1
|
Xu AL, Zheng GY, Ye HY, Chen XD, Jiang Q. Characterization of astrocytes and microglial cells in the hippocampal CA1 region after transient focal cerebral ischemia in rats treated with Ilexonin A. Neural Regen Res 2020; 15:78-85. [PMID: 31535655 PMCID: PMC6862412 DOI: 10.4103/1673-5374.264465] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Ilexonin A is a compound isolated from the root of Ilex pubescens, a traditional Chinese medicine. Ilexonin A has been shown to play a neuroprotective role by regulating the activation of astrocytes and microglia in the peri-infarct area after ischemia. However, the effects of ilexonin A on astrocytes and microglia in the infarct-free region of the hippocampal CA1 region remain unclear. Focal cerebral ischemia models were established by 2-hour occlusion of the middle cerebral artery in rats. Ilexonin A (20, 40 or 80 mg/kg) was administered immediately after ischemia/reperfusion. The astrocyte marker glial fibrillary acidic protein, microglia marker Iba-1, neural stem cell marker nestin and inflammation markers were detected by immunohistochemistry and western blot assay. Expression levels of tumor necrosis factor-α and interleukin 1β were determined by enzyme linked immunosorbent assay in the hippocampal CA1 tissue. Astrocytes were activated immediately in progressively increasing numbers from 1, 3, to 7 days post-ischemia/reperfusion. The number of activated astrocytes further increased in the hippocampal CA1 region after treatment with ilexonin A. Microglial cells remained quiescent after ischemia/reperfusion, but became activated after treatment with ilexonin A. Ilexonin A enhanced nestin expression and reduced the expression of tumor necrosis factor-α and interleukin 1β in the hippocampus post-ischemia/reperfusion. The results of the present study suggest that ilexonin A has a neuroprotective effect in the hippocampus after ischemia/reperfusion, probably through regulating astrocytes and microglia activation, promoting neuronal stem cell proliferation and reducing the levels of pro-inflammatory factors. This study was approved by the Animal Ethics Committee of the Fujian Medical University Union Hospital, China.
Collapse
Affiliation(s)
- Ai-Ling Xu
- Department of Traditional Chinese Medicine, Fujian Medical University Union Hospital; Department of Neonatology, People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Guan-Yi Zheng
- Department of Traditional Chinese Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Hui-Ying Ye
- Department of Traditional Chinese Medicine, Fujian Medical University Union Hospital, Fuzhou; Department of Neurology, People's Hospital of Nanping, Nanping, Fujian Province, China
| | - Xiao-Dong Chen
- Burns Institute of Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Qiong Jiang
- Burns Institute of Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| |
Collapse
|
2
|
Barbaro MR, Cremon C, Fuschi D, Scaioli E, Veneziano A, Marasco G, Festi D, Stanghellini V, Barbara G. Nerve fiber overgrowth in patients with symptomatic diverticular disease. Neurogastroenterol Motil 2019; 31:e13575. [PMID: 30838745 DOI: 10.1111/nmo.13575] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/10/2019] [Accepted: 02/01/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Colonic diverticulosis is a common condition in industrialized countries. Up to 25% of patients with diverticula develop symptoms, a condition termed symptomatic uncomplicated diverticular disease (SUDD). The aim of the present study was to characterize neuroimmune interactions and nerve fiber plasticity in the colonic mucosa of patients with diverticula. METHODS Controls, patients with diverticulosis and with SUDD were enrolled in the study. Mucosal biopsies were obtained close to diverticula (diverticular region) and in a normal mucosa (distant site), corresponding to sigmoid and descending colon in the controls. Quantitative immunohistochemistry was used to assess mast cells, T cells, macrophages, nerve fibers, and neuronal outgrowth (growth-associated protein 43, GAP43+fibers). KEY RESULTS No difference emerged in mast cells and T cells among the three groups. Macrophages were increased in patients with SUDD and diverticulosis as compared to controls. Nerve fibers were enhanced in patients with SUDD and diverticulosis in comparison with controls in the diverticular region. GAP43+ fibers were increased only in patients with SUDD as compared to controls and to patients with diverticulosis in the diverticular region. In patients with SUDD, GAP43 density was increased in the diverticular region compared to distant site. Macrophages close to GAP43+ fibers were increased in the diverticular region of patients with SUDD. Significant correlations were found between GAP43+ fibers and immune cells. CONCLUSIONS AND INFERENCES Patients with diverticula are characterized by increased macrophage counts, while nerve fiber sprouting is increased only in the diverticular region of patients with SUDD suggesting a role in symptom generation.
