1
|
Starčević Čizmarević N, Ćurko-Cofek B, Barac-Latas V, Peterlin B, Ristić S. Lack of association between C282Y and H63D polymorphisms in the hemochromatosis gene and risk of multiple sclerosis: A meta-analysis. Biomed Rep 2022; 16:12. [PMID: 34987796 DOI: 10.3892/br.2021.1495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/09/2021] [Indexed: 12/27/2022] Open
Abstract
Increasing evidence supports the potential role of iron metabolism in multiple sclerosis (MS). Previous studies examining the association between polymorphisms of the hemochromatosis gene (HFE) and susceptibility to MS have yielded inconsistent results. In the present study, a meta-analysis of 7 studies was performed conducted in populations of Caucasian origin using the Comprehensive Meta-analysis 3.0 software. The strength of association between the C282Y and H63D polymorphisms in HFE and MS risk was estimated by odds ratios with 95% confidence intervals. Cochran's Q statistic and I2 tests were applied to quantify heterogeneity between studies. An Egger's test was used to estimate publication bias. The C282Y and H63D polymorphisms had no significant association with increased MS risk (all P≥0.05) in the following genetic comparison models: Dominant model (YY + CY vs. CC or DD + HD vs. HH) and allele contrast (Y vs. C or D vs. H). No apparent publication bias or significant heterogeneity was found between studies. These results suggest that the HFE polymorphisms C282Y and H63D are not associated with susceptibility to MS in populations of Caucasian origin. Further studies should be performed in a larger series of MS patients to evaluate the contribution of HFE and other genetic variants associated with iron regulation in the development and progression of MS.
Collapse
Affiliation(s)
- Nada Starčević Čizmarević
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Božena Ćurko-Cofek
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Vesna Barac-Latas
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Borut Peterlin
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Smiljana Ristić
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
2
|
Gene-gene interactions among coding genes of iron-homeostasis proteins and APOE-alleles in cognitive impairment diseases. PLoS One 2018. [PMID: 29518107 PMCID: PMC5843269 DOI: 10.1371/journal.pone.0193867] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cognitive impairments of different aetiology share alterations in iron and lipid homeostasis with mutual relationships. Since iron and cholesterol accumulation impact on neurodegenerative disease, the associated gene variants are appealing candidate targets for risk and disease progression assessment. In this light, we explored the role of common single nucleotide polymorphisms (SNPs) in the main iron homeostasis genes and in the main lipoprotein transporter gene (APOE) in a cohort of 765 patients with dementia of different origin: Alzheimer’s disease (AD) n = 276; vascular dementia (VaD), n = 255; mild cognitive impairment (MCI), n = 234; and in normal controls (n = 1086). In details, four genes of iron homeostasis (Hemochromatosis (HFE: C282Y, H63D), Ferroportin (FPN1: -8CG), Hepcidin (HAMP: -582AG), Transferrin (TF: P570S)), and the three major alleles of APOE (APOE2, APOE3, APOE4) were analyzed to explore causative interactions and synergies. In single analysis, HFE 282Y allele yielded a 3-fold risk reduction in the whole cohort of patients (P<0.0001), confirmed in AD and VaD, reaching a 5-fold risk reduction in MCI (P = 0.0019). The other iron SNPs slightly associated with risk reduction whereas APOE4 allele resulted in increased risk, reaching more than 7-fold increased risk in AD homozygotes (P = 0.001), confirmed to a lower extent in VaD and MCI (P = 0.038 and P = 0.013 respectively) as well as in the whole group (P<0.0001). Comparisons of Mini Mental State Examination (MMSE) among AD showed appreciable lowering in APOE4 carriers (P = 0.038), confirmed in the whole cohort of patients (P = 0.018). In interaction analysis, the HFE 282Y allele completely extinguished the APOE4 allele associated risk. Conversely, the coexistence in patients of a substantial number of iron SNPs accrued the APOE4 detrimental effect on MMSE. Overall, the analysis highlighted how a specific iron-allele burden, defined as different combinations of iron gene variants, might have different effects on cognitive impairment and might modulate the effects of established genetic risk factors such as APOE4. Our results suggest that established genetic risk factors might be affected by specific genetic backgrounds, making patients differently suited to manage iron accumulation adding new genetic insights in neurodegeneration. The recently recognized interconnections between iron and lipids, suggest that these pathways might share more than expected. We therefore extended to additional iron gene variants the newly proposed influencing mechanisms that HFE gene has on cholesterol metabolism. Our results have a strong translational potential promoting new pharmacogenetics studies on therapeutic target identification aimed at optimally tuning brain iron levels.
