1
|
Szpakowska M, D’Uonnolo G, Luís R, Alonso Bartolomé A, Thelen M, Legler DF, Chevigné A. New pairings and deorphanization among the atypical chemokine receptor family - physiological and clinical relevance. Front Immunol 2023; 14:1133394. [PMID: 37153591 PMCID: PMC10157204 DOI: 10.3389/fimmu.2023.1133394] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/30/2023] [Indexed: 05/09/2023] Open
Abstract
Atypical chemokine receptors (ACKRs) form a small subfamily of receptors (ACKR1-4) unable to trigger G protein-dependent signaling in response to their ligands. They do, however, play a crucial regulatory role in chemokine biology by capturing, scavenging or transporting chemokines, thereby regulating their availability and signaling through classical chemokine receptors. ACKRs add thus another layer of complexity to the intricate chemokine-receptor interaction network. Recently, targeted approaches and screening programs aiming at reassessing chemokine activity towards ACKRs identified several new pairings such as the dimeric CXCL12 with ACKR1, CXCL2, CXCL10 and CCL26 with ACKR2, the viral broad-spectrum chemokine vCCL2/vMIP-II, a range of opioid peptides and PAMP-12 with ACKR3 as well as CCL20 and CCL22 with ACKR4. Moreover, GPR182 (ACKR5) has been lately proposed as a new promiscuous atypical chemokine receptor with scavenging activity notably towards CXCL9, CXCL10, CXCL12 and CXCL13. Altogether, these findings reveal new degrees of complexity of the chemokine network and expand the panel of ACKR ligands and regulatory functions. In this minireview, we present and discuss these new pairings, their physiological and clinical relevance as well as the opportunities they open for targeting ACKRs in innovative therapeutic strategies.
Collapse
Affiliation(s)
- Martyna Szpakowska
- Immuno-Pharmacology and Interactomics,Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Giulia D’Uonnolo
- Immuno-Pharmacology and Interactomics,Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Rafael Luís
- Immuno-Pharmacology and Interactomics,Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Tumor Immunotherapy and Microenvironment, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Ana Alonso Bartolomé
- Immuno-Pharmacology and Interactomics,Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Marcus Thelen
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Daniel F. Legler
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
| | - Andy Chevigné
- Immuno-Pharmacology and Interactomics,Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- *Correspondence: Andy Chevigné,
| |
Collapse
|
2
|
Rappoport N, Simon AJ, Amariglio N, Rechavi G. The Duffy antigen receptor for chemokines, ACKR1,- 'Jeanne DARC' of benign neutropenia. Br J Haematol 2018; 184:497-507. [PMID: 30592023 DOI: 10.1111/bjh.15730] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Benign neutropenia, observed in different ethnic groups, is the most common form of neutropenia worldwide. A specific single nucleotide polymorphism, rs2814778, located at the promoter of the ACKR1 (previously termed DARC) gene, which disrupts a binding site for the GATA1 erythroid transcription factor, resulting in a ACKR1-null phenotype, was found to serve as a predictor of low white blood cell and neutrophil counts in African-Americans and Yemenite Jews. Individuals with benign neutropenia due to the ACKR1-null allele have been found to have an increased susceptibility to human immunodeficiency virus infection and, on the other hand, a protective effect against malaria. The associated protective effect may explain the spread of the ACKR1-null allele by natural selection. The reviewed relationships between ACKR1 polymorphism and various pathological states may have important clinical implications to individuals with and without benign neutropenia. Potential mechanisms for ACKR1 (previously termed DARC) modulation during neutrophil recruitment to inflammation, and chemokine bioavailability in the circulation and in local tissue are reviewed and discussed.
Collapse
Affiliation(s)
- Naama Rappoport
- Cancer Research Centre, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amos J Simon
- Cancer Research Centre, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Institute of Haematology, Sheba Medical Centre, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ninette Amariglio
- Cancer Research Centre, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Institute of Haematology, Sheba Medical Centre, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel
| | - Gideon Rechavi
- Cancer Research Centre, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
3
|
Palmblad J, Höglund P. Ethnic benign neutropenia: A phenomenon finds an explanation. Pediatr Blood Cancer 2018; 65:e27361. [PMID: 30117263 DOI: 10.1002/pbc.27361] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/21/2018] [Accepted: 06/25/2018] [Indexed: 01/29/2023]
Abstract
Ethnic benign neutropenia (ENP) is the most common form of neutropenia (NP) worldwide, if an absolute blood neutrophil count (ANC) of < 1.5 G/L is used as definition. In 2009, ENP was associated with a gene variation in the ACKR1/DARC gene, the same variation that also confers the Duffy-null trait. In 2017, a novel mechanism for ENP was introduced, questioning if ENP is a true neutropenic state, when the body's total neutrophil count (TBNC) is concerned. Here, we summarize the current knowledge of ENP, asking (1) How well does the peripheral blood ANC predict the TBNC? (2) Can we improve methods for assessing TBNC? (3) Will estimates of TBNC predict infection propensity and reduce the need for further, costly workup?
