1
|
Mohammadzadeh A, Lahouty M, Charkhian H, Ghafour AA, Moazzendizaji S, Rezaei J, Alipour S, Irannejad VS, Ansari MHK. Human umbilical cord mesenchymal stem cell-derived exosomes alleviate the severity of experimental autoimmune encephalomyelitis and enhance lag-3 expression on foxp3 + CD4 + T cells. Mol Biol Rep 2024; 51:522. [PMID: 38627337 DOI: 10.1007/s11033-024-09433-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 03/08/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Multiple sclerosis (MS) is a complex autoimmune disease that affects the central nervous system, causing inflammation, demyelination, and neurodegeneration. Understanding the dysregulation of Tregs, dynamic cells involved in autoimmunity, is crucial in comprehending diseases like MS. However, the role of lymphocyte-activation gene 3 (Lag-3) in MS remains unclear. METHODS In this study, we explore the potential of exosomes derived from human umbilical cord mesenchymal stem cells (hUMSCs-Exs) as an immune modulator in experimental autoimmune encephalomyelitis (EAE), a model for MS. RESULTS Using flow cytometry, our research findings indicate that groups receiving treatment with hUMSC-Exs revealed a significant increase in Lag-3 expression on Foxp3 + CD4 + T cells. Furthermore, cell proliferation conducted on spleen tissue samples from EAE mice using the CFSE method exposed to hUMSC-Exs yielded relevant results. CONCLUSIONS These results suggest that hUMSCs-Exs could be a promising anti-inflammatory agent to regulate T-cell responses in EAE and other autoimmune diseases. However, further research is necessary to fully understand the underlying mechanisms and Lag-3's precise role in these conditions.
Collapse
Affiliation(s)
- Adel Mohammadzadeh
- Department of Immunology and Genetics, Urmia University of Medical Sciences, Urmia, Iran.
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Masoud Lahouty
- Department of Microbiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Hamed Charkhian
- Young Researchers Club, Urmia Branch, Islamic Azad University, Urmia, Iran
- Department of Cancer Genetics, Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Turkey
| | - Arash Adamnejad Ghafour
- Department of Cancer Genetics, Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Turkey
- Division of Cancer Genetics, Department of Basic Oncology, Oncology Institute, Istanbul University, Fatih, Istanbul, Türkiye, Turkey
| | - Sahand Moazzendizaji
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Jafar Rezaei
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Shahriar Alipour
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Vahid Shafiei Irannejad
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | |
Collapse
|
2
|
Daei Sorkhabi A, Komijani E, Sarkesh A, Ghaderi Shadbad P, Aghebati-Maleki A, Aghebati-Maleki L. Advances in immune checkpoint-based immunotherapies for multiple sclerosis: rationale and practice. Cell Commun Signal 2023; 21:321. [PMID: 37946301 PMCID: PMC10634124 DOI: 10.1186/s12964-023-01289-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/19/2023] [Indexed: 11/12/2023] Open
Abstract
Beyond the encouraging results and broad clinical applicability of immune checkpoint (ICP) inhibitors in cancer therapy, ICP-based immunotherapies in the context of autoimmune disease, particularly multiple sclerosis (MS), have garnered considerable attention and hold great potential for developing effective therapeutic strategies. Given the well-established immunoregulatory role of ICPs in maintaining a balance between stimulatory and inhibitory signaling pathways to promote immune tolerance to self-antigens, a dysregulated expression pattern of ICPs has been observed in a significant proportion of patients with MS and its animal model called experimental autoimmune encephalomyelitis (EAE), which is associated with autoreactivity towards myelin and neurodegeneration. Consequently, there is a rationale for developing immunotherapeutic strategies to induce inhibitory ICPs while suppressing stimulatory ICPs, including engineering immune cells to overexpress ligands for inhibitory ICP receptors, such as program death-1 (PD-1), or designing fusion proteins, namely abatacept, to bind and inhibit the co-stimulatory pathways involved in overactivated T-cell mediated autoimmunity, and other strategies that will be discussed in-depth in the current review. Video Abstract.