Collapse
|
3
|
Weisfeld-Adams JD, Katz Sand IB, Honce JM, Lublin FD. Differential diagnosis of Mendelian and mitochondrial disorders in patients with suspected multiple sclerosis. Brain 2015; 138:517-39. [PMID: 25636970 DOI: 10.1093/brain/awu397] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Several single gene disorders share clinical and radiologic characteristics with multiple sclerosis and have the potential to be overlooked in the differential diagnostic evaluation of both adult and paediatric patients with multiple sclerosis. This group includes lysosomal storage disorders, various mitochondrial diseases, other neurometabolic disorders, and several other miscellaneous disorders. Recognition of a single-gene disorder as causal for a patient's 'multiple sclerosis-like' phenotype is critically important for accurate direction of patient management, and evokes broader genetic counselling implications for affected families. Here we review single gene disorders that have the potential to mimic multiple sclerosis, provide an overview of clinical and investigational characteristics of each disorder, and present guidelines for when clinicians should suspect an underlying heritable disorder that requires diagnostic confirmation in a patient with a definite or probable diagnosis of multiple sclerosis.
Collapse
Affiliation(s)
- James D Weisfeld-Adams
- 1 Division of Clinical Genetics and Metabolism, Department of Paediatrics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA 2 Inherited Metabolic Diseases Clinic, Children's Hospital Colorado, Aurora, Colorado 80045, USA 3 Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Ilana B Katz Sand
- 4 Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Justin M Honce
- 5 Department of Radiology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Fred D Lublin
- 4 Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
4
|
Delatycki MB, Tai G, Corben L, Yiu EM, Evans-Galea MV, Stephenson SEM, Gurrin L, Allen KJ, Lynch D, Lockhart PJ. HFE p.C282Y heterozygosity is associated with earlier disease onset in Friedreich ataxia. Mov Disord 2014; 29:940-3. [PMID: 24390816 DOI: 10.1002/mds.25795] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 11/26/2013] [Accepted: 12/03/2013] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Friedreich ataxia (FRDA) generally results from reduced frataxin, a mitochondrial protein involved in iron metabolism. We assessed whether HFE p.C282Y and/or p.H63D heterozygosity modifies age at disease onset or disease severity in individuals with FRDA. METHODS One hundred seventy individuals with FRDA were assessed for the association of HFE p.C282Y and p.H63D with (1) age at disease onset and (2) Friedreich Ataxia Rating Scale (FARS) score. RESULTS After adjusting for the smaller FXN GAA repeat size and sex, individuals with FRDA and heterozygous for p.C282Y had disease onset on average 3.72 years earlier than those homozygous for the wild-type amino acid (P = 0.02). Neither mutation affected disease severity as measured by FARS. CONCLUSIONS It is hypothesized that the association between p.C282Y heterozygosity and an earlier age at FRDA onset relates to exacerbation of the already dysregulated iron metabolism that plays a major role in the pathogenesis of FRDA.
