1
|
TRAIL in oncology: From recombinant TRAIL to nano- and self-targeted TRAIL-based therapies. Pharmacol Res 2020; 155:104716. [PMID: 32084560 DOI: 10.1016/j.phrs.2020.104716] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/10/2020] [Accepted: 02/17/2020] [Indexed: 12/18/2022]
Abstract
TNF-related apoptosis-inducing ligand (TRAIL) selectively induces the apoptosis pathway in tumor cells leading to tumor cell death. Because TRAIL induction can kill tumor cells, cancer researchers have developed many agents to target TRAIL and some of these agents have entered clinical trials in oncology. Unfortunately, these trials have failed for many reasons, including drug resistance, off-target toxicities, short half-life, and specifically in gene therapy due to the limited uptake of TRAIL genes by cancer cells. To address these drawbacks, translational researchers have utilized drug delivery platforms. Although, these platforms can improve TRAIL-based therapies, they are unable to sufficiently translate the full potential of TRAIL-targeting to clinically viable products. Herein, we first summarize the complex biology of TRAIL signaling, including TRAILs cross-talk with other signaling pathways and immune cells. Next, we focus on known resistant mechanisms to TRAIL-based therapies. Then, we discuss how nano-formulation has the potential to enhance the therapeutic efficacy of TRAIL protein. Finally, we specify strategies with the potential to overcome the challenges that cannot be addressed via nanotechnology alone, including the alternative methods of TRAIL-expressing circulating cells, tumor-targeting bacteria, viruses, and exosomes.
Collapse
|
2
|
Lam P, Lin R, Steinmetz NF. Delivery of mitoxantrone using a plant virus-based nanoparticle for the treatment of glioblastomas. J Mater Chem B 2018; 6:5888-5895. [PMID: 30923616 PMCID: PMC6433411 DOI: 10.1039/c8tb01191e] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mitoxatrone (MTO), an antineoplastic chemotherapeutic, has potent activity against the most common and agressive type of primary brain tumor, glioblastoma multiforme (GBM). However, its poor penetration through the blood brain barrier, and cardiotoxic side effects from systemic delivery limit its effectiveness for clinical treatment. To address these limitations, we utilize a plant virus-based nanoparticle, cowpea mosaic virus (CPMV), to deliver MTO to treat GBM. In this work, we loaded MTO into the interior cavity of CPMV (CPMV-MTO) through diffusion through its pores. We report the uptake of CPMV-MTO in glioma cells and demonstrate its cytotoxic effects in vitro as a solo therapy, and in combination with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). These results reveal the potential for this plant virus-based nanoparticle platform for the treatment of GBM.
Collapse
Affiliation(s)
- Patricia Lam
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Richard Lin
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Nicole F. Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
3
|
Alemzadeh E, Dehshahri A, Izadpanah K, Ahmadi F. Plant virus nanoparticles: Novel and robust nanocarriers for drug delivery and imaging. Colloids Surf B Biointerfaces 2018; 167:20-27. [PMID: 29625419 DOI: 10.1016/j.colsurfb.2018.03.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/09/2018] [Accepted: 03/19/2018] [Indexed: 12/21/2022]
Abstract
Nanoparticles have been gained much attention for biomedical applications. A promising type of nanocarriers is viral nanoparticles (VNPs) which are natural bio-nanomaterials derived from different type of viruses. Amongst VNPs, plant VNPs present several pros over general nanoparticles such as liposomes, dendrimers or quantum dots. Some of these advantages include: degradability, safety for human, known structures to atomic level, possibility of attaching ligand with vigorous control on structure, availability for genetic and chemical manipulations and very flexible methods to prepare them. Variety of plant viruses have been modified by chemical and genetic modification of their inner cavities and their outer-surfaces. These modifications provide suitable sites for attachment of markers and drug molecules for vascular imaging and tumor targeting. In this review a brief description of plant virus nanoparticles and their biomedical applications especially in drug delivery is provided. The methods of loading cargos in these VNPs and their final biofate are also reviewed.
Collapse
Affiliation(s)
- Effat Alemzadeh
- Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Dehshahri
- Research Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Keramatolah Izadpanah
- Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Fatemeh Ahmadi
- Research Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
4
|
Calle D, Yilmaz D, Cerdan S, Kocer A. Drug delivery from engineered organisms and nanocarriers as monitored by multimodal imaging technologies. AIMS BIOENGINEERING 2017. [DOI: 10.3934/bioeng.2017.2.198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
5
|
Wen AM, Steinmetz NF. Design of virus-based nanomaterials for medicine, biotechnology, and energy. Chem Soc Rev 2016; 45:4074-126. [PMID: 27152673 PMCID: PMC5068136 DOI: 10.1039/c5cs00287g] [Citation(s) in RCA: 254] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review provides an overview of recent developments in "chemical virology." Viruses, as materials, provide unique nanoscale scaffolds that have relevance in chemical biology and nanotechnology, with diverse areas of applications. Some fundamental advantages of viruses, compared to synthetically programmed materials, include the highly precise spatial arrangement of their subunits into a diverse array of shapes and sizes and many available avenues for easy and reproducible modification. Here, we will first survey the broad distribution of viruses and various methods for producing virus-based nanoparticles, as well as engineering principles used to impart new functionalities. We will then examine the broad range of applications and implications of virus-based materials, focusing on the medical, biotechnology, and energy sectors. We anticipate that this field will continue to evolve and grow, with exciting new possibilities stemming from advancements in the rational design of virus-based nanomaterials.
