Multiple Sclerosis irrespective of pharmacogenetic factors: A multi-center, retrospective analysis. J Neuroimmunol 2015; 278:277-9. [DOI: 10.1016/j.jneuroim.2014.11.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 11/17/2014] [Accepted: 11/20/2014] [Indexed: 11/15/2022]
|
6
|
Salmen A, Gold R, Chan A. Management of disease-modifying treatments in neurological autoimmune diseases of the central nervous system. Clin Exp Immunol 2014; 176:135-48. [PMID: 24358961 PMCID: PMC3992026 DOI: 10.1111/cei.12258] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2013] [Indexed: 12/19/2022] Open
Abstract
The therapeutic armamentarium for autoimmune diseases of the central nervous system, specifically multiple sclerosis and neuromyelitis optica, is steadily increasing, with a large spectrum of immunomodulatory and immunosuppressive agents targeting different mechanisms of the immune system. However, increasingly efficacious treatment options also entail higher potential for severe adverse drug reactions. Especially in cases failing first-line treatment, thorough evaluation of the risk-benefit profile of treatment alternatives is necessary. This argues for the need of algorithms to identify patients more likely to benefit from a specific treatment. Moreover, paradigms to stratify the risk for severe adverse drug reactions need to be established. In addition to clinical/paraclinical measures, biomarkers may aid in individualized risk-benefit assessment. A recent example is the routine testing for anti-John Cunningham virus antibodies in natalizumab-treated multiple sclerosis patients to assess the risk for the development of progressive multi-focal leucoencephalopathy. Refined algorithms for individualized risk assessment may also facilitate early initiation of induction treatment schemes in patient groups with high disease activity rather than classical escalation concepts. In this review, we will discuss approaches for individiualized risk-benefit assessment both for newly introduced agents as well as medications with established side-effect profiles. In addition to clinical parameters, we will also focus on biomarkers that may assist in patient selection.
Collapse
Affiliation(s)
- A Salmen
- Department of Neurology, St Josef-Hospital, Ruhr-University, Bochum, Germany
| | | | | |
Collapse
|
7
|
Jamroz-Wisniewska A, Beltowski J, Stelmasiak Z, Bartosik-Psujek H. Paraoxonase 1 activity in multiple sclerosis patients during mitoxantrone therapy. Acta Neurol Scand 2013; 127:e33-6. [PMID: 22881373 DOI: 10.1111/ane.12000] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2012] [Indexed: 11/30/2022]
Abstract
OBJECTIVES It has been implicated in many studies that reactive oxygen species play a role in the development of demyelination in multiple sclerosis (MS). Paraoxonase 1 (PON1) is an antioxidant enzyme that protects cell membranes against oxidative modification. Mitoxantrone is a cytotoxic drug approved for the treatment of MS with adverse effects associated potentially with an increased level of oxidative stress. The aim of this study was to assess the influence of mitoxantrone therapy on PON1 activity in patients with MS. METHODS A studied group included 26 patients with secondary progressive MS, 16 women and 10 men. The blood was collected before the beginning of the therapy as well as after 6 and 12 months. Patients were receiving mitoxantrone every 12 weeks. Serum PON1 activity was assayed using two synthetic substrates: paraoxon and phenyl acetate. RESULTS Paraoxonase 1 activity toward paraoxon and phenyl acetate and lipid profile did not change significantly in patients receiving mitoxantrone. CONCLUSIONS Mitoxantrone therapy does not influence PON1 activity.
Collapse
Affiliation(s)
| | - J. Beltowski
- Department of Pathophysiology; Medical University of Lublin; Jaczewskiego; Poland
| | - Z. Stelmasiak
- Department of Neurology; Medical University of Lublin; Jaczewskiego; Poland
| | - H. Bartosik-Psujek
- Department of Neurology; Medical University of Lublin; Jaczewskiego; Poland
| |
Collapse
|
8
|
Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P. Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer 2012; 12:860-75. [PMID: 23151605 DOI: 10.1038/nrc3380] [Citation(s) in RCA: 2187] [Impact Index Per Article: 168.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although it was thought that apoptotic cells, when rapidly phagocytosed, underwent a silent death that did not trigger an immune response, in recent years a new concept of immunogenic cell death (ICD) has emerged. The immunogenic characteristics of ICD are mainly mediated by damage-associated molecular patterns (DAMPs), which include surface-exposed calreticulin (CRT), secreted ATP and released high mobility group protein B1 (HMGB1). Most DAMPs can be recognized by pattern recognition receptors (PRRs). In this Review, we discuss the role of endoplasmic reticulum (ER) stress and reactive oxygen species (ROS) in regulating the immunogenicity of dying cancer cells and the effect of therapy-resistant cancer microevolution on ICD.