Collapse
Affiliation(s)
- Maria Raffaella Barbaro
- Department of Medical and Surgical Sciences and Center for Applied Biomedical Research (CRBA), Alma Mater Studiorum - University of Bologna and S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Cesare Cremon
- Department of Medical and Surgical Sciences and Center for Applied Biomedical Research (CRBA), Alma Mater Studiorum - University of Bologna and S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Daniele Fuschi
- Department of Medical and Surgical Sciences and Center for Applied Biomedical Research (CRBA), Alma Mater Studiorum - University of Bologna and S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Eleonora Scaioli
- Department of Medical and Surgical Sciences and Center for Applied Biomedical Research (CRBA), Alma Mater Studiorum - University of Bologna and S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Alberto Veneziano
- Department of Medical and Surgical Sciences and Center for Applied Biomedical Research (CRBA), Alma Mater Studiorum - University of Bologna and S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Giovanni Marasco
- Department of Medical and Surgical Sciences and Center for Applied Biomedical Research (CRBA), Alma Mater Studiorum - University of Bologna and S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Davide Festi
- Department of Medical and Surgical Sciences and Center for Applied Biomedical Research (CRBA), Alma Mater Studiorum - University of Bologna and S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Vincenzo Stanghellini
- Department of Medical and Surgical Sciences and Center for Applied Biomedical Research (CRBA), Alma Mater Studiorum - University of Bologna and S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Giovanni Barbara
- Department of Medical and Surgical Sciences and Center for Applied Biomedical Research (CRBA), Alma Mater Studiorum - University of Bologna and S. Orsola-Malpighi Hospital, Bologna, Italy
| |
Collapse
|
3
|
Lannes N, Eppler E, Etemad S, Yotovski P, Filgueira L. Microglia at center stage: a comprehensive review about the versatile and unique residential macrophages of the central nervous system. Oncotarget 2017; 8:114393-114413. [PMID: 29371994 PMCID: PMC5768411 DOI: 10.18632/oncotarget.23106] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/15/2017] [Indexed: 02/07/2023] Open
Abstract
Microglia cells are the unique residential macrophages of the central nervous system (CNS). They have a special origin, as they derive from the embryonic yolk sac and enter the developing CNS at a very early stage. They play an important role during CNS development and adult homeostasis. They have a major contribution to adult neurogenesis and neuroinflammation. Thus, they participate in the pathogenesis of neurodegenerative diseases and contribute to aging. They play an important role in sustaining and breaking the blood-brain barrier. As innate immune cells, they contribute substantially to the immune response against infectious agents affecting the CNS. They play also a major role in the growth of tumours of the CNS. Microglia are consequently the key cell population linking the nervous and the immune system. This review covers all different aspects of microglia biology and pathology in a comprehensive way.
