1
|
Monif M, Sequeira RP, Muscat A, Stuckey S, Sanfilippo PG, Minh V, Loftus N, Voo V, Fazzolari K, Moss M, Maltby VE, Nguyen AL, Wesselingh R, Seery N, Nesbitt C, Baker J, Dwyer C, Taylor L, Rath L, Van der Walt A, Marriott M, Kalincik T, Lechner-Scott J, O'Brien TJ, Butzkueven H. CLADIN- CLADribine and INnate immune response in multiple sclerosis - A phase IV prospective study. Clin Immunol 2024; 265:110304. [PMID: 38964633 DOI: 10.1016/j.clim.2024.110304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/06/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Cladribine (Mavenclad®) is an oral treatment for relapsing remitting MS (RRMS), but its mechanism of action and its effects on innate immune responses in unknown. This study is a prospective Phase IV study of 41 patients with RRMS, and aims to investigate the mechanism of action of cladribine on peripheral monocytes, and its impact on the P2X7 receptor. There was a significant reduction in monocyte count in vivo at week 1 post cladribine administration, and the subset of cells being most impacted were the CD14lo CD16+ 'non-classical' monocytes. Of the 14 cytokines measured in serum, CCL2 levels increased at week 1. In vitro, cladrabine induced a reduction in P2X7R pore as well as channel activity. This study demonstrates a novel mechanism of action for cladribine. It calls for studying potential benefits of cladribine in progressive forms of MS and other neurodegenerative diseases where innate immune related inflammation is implicated in disease pathogenesis.
Collapse
Affiliation(s)
- Mastura Monif
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia; Department of Neurology, Melbourne Health, Melbourne, VIC, Australia; Department of Neurology, Alfred Health, Melbourne, VIC, Australia; Department of Physiology, The University of Melbourne, Melbourne, VIC, Australia.
| | - Richard P Sequeira
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Andrea Muscat
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Sian Stuckey
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Paul G Sanfilippo
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Viet Minh
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia; School of Nursing, Midwifery and Paramedicine, Australian Catholic University, Melbourne, VIC, Australia
| | - Naomi Loftus
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Veronica Voo
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | | | - Melinda Moss
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Vicki E Maltby
- John Hunter Hospital, Department of Neurology, New Lambton Heights, NSW, Australia; School of Medicine and Public Health, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, Australia
| | - Ai-Lan Nguyen
- Department of Neurology, Melbourne Health, Melbourne, VIC, Australia; Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Robb Wesselingh
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia; Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Nabil Seery
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia; Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Cassie Nesbitt
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia; Department of Neurology, Barwon Health, Melbourne, VIC, Australia
| | - Josephine Baker
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Chris Dwyer
- Department of Neurology, Melbourne Health, Melbourne, VIC, Australia
| | - Lisa Taylor
- Department of Neurology, Melbourne Health, Melbourne, VIC, Australia
| | - Louise Rath
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Anneke Van der Walt
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia; Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Mark Marriott
- Department of Neurology, Melbourne Health, Melbourne, VIC, Australia; Department of Medicine, University of Melbourne, Melbourne, VIC, Australia; Department of Neurology, Eastern Health, Melbourne, VIC, Australia
| | - Tomas Kalincik
- Department of Neurology, Melbourne Health, Melbourne, VIC, Australia; Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Jeannette Lechner-Scott
- John Hunter Hospital, Department of Neurology, New Lambton Heights, NSW, Australia; School of Medicine and Public Health, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia; Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Helmut Butzkueven
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia; Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Hamzeh O, Rabiei F, Shakeri M, Parsian H, Saadat P, Rostami-Mansoor S. Mitochondrial dysfunction and inflammasome activation in neurodegenerative diseases: Mechanisms and therapeutic implications. Mitochondrion 2023; 73:S1567-7249(23)00087-9. [PMID: 39492438 DOI: 10.1016/j.mito.2023.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/02/2023] [Accepted: 10/28/2023] [Indexed: 11/05/2024]
Abstract
Impaired mitochondrial function is crucial to the pathogenesis of several neurodegenerative diseases. It causes the release of mitochondrial DNA (mtDNA), mitochondrial reactive oxygen species (mtROS), ATP, and cardiolipin, which activate the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome. NLRP3 inflammasome is an important innate immune system element contributing to neuroinflammation and neurodegeneration. Therefore, targeting the NLRP3 inflammasome has become an interesting therapeutic approach for treating neurodegenerative diseases. This review describes the role of mitochondrial abnormalities and over-activated inflammasomes in the progression of neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Multiple sclerosis (MS), Amyotrophic lateral sclerosis (ALS), and Friedrich ataxia (FRDA). We also discuss the therapeutic strategies focusing on signaling pathways associated with inflammasome activation, which potentially alleviate neurodegenerative symptoms and impede disease progression.
