1
|
O'Reilly ML, Wulf MJ, Connors TM, Jin Y, Bearoff F, Hai N, Bouyer J, Kortagere S, Zhong Y, Bethea JR, Tom VJ. NF-κB inhibition attenuates sympathetic hyperreflexia and concomitant development of autonomic dysreflexia and immune dysfunction after spinal cord injury. Commun Biol 2025; 8:787. [PMID: 40404889 PMCID: PMC12098895 DOI: 10.1038/s42003-025-08237-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 05/15/2025] [Indexed: 05/24/2025] Open
Abstract
Heightened sympathetic reflexes (sympathetic hyperreflexia, SH) post-high-level spinal cord injury (SCI) detrimentally impact effector organs, resulting in peripheral immune dysfunction and cardiovascular disease, two leading causes of morbidity and mortality in SCI. We previously found that an activated neuroimmune system after SCI contributes to intraspinal plasticity in the spinal sympathetic reflex (SSR) circuit, underlying SH. We hypothesize that activation of NF-κB, a key regulator of inflammation, in spinal cord below-SCI contributes to driving SSR circuit plasticity, resulting in SH-associated autonomic dysreflexia (AD) and peripheral immune dysfunction. Here, we demonstrate inhibition of central NF-κB signaling via intrathecal delivery of dimethylamino parthenolide (DMAPT) significantly decreases SH post-complete transection of thoracic spinal segment 3 in adult rats. This included reduced AD severity that was associated with decreased interneuron recruitment into the SSR circuit after SCI. We also observed intrathecal DMAPT-treatment improved survival post-SCI that corresponded with normalized numbers of splenic regulatory T-cells. These findings underscore central NF-κB signaling as a key component driving SH after SCI.
Collapse
Affiliation(s)
- Micaela L O'Reilly
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Mariah J Wulf
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Theresa M Connors
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Ying Jin
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Frank Bearoff
- Department of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Nan Hai
- School of Biomedical Engineering Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Julien Bouyer
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Sandhya Kortagere
- Department of Microbiology & Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Yinghui Zhong
- School of Biomedical Engineering Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - John R Bethea
- Department of Anatomy and Cell Biology, George Washington University, Washington, DC, USA
| | - Veronica J Tom
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Abstract
Our ability to understand the function of the nervous system is dependent upon defining the connections of its constituent neurons. Development of methods to define connections within neural networks has always been a growth industry in the neurosciences. Transneuronal spread of neurotropic viruses currently represents the best means of defining synaptic connections within neural networks. The method exploits the ability of viruses to invade neurons, replicate, and spread through the intimate synaptic connections that enable communication among neurons. Since the method was first introduced in the 1970s, it has benefited from an increased understanding of the virus life cycle, the function of viral genomes, and the ability to manipulate the viral genome in support of directional spread of virus and the expression of transgenes. In this article, we review these advances in viral tracing technology and the ways in which they may be applied for functional dissection of neural networks. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Retrograde infection of CNS circuits by peripheral injection of virus Basic Protocol 2: Transneuronal analysis by intracerebral injection Alternate Protocol 1: Transneuronal analysis with multiple recombinant strains Alternate Protocol 2: Conditional replication and spread of PRV Alternate Protocol 3: Conditional reporters of PRV infection and spread Alternate Protocol 4: Reporters of neural activity in polysynaptic circuits Support Protocol 1: Growing and titering a PRV viral stock Support Protocol 2: Immunohistochemical processing and detection Support Protocol 3: Dual-immunofluorescence localization.
Collapse
Affiliation(s)
- Esteban A Engel
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey
- Current address: Spark Therapeutics, Philadelphia, PA, 19104
| | - J Patrick Card
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lynn W Enquist
- Department of Molecular Biology, Princeton University, Princeton, New Jersey
| |
Collapse
|
3
|
Interferon-Stimulated Gene 15 Knockout in Mice Impairs IFNα-Mediated Antiviral Activity. Viruses 2022; 14:v14091862. [PMID: 36146669 PMCID: PMC9502845 DOI: 10.3390/v14091862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022] Open
Abstract
Type I interferon (IFN) plays an important role in the host defense against viral infection by inducing expression of interferon-stimulated genes (ISGs). In a previous study, we found that porcine interferon-stimulated gene 15 (ISG15) exhibited antiviral activity against PRV in vitro. To further investigate the antiviral function of ISG15 in vivo, we utilized ISG15 knockout (ISG15-/-) mice in this study. Here, we demonstrate that ISG15-/- mice were highly susceptible to PRV infection in vivo, as evidenced by a considerably reduced survival rate, enhanced viral replication and severe pathological lesions. However, we observed no significant difference between female and male infected WT and ISG15-/- mice. Moreover, ISG15-/- mice displayed attenuated antiviral protection as a result of considerably reduced expression of IFNβ and relevant ISGs during PRV replication. Furthermore, excessive production of proinflammatory cytokines may be closely related to encephalitis and pneumonia. In further studies, we found that the enhanced sensitivity to PRV infection in ISG15-/- mice might be caused by reduced phosphorylation of STAT1 and STAT2, thereby inhibiting type I IFN-mediated antiviral activity. Based on these findings, we conclude that ISG15 is essential for host type I IFN-mediated antiviral response.