Collapse
Affiliation(s)
- Nils Lannes
- Albert Gockel, Anatomy, Department of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Elisabeth Eppler
- Pestalozzistrasse Zo, Department of BioMedicine, University of Basel, CH-4056 Basel, Switzerland
| | - Samar Etemad
- Building 71/218 RBWH Herston, Centre for Clinical Research, The University of Queensland, QLD 4029 Brisbane, Australia
| | - Peter Yotovski
- Albert Gockel, Anatomy, Department of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Luis Filgueira
- Albert Gockel, Anatomy, Department of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
4
|
Monteleone F, Nicoletti CG, Stampanoni Bassi M, Iezzi E, Buttari F, Furlan R, Finardi A, Marfia GA, Centonze D, Mori F. Nerve growth factor is elevated in the CSF of patients with multiple sclerosis and central neuropathic pain. J Neuroimmunol 2017; 314:89-93. [PMID: 29174194 DOI: 10.1016/j.jneuroim.2017.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 10/26/2017] [Accepted: 11/17/2017] [Indexed: 01/03/2023]
Abstract
Central neuropathic pain (CNP) is common and disabling among patients with multiple sclerosis (MS). The pathological mechanisms underlying CNP in MS are not well understood. We explored whether NGF is implicated in the pathogenesis of CNP in MS. We measured NGF concentration in the CSF of 73 patients affected by MS, 15 with and 58 without CNP and 14 controls. We found increased levels of NGF in the CSF of patients with CNP compared to patients without and to controls. This finding supports the hypothesis that NGF plays a role in MS related CNP.
Collapse
Affiliation(s)
- Fabrizia Monteleone
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; Unit of Neurology & Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077 Pozzilli, IS, Italy
| | - Carolina G Nicoletti
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; Unit of Neurology & Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077 Pozzilli, IS, Italy
| | - Mario Stampanoni Bassi
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; Unit of Neurology & Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077 Pozzilli, IS, Italy
| | - Ennio Iezzi
- Unit of Neurology & Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077 Pozzilli, IS, Italy
| | - Fabio Buttari
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; Unit of Neurology & Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077 Pozzilli, IS, Italy
| | - Roberto Furlan
- Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Annamaria Finardi
- Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Girolama A Marfia
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy
| | - Diego Centonze
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; Unit of Neurology & Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077 Pozzilli, IS, Italy.
| | - Francesco Mori
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; Unit of Neurology & Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077 Pozzilli, IS, Italy
| |
Collapse
|
5
|
Wu J, Xie H, Yao S, Liang Y. Macrophage and nerve interaction in endometriosis. J Neuroinflammation 2017; 14:53. [PMID: 28288663 PMCID: PMC5351283 DOI: 10.1186/s12974-017-0828-3] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 02/28/2017] [Indexed: 12/28/2022] Open
Abstract
Dysregulation of the immune system in endometriotic milieus has been considered to play a pivotal role in the pathogenesis of endometriosis. Macrophage recruitment and nerve fiber infiltration are the two major characteristics of this aberrant immune environment. First, the recruitment of macrophages and their polarization phenotype within the endometriotic lesion have been demonstrated to facilitate the development and maintenance of endometriosis. M1 phenotype of macrophages has the capacity to secrete multiple cytokines for inflammatory response, while M2 macrophage possesses an opposite property that can mediate the process of immunosuppression and neuroangiogenesis. Upon secretion of multiple abnormal signal molecules by the endometriotic lesion, macrophages could alter their location and phenotype. These changes facilitate the accommodation of the aberrant microenvironment and the exacerbation of disease progression. Second, the infiltration of nerve fibers and their abnormal distribution are proved to be involved in the generation of endometriosis-associated pain and inflammatory response. An imbalance in sensory and sympathetic innervation and the abnormal secretion of different cytokines could mediate neurogenesis and subsequent peripheral neuroinflammation in endometriosis. Although endometriosis creates an inflammatory milieu promoting macrophage infiltration and an imbalanced innervation, interaction between macrophages and nerve fibers in this process remains unknown. The aim of this review is to highlight the role of macrophage and nerve interaction in endometriosis, where macrophage recruitment and neurogenesis can be the underlying mechanism of neuroinflammation and pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Jinjie Wu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510089 China