Collapse
Affiliation(s)
- Martin B Delatycki
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Childrens Research Institute, Parkville, Victoria, Australia; Clinical Genetics, Austin Health, Heidelberg, Victoria, Australia; Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia; School of Psychology and Psychiatry, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
van Rensburg SJ, Kotze MJ, van Toorn R. The conundrum of iron in multiple sclerosis--time for an individualised approach. Metab Brain Dis 2012; 27:239-53. [PMID: 22422107 PMCID: PMC3402663 DOI: 10.1007/s11011-012-9290-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 02/23/2012] [Indexed: 11/21/2022]
Abstract
Although the involvement of immune mechanisms in multiple sclerosis (MS) is undisputed, some argue that there is insufficient evidence to support the hypothesis that MS is an autoimmune disease, and that the difference between immune- and autoimmune disease mechanisms has yet to be clearly delineated. Uncertainties surrounding MS disease pathogenesis and the modest efficacy of currently used disease modifying treatments (DMTs) in the prevention of disability, warrant the need to explore other possibilities. It is evident from the literature that people diagnosed with MS differ widely in symptoms and clinical outcome--some patients have a benign disease course over many years without requiring any DMTs. Attempting to include all patients into a single entity is an oversimplification and may obscure important observations with therapeutic consequences. In this review we advocate an individualised approach named Pathology Supported Genetic Testing (PSGT), in which genetic tests are combined with biochemical measurements in order to identify subgroups of patients requiring different treatments. Iron dysregulation in MS is used as an example of how this approach may benefit patients. The theory that iron deposition in the brain contributes to MS pathogenesis has caused uncertainty among patients as to whether they should avoid iron. However, the fact that a subgroup of people diagnosed with MS show clinical improvement when they are on iron supplementation emphasises the importance of individualised therapy, based on genetic and biochemical determinations.
Collapse
Affiliation(s)
- Susan J van Rensburg
- Division of Chemical Pathology, National Health Laboratory Service and University of Stellenbosch, Tygerberg Hospital, PO Box 19113, 7505 Tygerberg, South Africa.
| | | | | |
Collapse
|
6
|
Gemmati D, Zeri G, Orioli E, De Gaetano FE, Salvi F, Bartolomei I, D'Alfonso S, Dall'osso C, Leone MA, Singh AV, Asselta R, Zamboni P. Polymorphisms in the genes coding for iron binding and transporting proteins are associated with disability, severity, and early progression in multiple sclerosis. BMC MEDICAL GENETICS 2012; 13:70. [PMID: 22883388 PMCID: PMC3490944 DOI: 10.1186/1471-2350-13-70] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 07/30/2012] [Indexed: 02/04/2023]
Abstract
BACKGROUND Iron involvement/imbalance is strongly suspected in multiple sclerosis (MS) etiopathogenesis, but its role is quite debated. Iron deposits encircle the veins in brain MS lesions, increasing local metal concentrations in brain parenchyma as documented by magnetic resonance imaging and histochemical studies. Conversely, systemic iron overload is not always observed. We explored the role of common single nucleotide polymorphisms (SNPs) in the main iron homeostasis genes in MS patients. METHODS By the pyrosequencing technique, we investigated 414 MS cases [Relapsing-remitting (RR), n=273; Progressive, n=141, of which: Secondary (SP), n=103 and Primary (PP), n=38], and 414 matched healthy controls. Five SNPs in 4 genes were assessed: hemochromatosis (HFE: C282Y, H63D), ferroportin (FPN1: -8CG), hepcidin (HEPC: -582AG), and transferrin (TF: P570S). RESULTS The FPN1-8GG genotype was overrepresented in the whole MS population (OR=4.38; 95%CI, 1.89-10.1; P<0.0001) and a similar risk was found among patients with progressive forms. Conversely, the HEPC -582GG genotype was overrepresented only in progressive forms (OR=2.53; 95%CI, 1.34-4.78; P=0.006) so that SP and PP versus RR yielded significant outputs (P=0.009). For almost all SNPs, MS disability score (EDSS), severity score (MSSS), as well as progression index (PI) showed a significant increase when comparing homozygotes versus individuals carrying other genotypes: HEPC -582GG (EDSS, 4.24±2.87 vs 2.78±2.1; P=0.003; MSSS, 5.6±3.06 vs 3.79±2.6; P=0.001); FPN1-8GG (PI, 1.11±2.01 vs 0.6±1.31; P=0.01; MSSS, 5.08±2.98 vs 3.85±2.8; P=0.01); HFE 63DD (PI, 1.63±2.6 vs 0.6±0.86; P=0.009). Finally, HEPC -582G-carriers had a significantly higher chance to switch into the progressive form (HR=3.55; 1.83-6.84; log-rank P=0.00006). CONCLUSIONS Polymorphisms in the genes coding for iron binding and transporting proteins, in the presence of local iron overload, might be responsible for suboptimal iron handling. This might account for the significant variability peculiar to MS phenotypes, particularly affecting MS risk and progression paving the way for personalized pharmacogenetic applications in the clinical practice.