Collapse
Affiliation(s)
- Amy M Wen
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Nicole F Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA. and Department of Radiology, Case Western Reserve University, Cleveland, OH 44106, USA and Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA and Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
6
|
Abraham A, Natraj U, Karande AA, Gulati A, Murthy MRN, Murugesan S, Mukunda P, Savithri HS. Intracellular delivery of antibodies by chimeric Sesbania mosaic virus (SeMV) virus like particles. Sci Rep 2016; 6:21803. [PMID: 26905902 PMCID: PMC4764859 DOI: 10.1038/srep21803] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/01/2016] [Indexed: 01/30/2023] Open
Abstract
The therapeutic potential of antibodies has not been fully exploited as they fail to cross cell membrane. In this article, we have tested the possibility of using plant virus based nanoparticles for intracellular delivery of antibodies. For this purpose, Sesbania mosaic virus coat protein (CP) was genetically engineered with the B domain of Staphylococcus aureus protein A (SpA) at the βH-βI loop, to generate SeMV loop B (SLB), which self-assembled to virus like particles (VLPs) with 43 times higher affinity towards antibodies. CP and SLB could internalize into various types of mammalian cells and SLB could efficiently deliver three different monoclonal antibodies–D6F10 (targeting abrin), anti-α-tubulin (targeting intracellular tubulin) and Herclon (against HER2 receptor) inside the cells. Such a mode of delivery was much more effective than antibodies alone treatment. These results highlight the potential of SLB as a universal nanocarrier for intracellular delivery of antibodies.
Collapse
Affiliation(s)
- Ambily Abraham
- Department of Biochemistry, Indian Institute of Science, Karnataka, India
| | - Usha Natraj
- Department of Biochemistry, Indian Institute of Science, Karnataka, India
| | - Anjali A Karande
- Department of Biochemistry, Indian Institute of Science, Karnataka, India
| | - Ashutosh Gulati
- Molecular Biophysics Unit, Indian Institute of Science, Karnataka, India
| | - Mathur R N Murthy
- Molecular Biophysics Unit, Indian Institute of Science, Karnataka, India
| | | | | | | |
Collapse
|
7
|
Sohrab SS, Bhattacharya P, Rana D, Kamal MA, Pande M. Development of interspecific Solanum lycopersicum and screening for Tospovirus resistance. Saudi J Biol Sci 2015; 22:730-8. [PMID: 26587001 PMCID: PMC4625138 DOI: 10.1016/j.sjbs.2014.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 10/25/2014] [Accepted: 11/07/2014] [Indexed: 12/04/2022] Open
Abstract
Tospovirus has emerged as a serious viral pathogen for several crops including tomato. The tomato production is being severely affected worldwide by Tospovirus. Some reports have been published about the association of plant virus and development of human disease either by direct or indirect consumption. Resistance to this virus has been identified as good source in wild tomato species (Lycopersicum peruvianum). But the introgression of resistance genes into cultivated tomato lines and the development of interspecific hybrid are hampered due to incompatibility, fertilization barriers and embryo abortion. But this barrier has been broken by applying the embryo rescue methods. This study describes the development of interspecific hybrid tomato plants by highly efficient embryo rescue method and screening for Tospovirus resistance. The interspecific hybrid tomato plants were developed by making a cross between wild tomato species (L. peruvianum) and cultivated tomato (Solanum lycopersicum). The immature embryos were cultured in standardized medium and interspecific hybrids were developed from embryogenic callus. The immature embryos excised from 7 to 35 days old fruits were used for embryo rescue and 31 days old embryos showed very good germination capabilities and produced the highest number of plants. Developed plants were hardened enough and shifted to green house. The hybrid nature of interspecific plants was further confirmed by comparing the morphological characters from their parents. The F1, F2 and F3 plants were found to have varying characters especially for leaf type, color of stem, fruits, size, shapes and they were further screened for virus resistance both in lab and open field followed by Enzyme linked Immunosorbant Assay confirmation. Finally, a total of 11 resistant plants were selected bearing red color fruits with desired shape and size.
Collapse
Affiliation(s)
- Sayed Sartaj Sohrab
- King Fahd Medical Research Center, King Abdulaziz University, Post Box No. 80216, Jeddah 21589, Saudi Arabia
| | - P.S. Bhattacharya
- Division of Biotechnology, JK Agri-Genetics Ltd., Hyderabad, A.P., India
| | - D. Rana
- Division of Biotechnology, JK Agri-Genetics Ltd., Hyderabad, A.P., India
| | - Mohammad A. Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Post Box No. 80216, Jeddah 21589, Saudi Arabia
| | - M.K. Pande
- Division of Biotechnology, JK Agri-Genetics Ltd., Hyderabad, A.P., India
| |
Collapse
|
8
|
Abstract
Nanoscale engineering is revolutionizing the way we prevent, detect, and treat diseases. Viruses have played a special role in these developments because they can function as prefabricated nanoscaffolds that have unique properties and are easily modified. The interiors of virus particles can encapsulate and protect sensitive compounds, while the exteriors can be altered to display large and small molecules in precisely defined arrays. These properties of viruses, along with their innate biocompatibility, have led to their development as actively targeted drug delivery systems that expand on and improve current pharmaceutical options. Viruses are naturally immunogenic, and antigens displayed on their surface have been used to create vaccines against pathogens and to break self-tolerance to initiate an immune response to dysfunctional proteins. Densely and specifically aligned imaging agents on viruses have allowed for high-resolution and noninvasive visualization tools to detect and treat diseases earlier than previously possible. These and future applications of viruses have created an exciting new field within the disciplines of both nanotechnology and medicine.