Collapse
|
4
|
Xu L, Füredi N, Lutter C, Geenen B, Pétervári E, Balaskó M, Dénes Á, Kovács KJ, Gaszner B, Kozicz T. Leptin coordinates efferent sympathetic outflow to the white adipose tissue through the midbrain centrally-projecting Edinger-Westphal nucleus in male rats. Neuropharmacology 2021; 205:108898. [PMID: 34861283 DOI: 10.1016/j.neuropharm.2021.108898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/29/2021] [Accepted: 11/21/2021] [Indexed: 12/11/2022]
Abstract
The centrally-projecting Edinger-Westphal nucleus (EWcp) hosts a large population of neurons expressing urocortin 1 (Ucn1) and about half of these neurons also express the leptin receptor (LepRb). Previously, we have shown that the peripheral adiposity hormone leptin signaling energy surfeit modulates EWcp neurons' activity. Here, we hypothesized that Ucn1/LepRb neurons in the EWcp would act as a crucial neuronal node in the brain-white adipose tissue (WAT) axis modulating efferent sympathetic outflow to the WAT. We showed that leptin bound to neurons of the EWcp stimulated STAT3 phosphorylation, and increased Ucn1-production in a time-dependent manner. Besides, retrograde transneuronal tract-tracing using pseudorabies virus (PRV) identified EWcp Ucn1 neurons connected to WAT. Interestingly, reducing EWcp Ucn1 contents by ablating EWcp LepRb-positive neurons with leptin-saporin, did not affect food intake and body weight gain, but substantially (+26%) increased WAT weight accompanied by a higher plasma leptin level and changed plasma lipid profile. We also found that ablation of EWcp Ucn1/LepRb neurons resulted in lower respiratory quotient and oxygen consumption one week after surgery, but was comparable to sham values after 3 and 5 weeks of surgery. Taken together, we report that EWcp/LepRb/Ucn1 neurons not only respond to leptin signaling but also control WAT size and fat metabolism without altering food intake. These data suggest the existence of a EWcp-WAT circuitry allowing an organism to recruit fuels without being able to eat in situations such as the fight-or-flight response.
Collapse
Affiliation(s)
- Lu Xu
- Department of Anatomy Medical Imaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands; Department of Structural and Cellular Biology, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Nóra Füredi
- Department of Anatomy and Center for Neuroscience, Medical School, Pécs University, Pécs, Hungary; Department of Translational Medicine, Medical School, Pécs University, Pécs, Hungary
| | - Christoph Lutter
- Department of Anatomy and Center for Neuroscience, Medical School, Pécs University, Pécs, Hungary
| | - Bram Geenen
- Department of Anatomy Medical Imaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Erika Pétervári
- Department of Translational Medicine, Medical School, Pécs University, Pécs, Hungary
| | - Márta Balaskó
- Department of Translational Medicine, Medical School, Pécs University, Pécs, Hungary
| | - Ádám Dénes
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Krisztina J Kovács
- Institute of Experimental Medicine, Eötvös Loránd Research Network, Budapest, Hungary
| | - Balázs Gaszner
- Department of Anatomy and Center for Neuroscience, Medical School, Pécs University, Pécs, Hungary.