Collapse
Affiliation(s)
- Olia Hamzeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Fatemeh Rabiei
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Mahdi Shakeri
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Hadi Parsian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Payam Saadat
- Mobility Impairment Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Sahar Rostami-Mansoor
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
3
|
Kasindi A, Fuchs DT, Koronyo Y, Rentsendorj A, Black KL, Koronyo-Hamaoui M. Glatiramer Acetate Immunomodulation: Evidence of Neuroprotection and Cognitive Preservation. Cells 2022; 11:1578. [PMID: 35563884 PMCID: PMC9099707 DOI: 10.3390/cells11091578] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
Novel, neuroprotective uses of Copaxone (generic name: glatiramer acetate-GA) are being examined, primarily in neurological conditions involving cognitive decline. GA is a well-studied synthetic copolymer that is FDA-approved for immune-based treatment of relapsing remitting multiple sclerosis (RRMS). Clinical studies have explored the potential mechanism of action (MOA) and outcomes of GA immunization in patients. Furthermore, results from these and animal studies suggest that GA has a direct immunomodulatory effect on adaptive and innate immune cell phenotypes and responses. These MOAs have been postulated to have a common neuroprotective impact in several neuroinflammatory and neurodegenerative diseases. Notably, several clinical studies report that the use of GA mitigated MS-associated cognitive decline. Its propensity to ameliorate neuro-proinflammatory and degenerative processes ignites increased interest in potential alternate uses such as in age-related macular degeneration (AMD), amyotrophic lateral sclerosis (ALS), and Alzheimer's disease (AD). Preclinical studies are exploring less frequent subcutaneous administration of GA, such as once weekly or monthly or a single dosing regimen. Indeed, cognitive functions were found to be either preserved, reversed, or improved after the less frequent treatment regimens with GA in animal models of AD. In this systematic review, we examine the potential novel uses of GA across clinical and pre-clinical studies, with evidence for its beneficial impact on cognition. Future investigation in large-size, double-blind clinical trials is warranted to establish the impact of GA immunomodulation on neuroprotection and cognitive preservation in various neurological conditions.
Collapse
Affiliation(s)
- Arielle Kasindi
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.K.); (D.-T.F.); (Y.K.); (A.R.); (K.L.B.)
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.K.); (D.-T.F.); (Y.K.); (A.R.); (K.L.B.)
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.K.); (D.-T.F.); (Y.K.); (A.R.); (K.L.B.)
| | - Altan Rentsendorj
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.K.); (D.-T.F.); (Y.K.); (A.R.); (K.L.B.)
| | - Keith L. Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.K.); (D.-T.F.); (Y.K.); (A.R.); (K.L.B.)
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.K.); (D.-T.F.); (Y.K.); (A.R.); (K.L.B.)
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
4
|
Piancone F, La Rosa F, Marventano I, Saresella M, Clerici M. The Role of the Inflammasome in Neurodegenerative Diseases. Molecules 2021; 26:molecules26040953. [PMID: 33670164 PMCID: PMC7916884 DOI: 10.3390/molecules26040953] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/27/2021] [Accepted: 02/06/2021] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases are chronic, progressive disorders that occur in the central nervous system (CNS). They are characterized by the loss of neuronal structure and function and are associated with inflammation. Inflammation of the CNS is called neuroinflammation, which has been implicated in most neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS). Much evidence indicates that these different conditions share a common inflammatory mechanism: the activation of the inflammasome complex in peripheral monocytes and in microglia, with the consequent production of high quantities of the pro-inflammatory cytokines IL-1β and IL-18. Inflammasomes are a group of multimeric signaling complexes that include a sensor Nod-like receptor (NLR) molecule, the adaptor protein ASC, and caspase-1. The NLRP3 inflammasome is currently the best-characterized inflammasome. Multiple signals, which are potentially provided in combination and include endogenous danger signals and pathogens, trigger the formation of an active inflammasome, which, in turn, will stimulate the cleavage and the release of bioactive cytokines including IL-1β and IL-18. In this review, we will summarize results implicating the inflammasome as a pivotal player in the pathogenesis of neurodegenerative diseases and discuss how compounds that hamper the activation of the NLRP3 inflammasome could offer novel therapeutic avenues for these diseases.