Collapse
Affiliation(s)
- Jan Palmblad
- Department of Medicine Karolinska Institutet, The Hematology Center, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Petter Höglund
- Department of Medicine Karolinska Institutet, Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital Huddinge, and Center for Hematology and Regenerative Medicine (HERM), Stockholm, Sweden
| |
Collapse
|
4
|
Rimando J, Campbell J, Kim JH, Tang SC, Kim S. The Pretreatment Neutrophil/Lymphocyte Ratio Is Associated with All-Cause Mortality in Black and White Patients with Non-metastatic Breast Cancer. Front Oncol 2016; 6:81. [PMID: 27064712 PMCID: PMC4815293 DOI: 10.3389/fonc.2016.00081] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 03/21/2016] [Indexed: 01/01/2023] Open
Abstract
The pretreatment neutrophil/lymphocyte ratio (NLR), derived from differential white blood cell counts, has been previously associated with poor prognosis in breast cancer. Little data exist, however, concerning this association in Black patients, who are known to have lower neutrophil counts than other racial groups. We conducted a retrospective cohort study of 236 Black and 225 non-Hispanic White breast cancer patients treated at a single institution. Neutrophil and lymphocyte counts were obtained from electronic medical records. Univariate and multivariate Cox regression models were used to determine hazard ratios (HRs) and 95% confidence intervals (95% CIs) of all-cause mortality and breast cancer-specific mortality in relation to pretreatment NLR. Overall, there were no associations between an elevated pretreatment NLR (NLR ≥3.7) and all-cause or breast cancer-specific mortality. Among patients without metastasis at the time of diagnosis, an elevated pretreatment NLR was independently associated with all-cause mortality, with a multivariable HR of 2.31 (95% CI: 1.10-4.86). Black patients had significantly lower NLR values than White patients, but there was no evidence suggesting racial heterogeneity of the prognostic utility of NLR. Pretreatment NLR was an independent predictor of all-cause mortality but not breast cancer-specific mortality in non-metastatic breast cancer patients.
Collapse
Affiliation(s)
- Joseph Rimando
- Section of Hematology/Oncology, Department of Medicine, Medical College of Georgia at Georgia Regents University, Augusta, GA, USA
| | - Jeff Campbell
- Georgia Regents University Cancer Center, Augusta, GA, USA
| | - Jae Hee Kim
- Georgia Regents University Cancer Center, Augusta, GA, USA
| | - Shou-Ching Tang
- Section of Hematology/Oncology, Department of Medicine, Medical College of Georgia at Georgia Regents University, Augusta, GA, USA
- Georgia Regents University Cancer Center, Augusta, GA, USA
| | - Sangmi Kim
- Section of Hematology/Oncology, Department of Medicine, Medical College of Georgia at Georgia Regents University, Augusta, GA, USA
- Georgia Regents University Cancer Center, Augusta, GA, USA
| |
Collapse
|
5
|
Galzi JL, Hachet-Haas M, Bonnet D, Daubeuf F, Lecat S, Hibert M, Haiech J, Frossard N. Neutralizing endogenous chemokines with small molecules. Principles and potential therapeutic applications. Pharmacol Ther 2010; 126:39-55. [PMID: 20117133 PMCID: PMC7112609 DOI: 10.1016/j.pharmthera.2009.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 12/24/2009] [Indexed: 02/08/2023]
Abstract
Regulation of cellular responses to external stimuli such as hormones, neurotransmitters, or cytokines is achieved through the control of all steps of the complex cascade starting with synthesis, going through maturation steps, release, distribution, degradation and/or uptake of the signalling molecule interacting with the target protein. One possible way of regulation, referred to as scavenging or neutralization of the ligand, has been increasingly studied, especially for small protein ligands. It shows innovative potential in chemical biology approaches as well as in disease treatment. Neutralization of protein ligands, as for example cytokines or chemokines can lead to the validation of signalling pathways under physiological or pathophysiological conditions, and in certain cases, to the development of therapeutic molecules now used in autoimmune diseases, chronic inflammation and cancer treatment. This review explores the field of ligand neutralization and tries to determine to what extent small chemical molecules could substitute for neutralizing antibodies in therapeutic approaches.