| | - Hongyu Xie
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510089 China
| | - Shuzhong Yao
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Sun Yat-sen University, No. 58, the 2nd Zhongshan Road, Yuexiu District, Guangzhou, 510080 Guangdong Province China
| | - Yanchun Liang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Sun Yat-sen University, No. 58, the 2nd Zhongshan Road, Yuexiu District, Guangzhou, 510080 Guangdong Province China
| |
Collapse
|
6
|
XU AILING, ZHENG GUANYI, WANG ZHIJIAN, CHEN XIAODONG, JIANG QIONG. Neuroprotective effects of Ilexonin A following transient focal cerebral ischemia in rats. Mol Med Rep 2016; 13:2957-66. [PMID: 26936330 PMCID: PMC4805093 DOI: 10.3892/mmr.2016.4921] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 12/30/2015] [Indexed: 11/06/2022] Open
Abstract
Ilexonin A is a compound isolated from the root of a plant commonly used in traditional Chinese medicine. The aim of the present study was to investigate the possible protective mechanism of Ilexonin A in rats subjected to occlusion of the middle cerebral artery (MCAO). Transient focal cerebral ischemia was induced by 2 h of MCAO, followed by reperfusion. Ilexonin A at doses of 20, 40 and 80 mg/kg were administered via intraperitoneal injection immediately following ischemia/reperfusion. The expression levels of glial fibrillary acidic protein (GFAP), ionized calcium‑binding adapter molecule‑1 (Iba‑1), vascular endothelial growth factor (VEGF), fetal liver kinase‑1 (Flk‑1) and Nestin were examined using immunostaining and Western blot analysis of the peri‑infarct region following ischemia/reperfusion. Ilexonin A significantly decreased the infarct volume and improved neurological deficits in a dose‑dependent manner. The expression levels of VEGF, Flk‑1 and Nestin were significantly increased in the rats treated with Ilexonin A, compared with the rats administered with saline. Following treatment with Ilexonin A, a higher number of GFAP‑positive astrocytes were found in the Ilexonin A‑treated rats at 1, 3 and 7 days, compared with the rats exposed to ischemia only, however, there were fewer astrocytes at 14 days, compared with the ischemia group. Ilexonin A significantly decreased the protein expression of Iba‑1. The results of the present study suggested that the protective effects of Ilexonin A were associated with revascularization, neuronal regeneration, and the regulation of astrocyte and microglia cell activation.
Collapse
Affiliation(s)
- AI-LING XU
- Department of Traditional Chinese Medicine, The Affiliated Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
- Neonatal Department, The People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350004, P.R. China
| | - GUAN-YI ZHENG
- Department of Traditional Chinese Medicine, The Affiliated Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - ZHI-JIAN WANG
- Department of Traditional Chinese Medicine, The Affiliated Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
- Department of Neurology, Fuzhou Neuro-Psychiatric Hospital, Fuzhou, Fujian 350000, P.R. China
| | - XIAO-DONG CHEN
- Burns Institute of the Affliated Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - QIONG JIANG
- Burns Institute of the Affliated Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
7
|
Abstract
To characterize the role of neurotrophin receptors on macrophages, we investigated the ability of nerve growth factor (NGF) and its precursor, proNGF, to regulate human macrophage phenotype. The p75 neurotrophin receptor (p75(NTR)) and TrkA were concentrated within overlapping domains on membrane ruffles. NGF stimulation of macrophages increased membrane ruffling, calcium spiking, phagocytosis and growth factor secretion. In contrast, proNGF induced podosome formation, increased migration, suppressed calcium spikes and increased neurotoxin secretion. These results demonstrate opposing roles of NGF and proNGF in macrophage regulation providing new avenues for pharmacological intervention during neuroinflammation.