Collapse
Affiliation(s)
- Amin Daei Sorkhabi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Erfan Komijani
- Department of Veterinary, Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Aila Sarkesh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pedram Ghaderi Shadbad
- Department of Veterinary, Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Stem Cell Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Zhou X, Gu Y, Wang H, Zhou W, Zou L, Li S, Hua C, Gao S. From bench to bedside: targeting lymphocyte activation gene 3 as a therapeutic strategy for autoimmune diseases. Inflamm Res 2023:10.1007/s00011-023-01742-y. [PMID: 37314518 DOI: 10.1007/s00011-023-01742-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/12/2023] [Accepted: 05/12/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Immune checkpoints negatively regulate immune response, thereby playing an important role in maintaining immune homeostasis. Substantial studies have confirmed that blockade or deficiency of immune checkpoint pathways contributes to the deterioration of autoimmune diseases. In this context, focusing on immune checkpoints might provide alternative strategies for the treatment of autoimmunity. Lymphocyte activation gene 3 (LAG3), as a member of immune checkpoint, is critical in regulating immune responses as manifested in multiple preclinical studies and clinical trials. Recent success of dual-blockade of LAG3 and programmed death-1 in melanoma also supports the notion that LAG3 is a crucial regulator in immune tolerance. METHODS We wrote this review article by searching the PubMed, Web of Science and Google Scholar databases. CONCLUSION In this review, we summarize the molecular structure and the action mechanisms of LAG3. Additionally, we highlight its roles in diverse autoimmune diseases and discuss how the manipulation of the LAG3 pathway can serve as a promising therapeutic strategy as well as its specific mechanism with the aim of filling the gaps from bench to bedside.
Collapse
Affiliation(s)
- Xueyin Zhou
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yiming Gu
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Huihong Wang
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wei Zhou
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lei Zou
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shuting Li
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chunyan Hua
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Sheng Gao
- Laboratory Animal Center, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
4
|
Association between LAG3/CD4 Genes Variants and Risk for Multiple Sclerosis. Int J Mol Sci 2022; 23:ijms232315244. [PMID: 36499569 PMCID: PMC9735634 DOI: 10.3390/ijms232315244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Several recent works have raised the possibility of the contribution of the lymphocyte activation gene 3 (LAG3) protein in the inflammatory processes of multiple sclerosis (MS). Results of studies on the possible association between LAG3 gene variants and the risk of MS have been inconclusive. In this study, we tried to show the possible association between the most common single nucleotide variants (SNVs) in the CD4 and LAG3 genes (these two genes are closely related) and the risk of MS in the Caucasian Spanish population. We studied the genotypes and allelic variants CD4 rs1922452, CD4 rs951818, and LAG3 rs870849 in 300 patients diagnosed with MS and 400 healthy patients using specific TaqMan-based qPCR assays. We analyzed the possible influence of the genotype frequency on age at the onset of MS, the severity of MS, clinical evolutive subtypes of MS, and the HLADRB1*1501 genotype. The frequencies of the CD4 rs1922452, CD4 rs951818, and LAG3 rs870849 genotypes and allelic variants were not associated with the risk of MS and were unrelated to gender, age at onset and severity of MS, the clinical subtype of MS, and HLADRB1*1501 genotype. The results of the current study showed a lack of association between the CD4 rs1922452, CD4 rs951818, and LAG3 rs870849 SNVs and the risk of developing MS in the Caucasian Spanish population.