Collapse
Affiliation(s)
- Donato Gemmati
- Department of Biomedical Sciences & Advanced Therapies, Hematology Unit-Center Hemostasis & Thrombosis, University of Ferrara, Ferrara, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Tecchio F, Assenza G, Zappasodi F, Mariani S, Salustri C, Squitti R. Glutamate-mediated primary somatosensory cortex excitability correlated with circulating copper and ceruloplasmin. Int J Alzheimers Dis 2011; 2011:292593. [PMID: 22145081 PMCID: PMC3227495 DOI: 10.4061/2011/292593] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Revised: 08/08/2011] [Accepted: 08/29/2011] [Indexed: 12/02/2022] Open
Abstract
Objective. To verify whether markers of metal homeostasis are related to a magnetoencephalographic index representative of glutamate-mediated excitability of the primary somatosensory cortex. The index is identified as the source strength of the earliest component (M20) of the somatosensory magnetic fields (SEFs) evoked by right median nerve stimulation at wrist. Method. Thirty healthy right-handed subjects (51 ± 22 years) were enrolled in the study. A source reconstruction algorithm was applied to assess the amount of synchronously activated neurons subtending the M20 and the following SEF component (M30), which is generated by two independent contributions of gabaergic and glutamatergic transmission. Serum copper, ceruloplasmin, iron, transferrin, transferrin saturation, and zinc levels were measured. Results. Total copper and ceruloplasmin negatively correlated with the M20 source strength. Conclusion. This pilot study suggests that higher level of body copper reserve, as marked by ceruloplasmin variations, parallels lower cortical glutamatergic responsiveness.
Collapse
Affiliation(s)
- Franca Tecchio
- Laboratory for Electrophysiology for Translational neuroScience (LET'S), Istituto di Scienze e Tecnologie della Cognizione (ISTC), Consiglio Nazionale delle Ricerche (CNR), Fatebenefratelli Hospital Isola Tiberina, Rome, Italy
| | | | | | | | | | | |
Collapse
|
8
|
Williams R, Buchheit CL, Berman NEJ, LeVine SM. Pathogenic implications of iron accumulation in multiple sclerosis. J Neurochem 2011; 120:7-25. [PMID: 22004421 DOI: 10.1111/j.1471-4159.2011.07536.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Iron, an essential element used for a multitude of biochemical reactions, abnormally accumulates in the CNS of patients with multiple sclerosis (MS). The mechanisms of abnormal iron deposition in MS are not fully understood, nor do we know whether these deposits have adverse consequences, that is, contribute to pathogenesis. With some exceptions, excess levels of iron are represented concomitantly in multiple deep gray matter structures often with bilateral representation, whereas in white matter, pathological iron deposits are usually located at sites of inflammation that are associated with veins. These distinct spatial patterns suggest disparate mechanisms of iron accumulation between these regions. Iron has been postulated to promote disease activity in MS by various means: (i) iron can amplify the activated state of microglia resulting in the increased production of proinflammatory mediators; (ii) excess intracellular iron deposits could promote mitochondria dysfunction; and (iii) improperly managed iron could catalyze the production of damaging reactive oxygen species (ROS). The pathological consequences of abnormal iron deposits may be dependent on the affected brain region and/or accumulation process. Here, we review putative mechanisms of enhanced iron uptake in MS and address the likely roles of iron in the pathogenesis of this disease.
Collapse
Affiliation(s)
- Rachel Williams
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | |
Collapse
|
9
|
Bettencourt A, Silva AM, Santos E, Gomes S, Mendonça D, Costa PP, Faustino P, Silva BM. HFE gene polymorphisms and severity in Portuguese patients with multiple sclerosis. Eur J Neurol 2011; 18:663-6. [PMID: 20586792 DOI: 10.1111/j.1468-1331.2010.03109.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND High iron concentrations have been reported in oligodendrocytes, myelin and macrophages in multiple sclerosis (MS) lesions. It has been proposed that HFE gene polymorphisms could have a role in MS. METHODS The C282Y and H63D HFE variants frequencies were determined in 373 patients with MS and compared with a normal population. RESULTS No significant association was found between HFE polymorphisms and disease susceptibility. An analysis of the association of genotypes with disease severity was performed, and the C282Y allele was more frequent in the aggressive group. CONCLUSIONS Patients carrying the C282Y variant seem to have a worse prognosis.