Collapse
Affiliation(s)
- Federica Piancone
- IRCCS Fondazione Don Carlo Gnocchi, 20148 Milano, Italy; (F.L.R.); (I.M.); (M.S.); (M.C.)
- Correspondence:
| | - Francesca La Rosa
- IRCCS Fondazione Don Carlo Gnocchi, 20148 Milano, Italy; (F.L.R.); (I.M.); (M.S.); (M.C.)
| | - Ivana Marventano
- IRCCS Fondazione Don Carlo Gnocchi, 20148 Milano, Italy; (F.L.R.); (I.M.); (M.S.); (M.C.)
| | - Marina Saresella
- IRCCS Fondazione Don Carlo Gnocchi, 20148 Milano, Italy; (F.L.R.); (I.M.); (M.S.); (M.C.)
| | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi, 20148 Milano, Italy; (F.L.R.); (I.M.); (M.S.); (M.C.)
- Department of Pathophysiology and Transplantation, University of Milano, 20122 Milano, Italy
| |
Collapse
|
5
|
Andrejew R, Oliveira-Giacomelli Á, Ribeiro DE, Glaser T, Arnaud-Sampaio VF, Lameu C, Ulrich H. The P2X7 Receptor: Central Hub of Brain Diseases. Front Mol Neurosci 2020; 13:124. [PMID: 32848594 PMCID: PMC7413029 DOI: 10.3389/fnmol.2020.00124] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/17/2020] [Indexed: 12/27/2022] Open
Abstract
The P2X7 receptor is a cation channel activated by high concentrations of adenosine triphosphate (ATP). Upon long-term activation, it complexes with membrane proteins forming a wide pore that leads to cell death and increased release of ATP into the extracellular milieu. The P2X7 receptor is widely expressed in the CNS, such as frontal cortex, hippocampus, amygdala and striatum, regions involved in neurodegenerative diseases and psychiatric disorders. Despite P2X7 receptor functions in glial cells have been extensively studied, the existence and roles of this receptor in neurons are still controversially discussed. Regardless, P2X7 receptors mediate several processes observed in neuropsychiatric disorders and brain tumors, such as activation of neuroinflammatory response, stimulation of glutamate release and neuroplasticity impairment. Moreover, P2X7 receptor gene polymorphisms have been associated to depression, and isoforms of P2X7 receptors are implicated in neuropsychiatric diseases. In view of that, the P2X7 receptor has been proposed to be a potential target for therapeutic intervention in brain diseases. This review discusses the molecular mechanisms underlying P2X7 receptor-mediated signaling in neurodegenerative diseases, psychiatric disorders, and brain tumors. In addition, it highlights the recent advances in the development of P2X7 receptor antagonists that are able of penetrating the central nervous system.
Collapse
Affiliation(s)
- Roberta Andrejew
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | - Deidiane Elisa Ribeiro
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Talita Glaser
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | - Claudiana Lameu
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Andrejew R, Glaser T, Oliveira-Giacomelli Á, Ribeiro D, Godoy M, Granato A, Ulrich H. Targeting Purinergic Signaling and Cell Therapy in Cardiovascular and Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1201:275-353. [PMID: 31898792 DOI: 10.1007/978-3-030-31206-0_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Extracellular purines exert several functions in physiological and pathophysiological mechanisms. ATP acts through P2 receptors as a neurotransmitter and neuromodulator and modulates heart contractility, while adenosine participates in neurotransmission, blood pressure, and many other mechanisms. Because of their capability to differentiate into mature cell types, they provide a unique therapeutic strategy for regenerating damaged tissue, such as in cardiovascular and neurodegenerative diseases. Purinergic signaling is pivotal for controlling stem cell differentiation and phenotype determination. Proliferation, differentiation, and apoptosis of stem cells of various origins are regulated by purinergic receptors. In this chapter, we selected neurodegenerative and cardiovascular diseases with clinical trials using cell therapy and purinergic receptor targeting. We discuss these approaches as therapeutic alternatives to neurodegenerative and cardiovascular diseases. For instance, promising results were demonstrated in the utilization of mesenchymal stem cells and bone marrow mononuclear cells in vascular regeneration. Regarding neurodegenerative diseases, in general, P2X7 and A2A receptors mostly worsen the degenerative state. Stem cell-based therapy, mainly through mesenchymal and hematopoietic stem cells, showed promising results in improving symptoms caused by neurodegeneration. We propose that purinergic receptor activity regulation combined with stem cells could enhance proliferative and differentiation rates as well as cell engraftment.