Collapse
|
5
|
Effect of the Lymphocyte Activation Gene 3 Polymorphism rs951818 on Mortality and Disease Progression in Patients with Sepsis-A Prospective Genetic Association Study. J Clin Med 2021; 10:jcm10225302. [PMID: 34830585 PMCID: PMC8621793 DOI: 10.3390/jcm10225302] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/19/2022] Open
Abstract
(1) Background: Sepsis is a leading cause of death and a global public health problem. Accordingly, deciphering the underlying molecular mechanisms of this disease and the determinants of its morbidity and mortality is pivotal. This study examined the effect of the rs951818 SNP of the negative costimulatory lymphocyte-activation gene 3 (LAG-3) on sepsis mortality and disease severity. (2) Methods: 707 consecutive patients with sepsis were prospectively enrolled into the present study from three surgical ICUs at University Medical Center Goettingen. Both 28- and 90-day mortality were analyzed as the primary outcome, while parameters of disease severity served as secondary endpoints. (3) Results: In the Kaplan-Meier analysis LAG-3 rs951818 AA-homozygote patients showed a significantly lower 28-day mortality (17.3%) compared to carriers of the C-allele (23.7%, p = 0.0476). In addition, these patients more often received invasive mechanical ventilation (96%) during the course of disease than C-allele carriers (92%, p = 0.0466). (4) Conclusions: Genetic profiling of LAG-3 genetic variants alone or in combination with other genetic biomarkers may represent a promising approach for risk stratification of patients with sepsis. Patient-individual therapeutic targeting of immune checkpoints, such as LAG-3, may be a future component of sepsis therapy. Further detailed investigations in clinically relevant sepsis models are necessary.
Collapse
|
6
|
Kringel D, Malkusch S, Kalso E, Lötsch J. Computational Functional Genomics-Based AmpliSeq™ Panel for Next-Generation Sequencing of Key Genes of Pain. Int J Mol Sci 2021; 22:ijms22020878. [PMID: 33467215 PMCID: PMC7830224 DOI: 10.3390/ijms22020878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/27/2020] [Accepted: 01/12/2021] [Indexed: 11/16/2022] Open
Abstract
The genetic background of pain is becoming increasingly well understood, which opens up possibilities for predicting the individual risk of persistent pain and the use of tailored therapies adapted to the variant pattern of the patient's pain-relevant genes. The individual variant pattern of pain-relevant genes is accessible via next-generation sequencing, although the analysis of all "pain genes" would be expensive. Here, we report on the development of a cost-effective next generation sequencing-based pain-genotyping assay comprising the development of a customized AmpliSeq™ panel and bioinformatics approaches that condensate the genetic information of pain by identifying the most representative genes. The panel includes 29 key genes that have been shown to cover 70% of the biological functions exerted by a list of 540 so-called "pain genes" derived from transgenic mice experiments. These were supplemented by 43 additional genes that had been independently proposed as relevant for persistent pain. The functional genomics covered by the resulting 72 genes is particularly represented by mitogen-activated protein kinase of extracellular signal-regulated kinase and cytokine production and secretion. The present genotyping assay was established in 61 subjects of Caucasian ethnicity and investigates the functional role of the selected genes in the context of the known genetic architecture of pain without seeking functional associations for pain. The assay identified a total of 691 genetic variants, of which many have reports for a clinical relevance for pain or in another context. The assay is applicable for small to large-scale experimental setups at contemporary genotyping costs.
Collapse
Affiliation(s)
- Dario Kringel
- Institute of Clinical Pharmacology, Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (D.K.); (S.M.)
| | - Sebastian Malkusch
- Institute of Clinical Pharmacology, Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (D.K.); (S.M.)