Collapse
Affiliation(s)
| | | | - Marianne Manchester
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093
| | - Nicole F Steinmetz
- Departments of 2Biomedical Engineering
- Radiology
- Materials Science and Engineering, and
- Macromolecular Science and Engineering, Case Western Reserve University, Schools of Medicine and Engineering, Cleveland, Ohio 44106;
| |
Collapse
|
9
|
Marta M, Santos E, Coutinho E, Silva AM, Correia J, Vasconcelos C, Giovannoni G. The role of infections in Behçet disease and neuro-Behçet syndrome. Autoimmun Rev 2015; 14:609-15. [DOI: 10.1016/j.autrev.2015.02.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 02/25/2015] [Indexed: 11/26/2022]
|
10
|
van Kan-Davelaar HE, van Hest JCM, Cornelissen JJLM, Koay MST. Using viruses as nanomedicines. Br J Pharmacol 2015; 171:4001-9. [PMID: 24571489 DOI: 10.1111/bph.12662] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 01/27/2014] [Accepted: 02/10/2014] [Indexed: 12/11/2022] Open
Abstract
The field of nanomedicine involves the design and fabrication of novel nanocarriers for the intracellular delivery of therapeutic cargo or for use in molecular diagnostics. Although traditionally recognized for their ability to invade and infect host cells, viruses and bacteriophages have been engineered over the past decade as highly promising molecular platforms for the targeted delivery and treatment of many human diseases. Inherently biodegradable, the outer capsids of viruses are composed entirely of protein building blocks, which can be genetically or chemically engineered with molecular imaging reagents, targeting ligands and therapeutic molecules. While there are several examples of viruses as in vitro molecular cargo carriers, their potential for applications in nanomedicine has only recently emerged. Here we highlight recent developments towards the design and engineering of viruses for the treatment of cancer, bacterial infections and immune system-related diseases.
Collapse
Affiliation(s)
- H E van Kan-Davelaar
- Department of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | | | | | | |
Collapse
|
11
|
Chiarelli PA, Kievit FM, Zhang M, Ellenbogen RG. Bionanotechnology and the future of glioma. Surg Neurol Int 2015; 6:S45-58. [PMID: 25722933 PMCID: PMC4338483 DOI: 10.4103/2152-7806.151334] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 10/15/2014] [Indexed: 01/01/2023] Open
Abstract
Designer nanoscaled materials have the potential to revolutionize diagnosis and treatment for glioma. This review summarizes current progress in nanoparticle-based therapies for glioma treatment including targeting, drug delivery, gene delivery, and direct tumor ablation. Preclinical and current human clinical trials are discussed. Although progress in the field has been significant over the past decade, many successful strategies demonstrated in the laboratory have yet to be implemented in human clinical trials. Looking forward, we provide examples of combined treatment strategies, which harness the potential for nanoparticles to interact with their biochemical environment, and simultaneously with externally applied photons or magnetic fields. We present our notion of the "ideal" nanoparticle for glioma, a concept that may soon be realized.
Collapse
Affiliation(s)
- Peter A Chiarelli
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98195, USA
| | - Forrest M Kievit
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98195, USA
| | - Miqin Zhang
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98195, USA ; Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Richard G Ellenbogen
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
12
|
Lu ZX, Mao LL, Lian F, He J, Zhang WT, Dai CY, Xue S, Lu WG, Zhu HS. Cardioprotective activity of placental growth factor in a rat model of acute myocardial infarction: nanoparticle-based delivery versus direct myocardial injection. BMC Cardiovasc Disord 2014; 14:53. [PMID: 24742302 PMCID: PMC4014437 DOI: 10.1186/1471-2261-14-53] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 04/04/2014] [Indexed: 12/13/2022] Open
Abstract
Background To comparatively evaluate the cardioprotective activity of placental growth factor (PGF) delivered through direct injection and a nanoparticle-based system respectively and to study the underlying mechanisms in a rat model of acute myocardial infarction (AMI). Methods Poly lactic-co-glycolic acid (PLGA)-based PGF-carrying nanoparticles (PGF-PLGANPs) were created. The mean size and morphology of particles were analyzed with particle size analyzer and transmission electronic microscopy (TEM). Encapsulation efficiency and sustained-release dose curve were analyzed by ELISA. Sprague-Dawley rats were randomized into four groups (n = 10). While animals in the first group were left untreated as controls, those in the other 3 groups underwent surgical induction of AMI, followed by treatment with physiological saline, PGF, and PGF-PLGANPs, respectively. Cardiac function was evaluated by transthoracic echocardiography at 4 weeks after treatment. At 6 weeks, rats were sacrificed, infarction size was analyzed with Masson trichrome staining, and protein contents of TIMP-2, MT1-MMP and MMP-2 at the infarction border were determined by immunohistochemistry and western blotting analysis. Results PGF was released for at least 15 days, showing successful preparation of PGF-PLGANPs. Coronary artery ligation successfully induced AMI. Compared to physiological saline control, PGF, injected to the myocardium either as a nude molecule or in a form of nanoparticles, significantly reduced infarction size, improved cardiac function, and elevated myocardial expression of TIMP-2, MT1-MMP, and MMP-2 (P < 0.05). The effect of PGF-PLGANPs was more pronounced than that of non-encapsulated PGF (P < 0.05). Conclusion Target PGF delivery to myocardium may improve cardiac function after AMI in rats. PLGA-based nanoparticles appear to be a better approach to delivery PGF. PGF exerts its cardioprotective effect at least partially through regulating metalloproteinase-mediated myocardial tissue remodeling.