| | - Tamás Kozicz
- Department of Anatomy Medical Imaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands; Department of Clinical Genomics, Mayo Clinic, MN, USA; Department of Laboratory Medicine and Pathology, Mayo Clinic, MN, USA; Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
5
|
Pseudorabies virus UL24 antagonizes OASL-mediated antiviral effect. Virus Res 2021; 295:198276. [PMID: 33476694 DOI: 10.1016/j.virusres.2020.198276] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 11/21/2022]
Abstract
Oligoadenylate synthetases-like (OASL) protein exerts various effects on DNA and RNA viruses by inhibiting cGAS-mediated IFN production and by enhancing RIG-I-mediated IFN induction, respectively. In this study, we aimed to examine the role of OASL in pseudorabies virus (PRV) proliferation and investigate the function of the PRV UL24 protein in cellular innate immunity. We found that OASL regulates PRV proliferation by enhancing RIG-I signaling. PRV infection decreased the expression of OASL at both the mRNA and protein levels in PK15 and HeLa cells. OASL expression suppressed the proliferation of PRV in a RIG-I-dependent manner and boosted RIG-I-mediated IFN expression as well as IFN-stimulated gene (ISG) induction. In contrast, knockdown of OASL enhanced PRV proliferation and reduced RIG-I signaling. However, the PRV UL24 protein was found to impair RIG-I signaling, thus inhibiting transcription of IFN and ISGs. In addition, the UL24 protein reduced RIG-I-induced expression of endogenous OASL in an IRF3-dependent manner, thereby antagonizing the OASL antiviral effect. Taken together, our findings characterize the role of OASL in PRV proliferation and provide new insights into the role of UL24 in PRV pathogenesis.
Collapse
|
6
|
The Attenuated Pseudorabies Virus Vaccine Strain Bartha K61: A Brief Review on the Knowledge Gathered During 60 Years of Research. Pathogens 2020; 9:pathogens9110897. [PMID: 33121171 PMCID: PMC7693725 DOI: 10.3390/pathogens9110897] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022] Open
Abstract
Pseudorabies virus (PRV) is a member of the alphaherpesvirus subfamily of the herpesviruses and is the causative agent of Aujeszky’s disease in pigs, causing respiratory, neurological, and reproductive symptoms. Given the heavy economic losses associated with Aujeszky’s disease epidemics, great efforts were made to develop efficacious vaccines. One of the best modified live vaccines to this day is the attenuated Bartha K61 strain. The use of this vaccine in extensive vaccination programs worldwide has assisted considerably in the eradication of PRV from the domesticated pig population in numerous countries. The Bartha K61 strain was described in 1961 by Adorján Bartha in Budapest and was obtained by serial passaging in different cell cultures. Ever since, it has been intensively studied by several research groups, for example, to explore its efficacy as a vaccine strain, to molecularly and mechanistically explain its attenuation, and to use it as a retrograde neuronal tracer and as a vector vaccine. Given that the Bartha K61 vaccine strain celebrates its 60th birthday in 2021 with no sign of retirement, this review provides a short summary of the knowledge on its origin, characteristics, and use as a molecular tool and as a vaccine.
Collapse
|
7
|
Yang G, Huang H, Tang M, Cai Z, Huang C, Qi B, Chen JL. Role of neuromedin B and its receptor in the innate immune responses against influenza A virus infection in vitro and in vivo. Vet Res 2019; 50:80. [PMID: 31601264 PMCID: PMC6785861 DOI: 10.1186/s13567-019-0695-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/29/2019] [Indexed: 01/12/2023] Open
Abstract
The peptide neuromedin B (NMB) and its receptor (NMBR) represent a system (NMB/NMBR) of neuromodulation. Here, it was demonstrated that the expression of NMBR in cells or murine lung tissues was clearly upregulated in response to H1N1/PR8 influenza A virus infection. Furthermore, the in vitro and in vivo activities of NMB/NMBR during PR8 infection were investigated. It was observed that A549 cells lacking endogenous NMBR were more susceptible to virus infection than control cells, as evidenced by the increased virus production in the cells. Interestingly, a significant decrease in IFN-α and increased IL-6 expression were observed in these cells. The role of this system in innate immunity against PR8 infection was probed by treating mice with NMB. The NMB-treated mice were less susceptible to virus challenge, as evidenced by increased survival, increased body weight, and decreased viral NP expression compared with the control animals. Additionally, the results showed that exogenous NMB not only enhanced IFN-α expression but also appeared to inhibit the expression of NP and IL-6 in PR8-infected cells and animals. As expected, opposing effects were observed in the NMBR antagonist-treated cells and mice, which further confirmed the effects of NMB. Together, these data suggest that NMB/NMBR may be an important component of the host defence against influenza A virus infection. Thus, these proteins may serve as promising candidates for the development of novel antiviral drugs.