| | - Eija Kalso
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, P.O. Box 440, 00029 HUS Helsinki, Finland;
| | - Jörn Lötsch
- Institute of Clinical Pharmacology, Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (D.K.); (S.M.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
- Correspondence: ; Tel.: +49-69-6301-4589; Fax: +49-69-6301-4354
| |
Collapse
|
7
|
Hu S, Liu X, Li T, Li Z, Hu F. LAG3 (CD223) and autoimmunity: Emerging evidence. J Autoimmun 2020; 112:102504. [PMID: 32576412 DOI: 10.1016/j.jaut.2020.102504] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 12/31/2022]
Abstract
Immune checkpoint molecules play pivotal roles in maintaining the immune homeostasis. Targeting these molecules, such as the classical Cytotoxic T-Lymphocyte Antigen 4 (CTLA4) and Programmed Cell Death Protein 1 (PD1), achieves great success in treating cancers. However, not all the patients respond well. This urges the immunologists to identify novel immune checkpoint molecules. Lymphocyte activation gene-3 (LAG3; CD223) is a newly identified inhibitory receptor. It is expressed on a variety of immune cells, including CD4+ T cells, CD8+ T cells, Tregs, B cells, and NK cells. Its unique intracellular domains, signaling patterns as well as the striking synergy observed in its targeted therapy with anti-PD1 indicate the important role of LAG3 in maintaining immune tolerance. Currently, a variety of agents targeting LAG3 are in clinical trials, revealing great perspectives in the future immunotherapy. In this review, we briefly summarize the studies on LAG3, including its structure, isoforms, ligands, signaling, function, roles in multiple diseases, as well as the latest targeted therapeutic advances, with particular concern on the potential association of LAG3 with autoimmune diseases.
Collapse
Affiliation(s)
- Suiyuan Hu
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Xu Liu
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Tianding Li
- Software Center, Bank of China, Beijing, China
| | - Zhanguo Li
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Fanlei Hu
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| |
Collapse
|
8
|
Lymphocyte-Activation Gene 3 (LAG3) Protein as a Possible Therapeutic Target for Parkinson's Disease: Molecular Mechanisms Connecting Neuroinflammation to α-Synuclein Spreading Pathology. BIOLOGY 2020; 9:biology9040086. [PMID: 32340360 PMCID: PMC7235703 DOI: 10.3390/biology9040086] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/15/2022]
Abstract
Parkinson’s disease (PD) is the most common neurodegenerative movement disorder without any objective biomarker available to date. Increasing evidence highlights the critical role of neuroinflammation, including T cell responses, and spreading of aggregated α-synuclein in PD progression. Lymphocyte-activation gene 3 (LAG3) belongs to the immunoglobulin (Ig) superfamily expressed by peripheral immune cells, microglia and neurons and plays a key role in T cell regulation. The role of LAG3 has been extensively investigated in several human cancers, whereas until recently, the role of LAG3 in the central nervous system (CNS) has been largely unknown. Accumulating evidence highlights the potential role of LAG3 in PD pathogenesis, mainly by binding to α-synuclein fibrils and affecting its endocytosis and intercellular transmission, which sheds more light on the connection between immune dysregulation and α-synuclein spreading pathology. Serum and cerebrospinal fluid (CSF) soluble LAG3 (sLAG3) levels have been demonstrated to be potentially associated with PD development and clinical phenotype, suggesting that sLAG3 could represent an emerging PD biomarker. Specific single nucleotide polymorphisms (SNPs) of the LAG3 gene have been also related to PD occurrence especially in the female population, enlightening the pathophysiological background of gender-related PD clinical differences. Given also the ongoing clinical trials investigating various LAG3-targeting strategies in human diseases, new opportunities are being developed for PD treatment research. In this review, we discuss recent preclinical and clinical evidence on the role of LAG3 in PD pathogenesis and biomarker potential, aiming to elucidate its underlying molecular mechanisms.