Collapse
Affiliation(s)
| | | | - Feng Lian
- Department of Cardiovascular Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pu-Jian Rd, Shanghai 200127, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
13
|
Yildiz I, Lee KL, Chen K, Shukla S, Steinmetz NF. Infusion of imaging and therapeutic molecules into the plant virus-based carrier cowpea mosaic virus: cargo-loading and delivery. J Control Release 2013; 172:568-78. [PMID: 23665254 PMCID: PMC3815978 DOI: 10.1016/j.jconrel.2013.04.023] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 04/29/2013] [Accepted: 04/30/2013] [Indexed: 02/04/2023]
Abstract
This work is focused on the development of a plant virus-based carrier system for cargo delivery, specifically 30nm-sized cowpea mosaic virus (CPMV). Whereas previous reports described the engineering of CPMV through genetic or chemical modification, we report a non-covalent infusion technique that facilitates efficient cargo loading. Infusion and retention of 130-155 fluorescent dye molecules per CPMV using DAPI (4',6-diamidino-2-phenylindole dihydrochloride), propidium iodide (3,8-diamino-5-[3-(diethylmethylammonio)propyl]-6-phenylphenanthridinium diiodide), and acridine orange (3,6-bis(dimethylamino)acridinium chloride), as well as 140 copies of therapeutic payload proflavine (PF, acridine-3,6-diamine hydrochloride), is reported. Loading is achieved through interaction of the cargo with the CPMV's encapsidated RNA molecules. The loading mechanism is specific; empty RNA-free eCPMV nanoparticles could not be loaded. Cargo-infused CPMV nanoparticles remain chemically active, and surface lysine residues were covalent modified with dyes leading to the development of dual-functional CPMV carrier systems. We demonstrate cargo-delivery to a panel of cancer cells (cervical, breast, and colon): CPMV nanoparticles enter cells via the surface marker vimentin, the nanoparticles target the endolysosome, where the carrier is degraded and the cargo is released allowing imaging and/or cell killing. In conclusion, we demonstrate cargo-infusion and delivery to cells; the methods discussed provide a useful means for functionalization of CPMV toward its application as drug and/or contrast agent delivery vehicle.
Collapse
Affiliation(s)
- Ibrahim Yildiz
- Department of Biomedical Engineering, Case Western Reserve University, Schools of Medicine and Engineering, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Karin L. Lee
- Department of Biomedical Engineering, Case Western Reserve University, Schools of Medicine and Engineering, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Kevin Chen
- Department of Biomedical Engineering, Case Western Reserve University, Schools of Medicine and Engineering, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Sourabh Shukla
- Department of Biomedical Engineering, Case Western Reserve University, Schools of Medicine and Engineering, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Nicole F. Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University, Schools of Medicine and Engineering, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Department of Radiology, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Department of Materials Science and Engineering, Case Western Reserve University, School of Engineering, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| |
Collapse
|
14
|
Rebolledo-Mendez JD, Vaishnav RA, Cooper NG, Friedland RP. Cross-kingdom sequence similarities between human micro-RNAs and plant viruses. Commun Integr Biol 2013; 6:e24951. [PMID: 24228136 PMCID: PMC3821693 DOI: 10.4161/cib.24951] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 05/06/2013] [Indexed: 12/13/2022] Open
Abstract
Micro-RNAs regulate the expression of cellular and tissue phenotypes at a post-transcriptional level through a complex process involving complementary interactions between micro-RNAs and messenger-RNAs. Similar nucleotide interactions have been shown to occur as cross-kingdom events; for example, between plant viruses and plant micro-RNAs and also between animal viruses and animal micro-RNAs. In this study, this view is expanded to look for cross-kingdom similarities between plant virus and human micro-RNA sequences. A method to identify significant nucleotoide sequence similarities between plant viruses and hsa micro-RNAs was created. Initial analyses demonstrate that plant viruses contain nucleotide sequences which exactly match the seed sequences of human micro-RNAs in both parallel and anti-parallel directions. For example, the bean common mosaic virus strain NL4 from Colombia contains sequences that match exactly the seed sequence for micro-RNA of the hsa-mir-1226 in the parallel direction, which suggests a cross-kingdom conservation. Similarly, the rice yellow stunt viral cRNA contains a sequence that is an exact match in the anti-parallel direction to the seed sequence of hsa-micro-RNA let-7b. The functional implications of these results need to be explored. The finding of these cross-kingdom sequence similarities is a useful starting point in support of bench level investigations.