Collapse
Affiliation(s)
- Dmitri V Krysko
- Molecular Signalling and Cell Death Unit, Department for Molecular Biomedical Research, VIB, VIB-Ghent University Technologiepark 927, B-9052 Ghent (Zwijnaarde), Belgium. Dmitri.Krysko@dmbr. ugent.be
| | | | | | | | | | | |
Collapse
|
9
|
Li JM, Yang Y, Zhu P, Zheng F, Gong FL, Mei YW. Mitoxantrone exerts both cytotoxic and immunoregulatory effects on activated microglial cells. Immunopharmacol Immunotoxicol 2011; 34:36-41. [DOI: 10.3109/08923973.2011.572890] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Jalosinski M, Karolczak K, Mazurek A, Glabinski A. The effects of methylprednisolone and mitoxantrone on CCL5-induced migration of lymphocytes in multiple sclerosis. Acta Neurol Scand 2008; 118:120-5. [PMID: 18336625 DOI: 10.1111/j.1600-0404.2008.00998.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVES Chemokines are involved in migration of inflammatory cells to the central nervous system (CNS) in multiple sclerosis (MS). The aim of this study was the analysis of the impact of MS treatment on CCL5-induced migration of leukocyte subpopulations. MATERIAL AND METHODS Migration of lymphocytes and monocytes from blood of MS patients treated with methylprednisolone (MP) or mitoxantrone (MTX) was analysed in a chemotaxis chamber. RESULTS CCL5-induced migration of lymphocytes from untreated MS patients was significantly increased over controls. The treatment of MS with MP and MTX reduced this chemotaxis. The plasma level of CCL5 was increased in MS patients before treatment and was also significantly decreased in the treatment of MS with MP and MTX. CONCLUSIONS This observation supports the hypothesis that in MS, chemokine CCL5 may induce migration of leukocytes to the CNS and suggests that treatment of the disease with MP and MTX may reduce this migration.
Collapse
Affiliation(s)
- M Jalosinski
- Department of Experimental and Clinical Neurology, Medical University of Lodz, Lodz, Poland
| | | | | | | |
Collapse
|
11
|
Treatment of Multiple Sclerosis with Methylprednisolone and Mitoxantrone Modulates the Expression of CXC Chemokine Receptors in PBMC. J Clin Immunol 2007; 28:122-30. [DOI: 10.1007/s10875-007-9142-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Accepted: 10/02/2007] [Indexed: 01/21/2023]
|
12
|
Abstract
About 10-15% of patients with multiple sclerosis (MS) present with gradually increasing neurological disability, a disorder known as primary-progressive multiple sclerosis (PPMS). Compared with relapse-onset multiple sclerosis, people with PPMS are older at onset and a higher proportion are men. Inflammatory white-matter lesions are less evident but diffuse axonal loss and microglial activation are seen in healthy-looking white matter, in addition to cortical demyelination, and quantitative MRI shows atrophy and intrinsic abnormalities in the grey matter and the white matter. Spinal cord atrophy corresponds to the usual clinical presentation of progressive spastic paraplegia. Although neuroaxonal degeneration seems to underlie PPMS, the pathogenesis and the extent to which immune-mediated mechanisms operate is unclear. MRI of the brain and spinal cord, and examination of the CSF, are important investigations for diagnosis; conventional immunomodulatory therapies, such as interferon beta and glatiramer acetate, are ineffective. Future research should focus on the clarification of the mechanisms of axonal loss, improvements to the design of clinical trials, and the development of effective neuroprotective treatments.
Collapse
Affiliation(s)
- David H Miller
- Department of Neuroinflammation, Institute of Neurology, University College London, London, UK.
| | | |
Collapse
|