Collapse
Affiliation(s)
- Jean-Luc Galzi
- IREBS, FRE3211, Ecole Supérieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, 67412 Illkirch, France.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Nebor D, Durpes MC, Mougenel D, Mukisi-Mukaza M, Elion J, Hardy-Dessources MD, Romana M. Association between Duffy antigen receptor for chemokines expression and levels of inflammation markers in sickle cell anemia patients. Clin Immunol 2010; 136:116-22. [PMID: 20347396 DOI: 10.1016/j.clim.2010.02.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 02/03/2010] [Accepted: 02/28/2010] [Indexed: 10/19/2022]
Abstract
Since inflammation plays a prominent role in the pathogenesis of sickle cell anemia (SCA) and Duffy antigen receptor for chemokines (DARC) modulates the function of inflammatory processes, we analyzed the relationship between the erythrocyte DARC phenotype and clinical expression of SCA. DARC locus was genotyped in 212 SS adult patients followed by the sickle cell center of Guadeloupe (French West Indies). After patients' stratification according to RBC DARC expression, the prevalence of renal disease, leg ulcers, priapism and osteonecrosis was compared between patient groups as well as hematological variables and plasma levels of chemokines. Duffy-positive patients exhibited higher counts of white blood cells (9.95+/-2.36 vs 8.88+/-2.32 10(9)/L, p=0.0066), polynuclear neutrophils (5.1+/-1.73 vs 4.51+/-1.71 10(9)/L, p=0.0227), higher plasma levels of IL-8 (4.46+/-1.22 vs 1.47+/-0.5 pg/mL, p=0.0202) and RANTES (27.8+/-4.3 vs 18.1+/-2.3 ng/mL, p=0.04) than Duffy-negative patients. No association was detected between RBC expression of DARC and the studied complications.
Collapse
Affiliation(s)
- Danitza Nebor
- UMR S_763 Inserm / Université des Antilles et de la Guyane, Hôpital RICOU, CHU de Pointe-à-Pitre, 97159 Pointe-à-Pitre, Guadeloupe
| | | | | | | | | | | | | |
Collapse
|
7
|
Zerfaoui M, Naura AS, Errami Y, Hans CP, Rezk BM, Park J, Elsegeiny W, Kim H, Lord K, Kim JG, Boulares AH. Effects of PARP-1 deficiency on airway inflammatory cell recruitment in response to LPS or TNF: differential effects on CXCR2 ligands and Duffy Antigen Receptor for Chemokines. J Leukoc Biol 2009; 86:1385-92. [PMID: 19741160 PMCID: PMC2780916 DOI: 10.1189/jlb.0309183] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 07/11/2009] [Accepted: 07/30/2009] [Indexed: 12/14/2022] Open
Abstract
We reported that PARP-1 exhibits differential roles in expression of inflammatory factors. Here, we show that PARP-1 deletion was associated with a significant reduction in inflammatory cell recruitment to mouse airways upon intratracheal administration of LPS. However, PARP-1 deletion exerted little effect in response to TNF exposure. LPS induced massive neutrophilia and moderate recruitment of macrophages, and TNF induced recruitment of primarily macrophages with smaller numbers of neutrophils in the lungs. Following either exposure, macrophage recruitment was blocked severely in PARP-1(-/-) mice, and this was associated with a marked reduction in MCP-1 and MIP-1alpha. This association was corroborated partly by macrophage recruitment in response to intratracheal administration of MCP-1 in PARP-1(-/-) mice. Surprisingly, although neutrophil recruitment was reduced significantly in LPS-treated PARP-1(-/-) mice, neutrophil numbers increased in TNF-treated mice, suggesting that PARP-1 deletion may promote a macrophagic-to-neutrophilic shift in the inflammatory response upon TNF exposure. Neutrophil-specific chemokines mKC and MIP-2 were reduced significantly in lungs of LPS-treated but only partially reduced in TNF-treated PARP-1(-/-) mice. Furthermore, the MIP-2 antagonist abrogated the shift to a neutrophilic response in TNF-exposed PARP-1(-/-) mice. Although CXCR2 expression increased in response to either stimulus in PARP-1(+/+) mice, the DARC increased only in lungs of TNF-treated PARP-1(+/+) mice; both receptors were reduced to basal levels in treated PARP-1(-/-) mice. Our results show that the balance of pro-neutrophilic or pro-macrophagic stimulatory factors and the differential influence of PARP-1 on these factors are critical determinants for the nature of the airway inflammatory response.