Collapse
Affiliation(s)
| | - Radhika A Vaishnav
- Department of Neurology; University of Louisville, KY USA
- Department of Physiology and Biophysics; University of Louisville, KY USA
| | - Nigel G Cooper
- Department of Anatomical Science and Neurobiology; University of Louisville, KY USA
| | | |
Collapse
|
15
|
Liu R, Vaishnav RA, Roberts AM, Friedland RP. Humans have antibodies against a plant virus: evidence from tobacco mosaic virus. PLoS One 2013; 8:e60621. [PMID: 23573274 PMCID: PMC3615994 DOI: 10.1371/journal.pone.0060621] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 02/28/2013] [Indexed: 01/25/2023] Open
Abstract
Tobacco mosaic virus (TMV), a widespread plant pathogen, is found in tobacco (including cigarettes and smokeless tobacco) as well as in many other plants. Plant viruses do not replicate or cause infection in humans or other mammals. This study was done to determine whether exposure to tobacco products induces an immune response to TMV in humans. Using a sandwich ELISA assay, we detected serum anti-TMV antibodies (IgG, IgG1, IgG3, IgG4, IgA, and IgM) in all subjects enrolled in the study (20 healthy smokers, 20 smokeless-tobacco users, and 20 non-smokers). Smokers had a higher level of serum anti-TMV IgG antibodies than non-smokers, while the serum level of anti-TMV IgA from smokeless tobacco users was lower than smokers and non-smokers. Using bioinformatics, we also found that the human protein TOMM40L (an outer mitochondrial membrane 40 homolog--like translocase) contains a strong homology of six contiguous amino acids to the TMV coat protein, and TOMM40L peptide exhibited cross-reactivity with anti-TMV antibodies. People who smoke cigarettes or other tobacco products experience a lower risk of developing Parkinson's disease, but the mechanism by which this occurs is unclear. Our results showing molecular mimicry between TMV and human TOMM40L raise the question as to whether TMV has a potential role in smokers against Parkinson's disease development. The potential mechanisms of molecular mimicry between plant viruses and human disease should be further explored.
Collapse
Affiliation(s)
- Ruolan Liu
- Department of Neurology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Radhika A. Vaishnav
- Department of Neurology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Andrew M. Roberts
- Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Robert P. Friedland
- Department of Neurology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| |
Collapse
|
16
|
Binsalamah ZM, Paul A, Prakash S, Shum-Tim D. Nanomedicine in cardiovascular therapy: recent advancements. Expert Rev Cardiovasc Ther 2013; 10:805-15. [PMID: 22894635 DOI: 10.1586/erc.12.41] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Cardiovascular disease (CVD) is comprised of a group of disorders affecting the heart and blood vessels of the human body and is one of the leading causes of death worldwide. Current therapy for CVD is limited to the treatment of already established disease, and it includes pharmacological and/or surgical procedures, such as percutaneous coronary intervention with stenting and coronary artery bypass grafting. However, lots of complications have been raised with these modalities of treatment, including systemic toxicity with medication, stent thrombosis with percutaneous coronary intervention and nonsurgical candidate patients for coronary artery bypass grafting. Nanomedicine has emerged as a potential strategy in dealing with these obstacles. Applications of nanotechnology in medicine are already underway and offer tremendous promise. This review explores the recent developments of nanotechnology in the field of CVD and gives an insight into its potential for diagnostics and therapeutics applications. The authors also explore the characteristics of the widely used biocompatible nanomaterials for this purpose and evaluate their opportunities and challenges for developing novel nanobiotechnological tools with high efficacy for biomedical applications, such as radiological imaging, vascular implants, gene therapy, myocardial infarction and targeted delivery systems.
Collapse
|
17
|
Shriver LP, Plummer EM, Thomas DM, Ho S, Manchester M. Localization of gadolinium-loaded CPMV to sites of inflammation during central nervous system autoimmunity. J Mater Chem B 2013; 1:5256-5263. [DOI: 10.1039/c3tb20521e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
18
|
Eniola-Adefeso O, Heslinga MJ, Porter TM. Design of nanovectors for therapy and imaging of cardiovascular diseases. Methodist Debakey Cardiovasc J 2012; 8:13-7. [PMID: 22891105 DOI: 10.14797/mdcj-8-1-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular diseases are widely prevalent in western societies, and their associated costs number in the billions of dollars and affect millions of patients each year. Nanovectors targeted to tissues involved in cardiovascular diseases offer great opportunities to improve cardiovascular treatment through their imaging and drug delivery capabilities. Vascular-targeted imaging particles may permit the early identification of atherosclerosis, discriminate between stable and vulnerable atherosclerotic plaques, or guide surgeons as they work on fragile vasculature. Tailored therapeutic nanoparticles may provide safer, more efficient and effective intervention through localization and release of encapsulated therapeutics. Nanovector design involves numerous considerations such as fabrication material, particle size, and surface-modification with ligands for targeting and increasing blood circulation times. Complex blood rheology may affect the efficiency with which dissimilarsized particles target ligand receptors associated with disease. Additionally, the intended use of a nanovector is a critical factor in its design as some materials with poor drug-loading qualities or release kinetics may be suitable for imaging purposes only. Overall, vectors targeted to the vasculature will need to be efficient in avoiding blood clearance, honing to the target location, and binding at the desired site.
Collapse
|
19
|
Abstract
Cowpea mosaic virus (CPMV) has been used as a nanoparticle platform for biomedical applications including vaccine development, in vivo vascular imaging, and tissue-targeted delivery. A better understanding of the mechanisms of CPMV targeting and cell internalization would enable enhanced targeting and more effective delivery. Previous studies showed that, following binding and internalization by mammalian cells, CPMV localizes in a perinuclear late-endosome compartment where it remains for as long as several days. To further investigate endocytic trafficking of CPMV within the cell, we used multiple approaches including pharmacologic inhibition of pathways and colocalization with endocytic vesicle compartments. CPMV internalization was clathrin-independent and utilized a combination of caveolar endocytosis and macropinocytosis pathways for entry. CPMV particles colocalized with Rab5(+) early endosomes to traffic ultimately to a lysosomal compartment. These studies facilitate the further development of effective intracellular drug-delivery strategies using CPMV.