Collapse
|
9
|
Guo W, Zhou M, Qiu J, Lin Y, Chen X, Huang S, Mo M, Liu H, Peng G, Zhu X, Xu P. Association of LAG3 genetic variation with an increased risk of PD in Chinese female population. J Neuroinflammation 2019; 16:270. [PMID: 31847878 PMCID: PMC6918662 DOI: 10.1186/s12974-019-1654-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/20/2019] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Emerging evidence suggests that α-synuclein (α-syn) aggregation and intercellular transmission contributes to pathogenesis of Parkinson's disease (PD) and the toxic fibrillary α-syn binds lymphocyte-activation gene 3 (LAG3) receptor that mediates α-syn transmission. The deletion of LAG3 in animal models was shown to limit α-syn spreading and alleviate the pathological changes of dopaminergic neurons and animal behavioral deficits induced by α-syn aggregation. However, little is known about the genetic association of LAG3 variation with human PD development. OBJECTIVE Here we investigated LAG3 single nucleotide polymorphisms (SNPs) and examined the levels of soluble LAG3 (sLAG3) of CSF and serum from Chinese PD patients. METHODS We enrolled 646 PD patients and 536 healthy controls to conduct a case-control study. All the participants were genotyped using Sequenom iPLEX Assay and the partial cerebrospinal fluid (CSF) and serum samples were assessed by Meso Scale Discovery electrochemiluminescence (MSD-ECL) immunoassay to measure sLAG3 concentration. RESULTS As a result, distributions of rs1922452-AA (1.975, 95% confidence interval (CI) 1.311-2.888, p = 0.001) and rs951818-CC (OR = 2.03, 95% CI 1.369-3.010, p = 0.001) genotype frequencies were found higher in the female PD patients than controls, respectively, and a strong linkage disequilibrium (LD) was calculated on the variants. The level of sLAG3 in CSF of PD patients was found to significantly differ from that of controls (51.56 ± 15.05 pg/ml vs 88.49 ± 62.96 pg/ml, p < 0.0001). Meanwhile, the concentration of α-synuclein in CSF of patients was significantly lower than that of controls (939.9 ± 2900 pg/ml vs 2476 ± 4403 pg/ml, p < 0.0001) and the level of sLAG3 was detected to be positive correlation with that of α-synuclein in the control group (r = 0.597, p = 0.0042), but not in PD group (r = 0.111, p = 0.408). CONCLUSION In summary, our data suggested that LAG3 SNPs increase the PD risk of Chinese female population and the sLAG3 may be a potential biomarker predicted for PD development.
Collapse
Affiliation(s)
- Wenyuan Guo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Miaomiao Zhou
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Jiewen Qiu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Yuwan Lin
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Xiang Chen
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Shuxuan Huang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Mingshu Mo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Hanqun Liu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Guoyou Peng
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Xiaoqin Zhu
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| |
Collapse
|
10
|
Gao S, Wang Z, Jiang H, Sun J, Diao Y, Tang Y, Hu J. Transcriptional analysis of host responses related to immunity in chicken spleen tissues infected with reticuloendotheliosis virus strain SNV. INFECTION GENETICS AND EVOLUTION 2019; 74:103932. [PMID: 31228642 DOI: 10.1016/j.meegid.2019.103932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/09/2019] [Accepted: 06/18/2019] [Indexed: 11/15/2022]
Abstract
In avian species, the Reticuloendotheliosis virus (REV) causes severe immunosuppression and other symptoms, including avian dwarfing syndrome, and chronic tumors in lymphoid and other tissues. The pathogenesis of REV and its interaction with the host have yet to be fully elucidated with transcriptional studies on the changes in host gene expression after REV infection at the body level. In this study, the Spleen Necrosis Virus (SNV) was used to inoculate the one-day-old specific pathogen free (SPF) chicken to simulate congenital infection. We identified 1507 differentially expressed genes (DEGs) at 7, 14 and 21 dpi using Next Generation Sequencing (NGS) technology. Through the Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of these DEGs, it was found that DEGs were mainly involved in the categories of signal transduction, immune system and signaling molecules and interaction. Among them, Pattern recognition receptors (PRRs), chemokine, T cell receptor, JAK-STAT, TNF, and NF-kappa B signaling pathway, and the Hematopoietic cell lineage play an important role in the tumorigenic and immunosuppressive regulation of REV. In addition, a series of DEGs associated with inflammatory factors (CCL4, TNFRSF18, CDKN2), apoptosis (IRF1, PDCD1, WNT5A), innate immunity (TLR, MAD5, TRIM25), and adaptive immunity (LY6E, CD36, LAG3) were also discovered. We further verified 33 selected immune- relevant DEGs using quantitative RT-PCR (qRT-PCR). These findings provide new insights and research directions for revealing the pathogenesis of REV infection and the interaction between REV and the chicken immune system.