Collapse
Affiliation(s)
- Guihong Yang
- Key laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agricultural and Forestry University, Fujian, 350002, China.
| | - Huipeng Huang
- Key laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agricultural and Forestry University, Fujian, 350002, China
| | - Mengyao Tang
- Key laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agricultural and Forestry University, Fujian, 350002, China
| | - Zifeng Cai
- Key laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agricultural and Forestry University, Fujian, 350002, China
| | - Cuiqin Huang
- Key laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agricultural and Forestry University, Fujian, 350002, China
| | - Baomin Qi
- Key laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agricultural and Forestry University, Fujian, 350002, China
| | - Ji-Long Chen
- Key laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agricultural and Forestry University, Fujian, 350002, China.
| |
Collapse
|
8
|
Microglia control the spread of neurotropic virus infection via P2Y12 signalling and recruit monocytes through P2Y12-independent mechanisms. Acta Neuropathol 2018; 136:461-482. [PMID: 30027450 PMCID: PMC6096730 DOI: 10.1007/s00401-018-1885-0] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/11/2018] [Accepted: 07/05/2018] [Indexed: 12/22/2022]
Abstract
Neurotropic herpesviruses can establish lifelong infection in humans and contribute to severe diseases including encephalitis and neurodegeneration. However, the mechanisms through which the brain’s immune system recognizes and controls viral infections propagating across synaptically linked neuronal circuits have remained unclear. Using a well-established model of alphaherpesvirus infection that reaches the brain exclusively via retrograde transsynaptic spread from the periphery, and in vivo two-photon imaging combined with high resolution microscopy, we show that microglia are recruited to and isolate infected neurons within hours. Selective elimination of microglia results in a marked increase in the spread of infection and egress of viral particles into the brain parenchyma, which are associated with diverse neurological symptoms. Microglia recruitment and clearance of infected cells require cell-autonomous P2Y12 signalling in microglia, triggered by nucleotides released from affected neurons. In turn, we identify microglia as key contributors to monocyte recruitment into the inflamed brain, which process is largely independent of P2Y12. P2Y12-positive microglia are also recruited to infected neurons in the human brain during viral encephalitis and both microglial responses and leukocyte numbers correlate with the severity of infection. Thus, our data identify a key role for microglial P2Y12 in defence against neurotropic viruses, whilst P2Y12-independent actions of microglia may contribute to neuroinflammation by facilitating monocyte recruitment to the sites of infection.
Collapse
|
9
|
Wei J, Ma Y, Wang L, Chi X, Yan R, Wang S, Li X, Chen X, Shao W, Chen JL. Alpha/beta interferon receptor deficiency in mice significantly enhances susceptibility of the animals to pseudorabies virus infection. Vet Microbiol 2017; 203:234-244. [PMID: 28619150 DOI: 10.1016/j.vetmic.2017.03.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/10/2017] [Accepted: 03/16/2017] [Indexed: 01/12/2023]
Abstract
Pseudorabies virus, one of the neurotropic viruses, can infect numerous mammals. In particular, pseudorabies virus infection of swine occurs worldwide, and is a major threat to swine industry. However, the mechanism underlying the interaction between pseudorabies virus and host innate immune system is not fully understood. Here, we investigated the involvement of interferon α/β (IFN-α/β) receptor (IFNAR) in the pathogenesis of pseudorabies virus in a mouse model. The results showed that IFNAR-deficient (IFNAR-/-) mice were highly susceptible to the virus infection, as evidenced by markedly reduced survival rate of infected animals and increased viral replication. The expression of IFN-α/β and relevant interferon-stimulated genes in IFNAR-/- mice was significantly lower than that in wild-type (WT) littermates after the viral infection. Moreover, in response to the virus challenge, IFNAR-/- mice displayed elevated levels of inflammatory cytokines including interleukin 6 (IL-6) and IL-1β, and IFNAR-/- cells showed increased phosphorylation of STAT3. Collectively, these data reveal that the IFNAR-/- mice are more sensitive to pseudorabies virus infection than WT animals, and excessive IL-6/STAT3 response in IFNAR-/- mice may contribute to the pathogenesis. Our findings suggest that type I IFNs/IFNAR-dependent homeostatic control of the innate immunity is required for host defense against pseudorabies virus infection.