Collapse
Affiliation(s)
- Emily M Plummer
- Skaggs School of Pharmacy and Pharmaceutical Sciences University of California, San Diego, La Jolla, California 92093, United States
| | | |
Collapse
|
20
|
Cheng F, Tsvetkova IB, Khuong YL, Moore AW, Arnold RJ, Goicochea NL, Dragnea B, Mukhopadhyay S. The packaging of different cargo into enveloped viral nanoparticles. Mol Pharm 2012; 10:51-8. [PMID: 22876758 DOI: 10.1021/mp3002667] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Viral nanoparticles used for biomedical applications must be able to discriminate between tumor or virus-infected host cells and healthy host cells. In addition, viral nanoparticles must have the flexibility to incorporate a wide range of cargo, from inorganic metals to mRNAs to small molecules. Alphaviruses are a family of enveloped viruses for which some species are intrinsically capable of systemic tumor targeting. Alphavirus virus-like particles, or viral nanoparticles, can be generated from in vitro self-assembled core-like particles using nonviral nucleic acid. In this work, we expand on the types of cargo that can be incorporated into alphavirus core-like particles and the molecular requirements for packaging this cargo. We demonstrate that different core-like particle templates can be further enveloped to form viral nanoparticles that are capable of cell entry. We propose that alphaviruses can be selectively modified to create viral nanoparticles for biomedical applications and basic research.
Collapse
Affiliation(s)
- Fan Cheng
- Department of Biology, Indiana University, Bloomington, Indiana 47405, United States
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Binsalamah ZM, Paul A, Khan AA, Prakash S, Shum-Tim D. Intramyocardial sustained delivery of placental growth factor using nanoparticles as a vehicle for delivery in the rat infarct model. Int J Nanomedicine 2011; 6:2667-78. [PMID: 22114497 PMCID: PMC3218580 DOI: 10.2147/ijn.s25175] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Acute myocardial ischemia results in scar formation with ventricular dilatation and eventually heart failure. Placental growth factor (PlGF) is reported to stimulate angiogenesis and improve cardiac function. In this study, it was hypothesized that intramyocardial injection of PlGF contained in nanoparticles can be released at the site of action for an extended time period as a sustained slow-release protective mechanism that accelerates myocardial recovery in a rat model of ischemic cardiomyopathy. METHODS PlGF-loaded chitosan-alginate nanoparticles were injected into an acute myocardial infarction model in rats (n = 10 per group). Transthoracic echocardiography was performed at different time intervals. Enzyme-linked immunosorbent assay was used to measure the serum cytokines levels at 8 weeks. Hearts were stained with Masson's trichrome for scar area analysis. Immunofluorostaining was performed to evaluate the extent of myocardial angiogenesis at the infarction border. PlGF enzyme-linked immunosorbent assay was used to measure the in vitro release kinetics of PlGF-loaded nanoparticles. RESULTS At 8 weeks after coronary ligation, hearts that were treated with PlGF-loaded chitosan-alginate nanoparticles had significant increases in left-ventricular function (P < 0.01), vascular density (P < 0.01), and in the serum level of the anti-inflammatory cytokine interleukin-10 (P < 0.05). There was significant decrease in scar area formation (P < 0.05) and in serum levels of the proinflammatory cytokines tumor necrosis factor-alpha and interleukin-6 (P < 0.01). In vitro PlGF-release kinetic studies showed a sustained release of PlGF from the particles over a 120-hour period. CONCLUSION The use of nanoparticles as a vehicle for PlGF delivery, as opposed to the direct injection of the growth factor after acute myocardial infarction, can provide sustained slow-release PlGF therapy, enhancing the positive effects of the growth factor in the setting of acute myocardial ischemia.
Collapse
Affiliation(s)
- Ziyad Mohammed Binsalamah
- Divisions of Cardiac Surgery and Surgical Research, McGill University Health Center, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
22
|
Huang RK, Steinmetz NF, Fu CY, Manchester M, Johnson JE. Transferrin-mediated targeting of bacteriophage HK97 nanoparticles into tumor cells. Nanomedicine (Lond) 2011; 6:55-68. [PMID: 21182418 DOI: 10.2217/nnm.10.99] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
AIMS Next-generation targeted nanodevices are currently under development for imaging and therapeutic applications. We engineered HK97 viral nanoparticles (VNPs) for tumor cell-specific targeting. METHODS A combination of genetic and chemical engineering methods were developed and applied to generate dual-labeled HK97 cysteine mutant particles displaying transferrin and fluorescent labels. The targeting properties of transferrin-conjugated VNPs were evaluated by in vitro experiments using different cancer cell lines. RESULTS We found that HK97-transferrin formulations were indeed targeted to cancer cells in vitro via the transferrin receptor. These studies highlight the utility and facilitate the further development of HK97-based VNPs.