Collapse
Affiliation(s)
- A Bettencourt
- UMIB - Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UP), Porto, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Buretić-Tomljanović A, Vraneković J, Rubeša G, Jonovska S, Tomljanović D, Sendula-Jengić V, Kapović M, Ristić S. HFE mutations and transferrin C1/C2 polymorphism among Croatian patients with schizophrenia and schizoaffective disorder. Mol Biol Rep 2011; 39:2253-8. [PMID: 21643746 DOI: 10.1007/s11033-011-0974-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 05/26/2011] [Indexed: 11/25/2022]
Abstract
The aim of this study was to investigate the possible influence of hemochromatosis gene mutations (HFE-C282Y and H63D) and transferrin gene C2 variant (TF-C2) on susceptibility to schizophrenia and schizoaffective disorder and/or age at first hospital admission. Genotyping was performed in 176 Croatian patients and 171 non-psychiatric Croatian controls using PCR-RFLP analyses. Regarding the H63D mutation, allele and genotype frequencies reached boundary statistical significance. Other allele and genotype distributions were not significantly different between two groups. We also analyzed age at first hospital admission as a continuous variable using the non-parametric Mann-Whitney U-test and Kruskal-Wallis test, and multiple regression analysis. The results of these tests were negative. We concluded that investigated HFE mutations and TF-C2 variant are not high-risk genetic variants for schizophrenia/schizoaffective disorder in our population. Also our data do not support their impact on age at onset of the first psychotic symptoms.
Collapse
Affiliation(s)
- Alena Buretić-Tomljanović
- Department of Biology and Medical Genetics, School of Medicine, University of Rijeka, Brace Branchetta 20, 51000 Rijeka, Croatia.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Kell DB. Towards a unifying, systems biology understanding of large-scale cellular death and destruction caused by poorly liganded iron: Parkinson's, Huntington's, Alzheimer's, prions, bactericides, chemical toxicology and others as examples. Arch Toxicol 2010; 84:825-89. [PMID: 20967426 PMCID: PMC2988997 DOI: 10.1007/s00204-010-0577-x] [Citation(s) in RCA: 265] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 07/14/2010] [Indexed: 12/11/2022]
Abstract
Exposure to a variety of toxins and/or infectious agents leads to disease, degeneration and death, often characterised by circumstances in which cells or tissues do not merely die and cease to function but may be more or less entirely obliterated. It is then legitimate to ask the question as to whether, despite the many kinds of agent involved, there may be at least some unifying mechanisms of such cell death and destruction. I summarise the evidence that in a great many cases, one underlying mechanism, providing major stresses of this type, entails continuing and autocatalytic production (based on positive feedback mechanisms) of hydroxyl radicals via Fenton chemistry involving poorly liganded iron, leading to cell death via apoptosis (probably including via pathways induced by changes in the NF-κB system). While every pathway is in some sense connected to every other one, I highlight the literature evidence suggesting that the degenerative effects of many diseases and toxicological insults converge on iron dysregulation. This highlights specifically the role of iron metabolism, and the detailed speciation of iron, in chemical and other toxicology, and has significant implications for the use of iron chelating substances (probably in partnership with appropriate anti-oxidants) as nutritional or therapeutic agents in inhibiting both the progression of these mainly degenerative diseases and the sequelae of both chronic and acute toxin exposure. The complexity of biochemical networks, especially those involving autocatalytic behaviour and positive feedbacks, means that multiple interventions (e.g. of iron chelators plus antioxidants) are likely to prove most effective. A variety of systems biology approaches, that I summarise, can predict both the mechanisms involved in these cell death pathways and the optimal sites of action for nutritional or pharmacological interventions.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry and the Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester M1 7DN, UK.
| |
Collapse
|