Collapse
|
8
|
NGF in Early Embryogenesis, Differentiation, and Pathology in the Nervous and Immune Systems. Curr Top Behav Neurosci 2015; 29:125-152. [PMID: 26695167 DOI: 10.1007/7854_2015_420] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The physiology of NGF is extremely complex, and although the study of this neurotrophin began more than 60 years ago, it is far from being concluded. NGF, its precursor molecule pro-NGF, and their different receptor systems (i.e., TrkA, p75NTR, and sortilin) have key roles in the development and adult physiology of both the nervous and immune systems. Although the NGF receptor system and the pathways activated are similar for all types of cells sensitive to NGF, the effects exerted during embryonic differentiation and in committed mature cells are strikingly different and sometimes opposite. Bearing in mind the pleiotropic effects of NGF, alterations in its expression and synthesis, as well as variations in the types of receptor available and in their respective levels of expression, may have profound effects and play multiple roles in the development and progression of several diseases. In recent years, the use of NGF or of inhibitors of its receptors has been prospected as a therapeutic tool in a variety of neurological diseases and injuries. In this review, we outline the different roles played by the NGF system in various moments of nervous and immune system differentiation and physiology, from embryonic development to aging. The data collected over the past decades indicate that NGF activities are highly integrated among systems and are necessary for the maintenance of homeostasis. Further, more integrated and multidisciplinary studies should take into consideration these multiple and interactive aspects of NGF physiology in order to design new therapeutic strategies based on the manipulation of NGF and its intracellular pathways.
Collapse
|
9
|
Niewiadomska G, Mietelska-Porowska A, Mazurkiewicz M. The cholinergic system, nerve growth factor and the cytoskeleton. Behav Brain Res 2011; 221:515-26. [DOI: 10.1016/j.bbr.2010.02.024] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 02/10/2010] [Indexed: 01/02/2023]
|
10
|
Scott AL, Ramer MS. Differential regulation of dendritic plasticity by neurotrophins following deafferentation of the adult spinal cord is independent of p75NTR. Brain Res 2010; 1323:48-58. [DOI: 10.1016/j.brainres.2010.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 01/26/2010] [Accepted: 02/02/2010] [Indexed: 12/16/2022]
|
11
|
Kriz J, Lalancette-Hébert M. Inflammation, plasticity and real-time imaging after cerebral ischemia. Acta Neuropathol 2009; 117:497-509. [PMID: 19225790 DOI: 10.1007/s00401-009-0496-1] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 02/05/2009] [Accepted: 02/06/2009] [Indexed: 12/24/2022]
Abstract
With an incidence of approximately 350 in 100,000, stroke is the third leading cause of death and a major cause of disability in industrialized countries. At present, although progress has been made in understanding the molecular pathways that lead to ischemic cell death, the current clinical treatments remain poorly effective. There is mounting evidence that inflammation plays an important role in cerebral ischemia. Experimentally and clinically, brain response to ischemic injury is associated with an acute and prolonged inflammatory process characterized by the activation of resident glial cells, production of inflammatory cytokines as well as leukocyte and monocyte infiltration in the brain, events that may contribute to ischemic brain injury and affect brain recovery and plasticity. However, whether the post-ischemic inflammatory response is deleterious or beneficial to brain recovery is presently a matter of debate and controversies. Here, we summarize the current knowledge on the molecular mechanisms underlying post-ischemic neuronal plasticity and the potential role of inflammation in regenerative processes and functional recovery after stroke. Furthermore, because of the dynamic nature of the brain inflammatory response, we highlight the importance of the development of novel experimental approaches such as real-time imaging. Finally, we discuss the novel transgenic reporter mice models that have allowed us to visualize and to analyze the processes such as neuroinflammation and neuronal repair from the ischemic brains of live animals.
Collapse
Affiliation(s)
- Jasna Kriz
- Department of Anatomy and Physiology, Faculty of Medicine, Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUQ), T3-67, Laval University, 2705 Boulevard Laurier, Quebec, QC, G1V 4G2, Canada.
| | | |
Collapse
|