Collapse
Affiliation(s)
- Rick K Huang
- Department of Molecular Biology & Center for Integrative Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
23
|
Koudelka KJ, Manchester M. Chemically modified viruses: principles and applications. Curr Opin Chem Biol 2010; 14:810-7. [DOI: 10.1016/j.cbpa.2010.10.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 10/06/2010] [Accepted: 10/06/2010] [Indexed: 11/26/2022]
|
24
|
Huang RB, Mocherla S, Heslinga MJ, Charoenphol P, Eniola-Adefeso O. Dynamic and cellular interactions of nanoparticles in vascular-targeted drug delivery. Mol Membr Biol 2010; 27:312-27. [PMID: 21028938 DOI: 10.3109/09687688.2010.522117] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Vascular-targeted drug delivery systems could provide more efficient and effective pharmaceutical interventions for treating a variety of diseases including cardiovascular, pulmonary, inflammatory, and malignant disorders. However, several factors must be taken into account when designing these systems. The diverse blood hemodynamics and rheology, and the natural clearance process that tend to decrease the circulation time of foreign particles all lessen the probability of successful carrier interaction with the vascular wall. An effective vascular-targeted drug delivery system must be able to navigate through the bloodstream while avoiding immune clearance, attach to the vascular wall, and release its therapeutic cargo at the intended location. This review will summarize and analyze current literature reporting on (1) nanocarrier fabrication methods and materials that allow for optimum therapeutic encapsulation, protection, and release; (2) localization and binding dynamics of nanocarriers as influenced by hemodynamics and blood rheology in medium-to-large vessels; (3) blood cells' responses to various types of nanocarrier compositions and its effects on particle circulation time; and (4) properties that affect nanocarrier internalization at the target site.
Collapse
Affiliation(s)
- Ryan B Huang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
25
|
Steinmetz NF. Viral nanoparticles as platforms for next-generation therapeutics and imaging devices. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2010; 6:634-41. [PMID: 20433947 PMCID: PMC2948632 DOI: 10.1016/j.nano.2010.04.005] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 03/25/2010] [Accepted: 04/07/2010] [Indexed: 12/12/2022]
Abstract
Nanomaterials have been developed for potential applications in biomedicine, such as tissue-specific imaging and drug delivery. There are many different platforms under development, each with advantages and disadvantages, but viral nanoparticles (VNPs) are particularly attractive because they are naturally occurring nanomaterials, and as such they are both biocompatible and biodegradable. VNPs can be designed and engineered using both genetic and chemical protocols. The use of VNPs has evolved rapidly since their introduction 20 years ago, encompassing numerous chemistries and modification strategies that allow the functionalization of VNPs with imaging reagents, targeting ligands, and therapeutic molecules. This review discusses recent advances in the design of "smart" targeted VNPs for therapeutic and imaging applications. FROM THE CLINICAL EDITOR This review focuses on viral nanoparticles, which are considered attractive naturally occurring nanomaterials due to their inherent biocompatibility and biodegradability. These can be used as imaging reagents, targeting ligands and therapeutic molecules.
Collapse
Affiliation(s)
- Nicole F Steinmetz
- Department of Molecular Biology and Center of Integrative Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
26
|
Kosloski LM, Ha DM, Stone DK, Hutter JAL, Pichler MR, Reynolds AD, Gendelman HE, Mosley RL. Adaptive immune regulation of glial homeostasis as an immunization strategy for neurodegenerative diseases. J Neurochem 2010; 114:1261-76. [PMID: 20524958 PMCID: PMC2923270 DOI: 10.1111/j.1471-4159.2010.06834.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Neurodegenerative diseases, notably Alzheimer's and Parkinson's diseases, are amongst the most devastating disorders afflicting the elderly. Currently, no curative treatments or treatments that interdict disease progression exist. Over the past decade, immunization strategies have been proposed to combat disease progression. Such strategies induce humoral immune responses against misfolded protein aggregates to facilitate their clearance. Robust adaptive immunity against misfolded proteins, however, accelerates disease progression, precipitated by induced effector T cell responses that lead to encephalitis and neuronal death. Since then, mechanisms that attenuate such adaptive neurotoxic immune responses have been sought. We propose that shifting the balance between effector and regulatory T cell activity can attenuate neurotoxic inflammatory events. This review summarizes advances in immune regulation to achieve a homeostatic glial response for therapeutic gain. Promising new ways to optimize immunization schemes and measure their clinical efficacy are also discussed.
Collapse
Affiliation(s)
| | | | - David K. Stone
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| | - Jessica A. L. Hutter
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| | - Michael R. Pichler
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| | - Ashley D. Reynolds
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| | - R. Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| |
Collapse
|
27
|
Lin LN, Liu Q, Song L, Liu FF, Sha JX. Recent advances in nanotechnology based drug delivery to the brain. Cytotechnology 2010; 62:377-80. [PMID: 20700653 DOI: 10.1007/s10616-010-9295-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 07/27/2010] [Indexed: 12/19/2022] Open
Abstract
Drug delivery into the brain was difficult due to the existence of blood brain barrier, which only permits some molecules to pass through freely. In past decades, nanotechnology has enabled many technical advances including drug delivery into the brain with high efficiency and accuracy. In the present paper, we summarize recent important advances in employing nanotechnology for drug delivery to the brain as well as controlled drug release.