Collapse
Affiliation(s)
- Jingyun Wei
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanmei Ma
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Long Wang
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaojuan Chi
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruoxiang Yan
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Song Wang
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinxin Li
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoyong Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenhan Shao
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ji-Long Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
Thinschmidt JS, King MA, Korah M, Perez PD, Febo M, Miyan J, Grant MB. Central neural activation following contact sensitivity peripheral immune challenge: evidence of brain-immune regulation through C fibres. Immunology 2015; 146:206-16. [PMID: 25967648 DOI: 10.1111/imm.12479] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/01/2015] [Accepted: 05/07/2015] [Indexed: 01/03/2023] Open
Abstract
This study tested the hypothesis that peripheral immune challenges will produce predictable activation patterns in the rat brain consistent with sympathetic excitation. As part of examining this hypothesis, this study asked whether central activation is dependent on capsaicin-sensitive C-fibres. We induced skin contact sensitivity immune responses with 2,4-dinitrochlorobenzene (DNCB), in the presence or absence of the acute C-fibre toxin capsaicin (8-methyl-N-vanillyl-6-nonenamide) to trigger immune responses with and without diminished activity of C-fibres. Innovative blood-oxygen-level-dependent functional magnetic resonance imaging data revealed that the skin contact sensitivity immune responses induced with DNCB were associated with localized increases in brain neuronal activity in treated rats. This response was diminished by pre-treatment with capsaicin 1 week before scans. In the same animals, we found expression of the immediate early gene c-Fos in sub-regions of the amygdala and hypothalamic sympathetic brain nuclei. Significant increases in c-Fos expression were found in the supraoptic nucleus, central amygdala and medial habenula following immune challenges. Our results support the idea that selective brain regions, some of which are associated with sympathetic function, process or modulate immune function through pathways that are partially dependent on C-fibres. Together with previous studies demonstrating the motor control pathways from brain to immune targets, these findings indicate a central neuroimmune system to monitor host status and coordinate appropriate host responses.
Collapse
Affiliation(s)
- Jeffrey S Thinschmidt
- Department of Pharmacology and Therapeutics, University of Florida & North Florida/South Georgia VA Medical Center, Gainesville, FL, USA
| | - Michael A King
- Department of Pharmacology and Therapeutics, University of Florida & North Florida/South Georgia VA Medical Center, Gainesville, FL, USA
| | - Maria Korah
- Department of Pharmacology and Therapeutics, University of Florida & North Florida/South Georgia VA Medical Center, Gainesville, FL, USA
| | - Pablo D Perez
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - Marcelo Febo
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - Jaleel Miyan
- Neurobiology Research Group, Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | - Maria B Grant
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
11
|
Abstract
Our ability to understand the function of the nervous system is dependent upon defining the connections of its constituent neurons. Development of methods to define connections within neural networks has always been a growth industry in the neurosciences. Transneuronal spread of neurotropic viruses currently represents the best means of defining synaptic connections within neural networks. The method exploits the ability of viruses to invade neurons, replicate, and spread through the intimate synaptic connections that enable communication among neurons. Since the method was first introduced in the 1970s, it has benefited from an increased understanding of the virus life cycle, the function of viral genome, and the ability to manipulate the viral genome in support of directional spread of virus and the expression of transgenes. In this unit, we review these advances in viral tracing technology and the way in which they may be applied for functional dissection of neural networks.
Collapse
Affiliation(s)
- J Patrick Card
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | |
Collapse
|
12
|
Duale H, Lyttle TS, Smith BN, Rabchevsky AG. Noxious colorectal distention in spinalized rats reduces pseudorabies virus labeling of sympathetic neurons. J Neurotrauma 2010; 27:1369-78. [PMID: 20528165 DOI: 10.1089/neu.2010.1321] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The retrograde transsynaptic tracer pseudorabies virus (PRV) has been widely used as a marker for synaptic connectivity in the spinal cord. Notably, the PRV-152 construct expresses enhanced green fluorescent protein (EGFP). We recently reported a significant attenuation of PRV-152 labeling of the intermediolateral cell column (IML) and celiac ganglia after complete T4 spinal cord transection versus sham injury in rats at 96 h after PRV-152 inoculation of the left kidney. Here we found a significant increase in noxious colorectal distention (CRD)-evoked c-Fos expression in spinal cords of injured versus sham rats without PRV infection. In order to assess whether enhancing neuronal activity in spinalized rats might increase PRV-152 labeling, we subjected awake spinalized rats to 1.5 h of intermittent noxious CRD either: (1) just prior to inoculation, or (2) 96 h after inoculation (n = 3/group). Equal numbers of spinalized rats in both groups received PRV-152 inoculations without CRD (non-stimulated; n = 3/group). At 96 h post-inoculation fixed spinal cords and left celiac ganglionic tissues were assessed for the distribution and quantification of EGFP-labeled cells. The injured cohort that received CRD just prior to PRV injection showed a significant reduction in EGFP-labeled cells in both the IML and left celiac ganglion compared to non-stimulated injured rats. In contrast, the injured cohort that received CRD 96 h after PRV-152 inoculation showed no differences in EGFP-labeled cell numbers in the IML or celiac ganglia versus non-stimulated injured rats. Interestingly, microglia near c-Fos-positive cells after acute CRD appeared more reactive compared to non-stimulated spinalized rats, and activated microglial cells markedly reduce viral transduction and progression following PRV inoculation of the CNS. Hence our results imply that increased CRD-induced c-Fos expression in the injured paradigm, prior to but not after PRV injection, further attenuates PRV-152 uptake, perhaps through changes in neuronal activity and/or innate neuro-immune responses.