Collapse
Affiliation(s)
- Mourad Zerfaoui
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Reich D, Nalls MA, Kao WHL, Akylbekova EL, Tandon A, Patterson N, Mullikin J, Hsueh WC, Cheng CY, Coresh J, Boerwinkle E, Li M, Waliszewska A, Neubauer J, Li R, Leak TS, Ekunwe L, Files JC, Hardy CL, Zmuda JM, Taylor HA, Ziv E, Harris TB, Wilson JG. Reduced neutrophil count in people of African descent is due to a regulatory variant in the Duffy antigen receptor for chemokines gene. PLoS Genet 2009; 5:e1000360. [PMID: 19180233 PMCID: PMC2628742 DOI: 10.1371/journal.pgen.1000360] [Citation(s) in RCA: 292] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 12/30/2008] [Indexed: 11/26/2022] Open
Abstract
Persistently low white blood cell count (WBC) and neutrophil count is a well-described phenomenon in persons of African ancestry, whose etiology remains unknown. We recently used admixture mapping to identify an approximately 1-megabase region on chromosome 1, where ancestry status (African or European) almost entirely accounted for the difference in WBC between African Americans and European Americans. To identify the specific genetic change responsible for this association, we analyzed genotype and phenotype data from 6,005 African Americans from the Jackson Heart Study (JHS), the Health, Aging and Body Composition (Health ABC) Study, and the Atherosclerosis Risk in Communities (ARIC) Study. We demonstrate that the causal variant must be at least 91% different in frequency between West Africans and European Americans. An excellent candidate is the Duffy Null polymorphism (SNP rs2814778 at chromosome 1q23.2), which is the only polymorphism in the region known to be so differentiated in frequency and is already known to protect against Plasmodium vivax malaria. We confirm that rs2814778 is predictive of WBC and neutrophil count in African Americans above beyond the previously described admixture association (P = 3.8 x 10(-5)), establishing a novel phenotype for this genetic variant.
Collapse
Affiliation(s)
- David Reich
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Michael A. Nalls
- Laboratory of Neurogenetics, Intramural Research Program, National Institute on Aging, Bethesda, Maryland, United States of America
- Laboratory of Epidemiology, Demography and Biometry, Intramural Research Program, National Institute on Aging, Bethesda, Maryland, United States of America
| | - W. H. Linda Kao
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Ermeg L. Akylbekova
- Jackson Heart Study Analysis Group, Jackson State University, Jackson, Mississippi, United States of America
| | - Arti Tandon
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Nick Patterson
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - James Mullikin
- Comparative Genomics Unit, Genome Technology Branch, National Human Genome Research Institute, Rockville, Maryland, United States of America
| | - Wen-Chi Hsueh
- Division of Medical Genetics, Department of Medicine, Department of Epidemiology and Biostatistics, Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - Ching-Yu Cheng
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Inherited Disease Research Branch, National Human Genome Research Institute, Baltimore, Maryland, United States of America
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Eric Boerwinkle
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Man Li
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Alicja Waliszewska
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Laboratory of Molecular Immunology, Center for Neurologic Disease, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Julie Neubauer
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Rongling Li
- Department of Preventive Medicine, Center for Genomics and Bioinformatics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Tennille S. Leak
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Lynette Ekunwe
- Jackson Heart Study Analysis Group, Jackson State University, Jackson, Mississippi, United States of America
| | - Joe C. Files
- Department of Medicine, Division of Hematology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Cheryl L. Hardy
- Department of Medicine, Division of Hematology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Joseph M. Zmuda
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Herman A. Taylor
- Jackson State University, Jackson, Mississippi, United States of America
- Tougaloo College, Jackson, Mississippi, United States of America
- University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Elad Ziv
- Division of General Internal Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Department of Epidemiology and Biostatistics, Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, United States of America
| | - Tamara B. Harris
- Laboratory of Epidemiology, Demography and Biometry, Intramural Research Program, National Institute on Aging, Bethesda, Maryland, United States of America
| | - James G. Wilson
- V.A. Medical Center, Jackson, Mississippi, United States of America
- University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| |
Collapse
|