Collapse
Affiliation(s)
- Li-Na Lin
- Department of Neurology, First Hospital of Ji Lin University, 17 Xin Min Street, 130021, Changchun, China
| | | | | | | | | |
Collapse
|
28
|
Huang RB, Mocherla S, Heslinga MJ, Charoenphol P, Eniola-Adefeso O. Dynamic and cellular interactions of nanoparticles in vascular-targeted drug delivery (review). Mol Membr Biol 2010; 27:190-205. [PMID: 20615080 DOI: 10.3109/09687688.2010.499548] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Vascular-targeted drug delivery systems could provide more efficient and effective pharmaceutical interventions for treating a variety of diseases including cardiovascular, pulmonary, inflammatory, and malignant disorders. However, several factors must be taken into account when designing these systems. The diverse blood hemodynamics and rheology, and the natural clearance process that tend to decrease the circulation time of foreign particles all lessen the probability of successful carrier interaction with the vascular wall. An effective vascular-targeted drug delivery system must be able to navigate through the bloodstream while avoiding immune clearance, attach to the vascular wall, and release its therapeutic cargo at the intended location. This review will summarize and analyze current literature reporting on (1) nanocarrier fabrication methods and materials that allow for optimum therapeutic encapsulation, protection, and release; (2) localization and binding dynamics of nanocarriers as influenced by hemodynamics and blood rheology in medium-to-large vessels; (3) blood cells' responses to various types of nanocarrier compositions and its effects on particle circulation time; and (4) properties that affect nanocarrier internalization at the target site.
Collapse
Affiliation(s)
- Ryan B Huang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
29
|
Leong HS, Steinmetz NF, Ablack A, Destito G, Zijlstra A, Stuhlmann H, Manchester M, Lewis JD. Intravital imaging of embryonic and tumor neovasculature using viral nanoparticles. Nat Protoc 2010; 5:1406-17. [PMID: 20671724 PMCID: PMC3163450 DOI: 10.1038/nprot.2010.103] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Viral nanoparticles are a novel class of biomolecular agents that take advantage of the natural circulatory and targeting properties of viruses to allow the development of therapeutics, vaccines and imaging tools. We have developed a multivalent nanoparticle platform based on the cowpea mosaic virus (CPMV) that facilitates particle labeling at high density with fluorescent dyes and other functional groups. Compared with other technologies, CPMV-based viral nanoparticles are particularly suited for long-term intravital vascular imaging because of their biocompatibility and retention in the endothelium with minimal side effects. The stable, long-term labeling of the endothelium allows the identification of vasculature undergoing active remodeling in real time. In this study, we describe the synthesis, purification and fluorescent labeling of CPMV nanoparticles, along with their use for imaging of vascular structure and for intravital vascular mapping in developmental and tumor angiogenesis models. Dye-labeled viral nanoparticles can be synthesized and purified in a single day, and imaging studies can be conducted over hours, days or weeks, depending on the application.
Collapse
Affiliation(s)
- Hon Sing Leong
- Translational Prostate Cancer Research Group, London Regional Cancer Program, London, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Brunel FM, Lewis JD, Destito G, Steinmetz NF, Manchester M, Stuhlmann H, Dawson PE. Hydrazone ligation strategy to assemble multifunctional viral nanoparticles for cell imaging and tumor targeting. NANO LETTERS 2010; 10:1093-7. [PMID: 20163184 PMCID: PMC3988696 DOI: 10.1021/nl1002526] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Multivalent nanoparticle platforms are attractive for biomedical applications because of their improved target specificity, sensitivity, and solubility. However, their controlled assembly remains a considerable challenge. An efficient hydrazone ligation chemistry was applied to the assembly of Cowpea mosaic virus (CPMV) nanoparticles with individually tunable levels of a VEGFR-1 ligand and a fluorescent PEGylated peptide. The nanoparticles recognized VEGFR-1 on endothelial cell lines and VEGFR1-expressing tumor xenografts in mice, validating targeted CPMV as a nanoparticle platform in vivo.
Collapse
Affiliation(s)
- Florence M. Brunel
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, 92037, USA
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, 92037, USA
| | - John D. Lewis
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, 92037, USA
| | - Giuseppe Destito
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, 92037, USA
- Department of Center for Integrative Molecular Biosciences (CIMBio), The Scripps Research Institute, La Jolla, California, 92037, USA
- Dipartmento di Medicina, Sperimentale e Clinica, Università degli Studi Magna Graecia di Catanzaro, Viale Europa, Campus, Universitario di Germaneto, 88100, Catanzaro, Italy
| | - Nicole F. Steinmetz
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, 92037, USA
- Department of Center for Integrative Molecular Biosciences (CIMBio), The Scripps Research Institute, La Jolla, California, 92037, USA
| | - Marianne Manchester
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, 92037, USA
- Department of Center for Integrative Molecular Biosciences (CIMBio), The Scripps Research Institute, La Jolla, California, 92037, USA
| | - Heidi Stuhlmann
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, 92037, USA
| | - Philip E. Dawson
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, 92037, USA
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, 92037, USA
- Corresponding author: Philip E. Dawson, phone: (858) 784-7015, fax: (858) 784-7319,
| |
Collapse
|
31
|
Liepold LO, Abedin MJ, Buckhouse ED, Frank JA, Young MJ, Douglas T. Supramolecular protein cage composite MR contrast agents with extremely efficient relaxivity properties. NANO LETTERS 2009; 9:4520-4526. [PMID: 19888720 PMCID: PMC3625947 DOI: 10.1021/nl902884p] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A DTPA-Gd containing polymer was grown in the interior of a heat shock protein cage resulting in T(1) particle relaxivities of 4200 mM(-1) sec(-1) for the 12 nm particle. Relaxivity parameters were determined, and this analysis suggests that the rotational correlation time has been optimized while the water exchange lifetime is longer than optimal. This synthetic approach holds much promise for the development of next generation contrast agents and this report will aid in their design.
Collapse
Affiliation(s)
- Lars O Liepold
- Department of Chemistry and Biochemistry, Center for BioInspired Nanomaterials, Montana State University, Bozeman, Montana, USA
| | | | | | | | | | | |
Collapse
|