Collapse
Affiliation(s)
- Hanad Duale
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536-0509, USA
| | | | | | | |
Collapse
|
13
|
Marcaccini A, López Peña M, Quiroga MI, Bermúdez R, Nieto JM, Alemañ N. Pseudorabies virus infection in mink: a host-specific pathogenesis. Vet Immunol Immunopathol 2008; 124:264-73. [PMID: 18490062 DOI: 10.1016/j.vetimm.2008.03.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 03/25/2008] [Accepted: 03/27/2008] [Indexed: 01/01/2023]
Abstract
Pseudorabies virus (PRV) is an alphaherpesvirus that causes a neurological disease in many wild and domestic animals. The neuropathology elicited by PRV is quite consistent regardless of the host with the only exception of mink, in which it is characterized by a vasculopathy rather than by an encephalitis. In this study, we aimed to investigate the underlying pathogenic mechanism(s) of PRV infection in mink by using immunohistochemistry and laser capture microdissection (LCM) on material from naturally and experimentally infected animals. The inflammatory reaction induced by PRV was minimal or absent not only in the nervous system, where we identified a low number of macrophages and a few T lymphocytes, but also in the primary replication site, the oropharyngeal mucosa; however, the number of PRV-infected cells detected by immunohistochemistry was extremely high both in the peripheral mucosa and in the nervous tissue. On the other hand, the vascular pathology included parenchymal hemorrhages of various degrees and, in specific cortical areas of the brain, fibrinoid degeneration of the capillary walls. Detection of viral antigens by immunohistochemistry revealed infection of endothelial cells of capillaries situated both in the oropharyngeal mucosa and in the brain stem; the presence of PRV DNA in vessels was further demonstrated by PCR performed on LCM samples of brain capillaries. These results can be interpreted as supporting the idea that the different pathology of the disease in mink may be the consequence of an increased endotheliotropism of PRV in this species. Infection of the vessel wall may then lead to vascular pathology and impairment in endothelial cell function, resulting in a weak immune response to infection.
Collapse
Affiliation(s)
- Andrés Marcaccini
- Cátedra de Histología II y Embriología Especial, Facultad de Ciencias Veterinarias, Universidad Nacional de Rosario, Casilda, Argentina
| | | | | | | | | | | |
Collapse
|
14
|
Ekstrand MI, Enquist LW, Pomeranz LE. The alpha-herpesviruses: molecular pathfinders in nervous system circuits. Trends Mol Med 2008; 14:134-40. [PMID: 18280208 DOI: 10.1016/j.molmed.2007.12.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 12/18/2007] [Accepted: 12/20/2007] [Indexed: 01/20/2023]
Abstract
Several neuroinvasive viruses can be used to study the mammalian nervous system. In particular, infection by pseudorabies virus (PRV), an alpha-herpesvirus with broad host range, reveals chains of functionally connected neurons in the nervous systems of a variety of mammals. The specificity of PRV trans-neuronal spread has been established in several systems. One attenuated strain, PRV-Bartha, causes a reduced inflammatory response and also spreads only from infected post- to pre-synaptic neurons. We review the basics of PRV tracing and then discuss new developments and novel approaches that have enabled a more detailed understanding of the architecture of the nervous system. As questions and techniques evolve in the field of neuroscience, advances in PRV tracing will certainly follow.
Collapse
Affiliation(s)
- Mats I Ekstrand
- Department of Molecular Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | | | |
Collapse
|