Collapse
Affiliation(s)
- Shuo Gao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Zhenzhong Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hao Jiang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Jie Sun
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Youxiang Diao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Yi Tang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.
| | - Jingdong Hu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.
| |
Collapse
|
11
|
Transcription analysis of the response of chicken bursa of Fabricius to avian leukosis virus subgroup J strain JS09GY3. Virus Res 2014; 188:8-14. [DOI: 10.1016/j.virusres.2014.03.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 03/07/2014] [Accepted: 03/09/2014] [Indexed: 01/04/2023]
|
12
|
Risk conferring genes in multiple sclerosis. FEBS Lett 2011; 585:3789-97. [DOI: 10.1016/j.febslet.2011.03.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 03/17/2011] [Accepted: 03/17/2011] [Indexed: 12/25/2022]
|
13
|
Lee KM, Baris D, Zhang Y, Hosgood HD, Menashe I, Yeager M, Zahm SH, Wang SS, Purdue MP, Chanock S, Zheng T, Rothman N, Lan Q. Common single nucleotide polymorphisms in immunoregulatory genes and multiple myeloma risk among women in Connecticut. Am J Hematol 2010; 85:560-3. [PMID: 20568250 DOI: 10.1002/ajh.21760] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In light of the relationship between immune system dysregulation and multiple myeloma (MM) risk, we investigated whether genetic variation in 92 immune function genes among 77 gene regions are associated with MM susceptibility in a population-based case-control study (108 cases and 482 controls) conducted among Caucasian women in Connecticut. Tagging single-nucleotide polymorphisms (SNPs; N = 870) were selected using a pairwise linkage-disequilibrium based algorithm. Odds ratios (ORs) and 95% confidence intervals (CIs) for SNP genotypes were estimated using unconditional logistic regression. Tests of association for gene regions were conducted using the minP test. We applied the false discovery rate (FDR) method to the minP test results as a means of controlling for multiple comparisons. The CD4 gene region located on 12p13-q13 (minP = 0.0009), had an FDR value <0.1. In this region, a total of six tag SNPs in two genes (CD4 and LAG3) were significantly associated with MM risk (P(trend)<0.05), with the strongest association observed for the CD4 variant rs11064392 (OR(AG/GG) = 2.53, 95% CI = 1.59-4.02). Our findings suggest that genetic variation in CD4 may influence susceptibility to MM. Additional studies are needed to replicate these findings and, more generally, to explore the manner in which genes and receptors may influence the pathogenesis of this poorly understood malignancy.
Collapse
Affiliation(s)
- Kyoung-Mu Lee
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Niino M, Fukazawa T, Kikuchi S, Sasaki H. Recent advances in genetic analysis of multiple sclerosis: genetic associations and therapeutic implications. Expert Rev Neurother 2007; 7:1175-88. [PMID: 17868016 DOI: 10.1586/14737175.7.9.1175] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Epidemiological studies have confirmed that genetic factors are a key component in the pathogenesis of multiple sclerosis (MS) and that those determining MS susceptibility have been extensively studied. Many papers have been published regarding the heritable differences useful in genetic studies; these include variations in DNA, such as single-nucleotide polymorphisms, microsatellites and insertion/deletion polymorphisms. However, to date, among other regions, HLA is the only region confirmed to possess genes that determine MS susceptibility. In this article, we review the progress during the last 5 years in the studies on the susceptibility genes and the pharmacogenetics of MS. Newer techniques and methods of analysis will hopefully result in better screening of individuals who are at highest risk and novel treatments.
Collapse
Affiliation(s)
- Masaaki Niino
- Department of Neurology, Hokkaido University Hospital, Kita-14, Nishi-5, Kita-ku, Sapporo 060-8648, Japan.
| | | | | | | |
Collapse
|