Collapse
Affiliation(s)
- Roberta Andrejew
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Talita Glaser
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Ágatha Oliveira-Giacomelli
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Deidiane Ribeiro
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Mariana Godoy
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil.,Laboratory of Neurodegenerative Diseases, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandro Granato
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Henning Ulrich
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
7
|
Antonioli L, Blandizzi C, Pacher P, Haskó G. The Purinergic System as a Pharmacological Target for the Treatment of Immune-Mediated Inflammatory Diseases. Pharmacol Rev 2019; 71:345-382. [PMID: 31235653 PMCID: PMC6592405 DOI: 10.1124/pr.117.014878] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Immune-mediated inflammatory diseases (IMIDs) encompass a wide range of seemingly unrelated conditions, such as multiple sclerosis, rheumatoid arthritis, psoriasis, inflammatory bowel diseases, asthma, chronic obstructive pulmonary disease, and systemic lupus erythematosus. Despite differing etiologies, these diseases share common inflammatory pathways, which lead to damage in primary target organs and frequently to a plethora of systemic effects as well. The purinergic signaling complex comprising extracellular nucleotides and nucleosides and their receptors, the P2 and P1 purinergic receptors, respectively, as well as catabolic enzymes and nucleoside transporters is a major regulatory system in the body. The purinergic signaling complex can regulate the development and course of IMIDs. Here we provide a comprehensive review on the role of purinergic signaling in controlling immunity, inflammation, and organ function in IMIDs. In addition, we discuss the possible therapeutic applications of drugs acting on purinergic pathways, which have been entering clinical development, to manage patients suffering from IMIDs.
Collapse
Affiliation(s)
- Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (L.A., C.B.); Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (P.P.); and Department of Anesthesiology, Columbia University, New York, New York (G.H.)
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (L.A., C.B.); Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (P.P.); and Department of Anesthesiology, Columbia University, New York, New York (G.H.)
| | - Pál Pacher
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (L.A., C.B.); Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (P.P.); and Department of Anesthesiology, Columbia University, New York, New York (G.H.)
| | - György Haskó
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (L.A., C.B.); Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (P.P.); and Department of Anesthesiology, Columbia University, New York, New York (G.H.)
| |
Collapse
|
8
|
McKay TB, Seyed-Razavi Y, Ghezzi CE, Dieckmann G, Nieland TJF, Cairns DM, Pollard RE, Hamrah P, Kaplan DL. Corneal pain and experimental model development. Prog Retin Eye Res 2019; 71:88-113. [PMID: 30453079 PMCID: PMC6690397 DOI: 10.1016/j.preteyeres.2018.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 11/03/2018] [Accepted: 11/13/2018] [Indexed: 12/13/2022]
Abstract
The cornea is a valuable tissue for studying peripheral sensory nerve structure and regeneration due to its avascularity, transparency, and dense innervation. Somatosensory innervation of the cornea serves to identify changes in environmental stimuli at the ocular surface, thereby promoting barrier function to protect the eye against injury or infection. Due to regulatory demands to screen ocular safety of potential chemical exposure, a need remains to develop functional human tissue models to predict ocular damage and pain using in vitro-based systems to increase throughput and minimize animal use. In this review, we summarize the anatomical and functional roles of corneal innervation in propagation of sensory input, corneal neuropathies associated with pain, and the status of current in vivo and in vitro models. Emphasis is placed on tissue engineering approaches to study the human corneal pain response in vitro with integration of proper cell types, controlled microenvironment, and high-throughput readouts to predict pain induction. Further developments in this field will aid in defining molecular signatures to distinguish acute and chronic pain triggers based on the immune response and epithelial, stromal, and neuronal interactions that occur at the ocular surface that lead to functional outcomes in the brain depending on severity and persistence of the stimulus.
Collapse
Affiliation(s)
- Tina B McKay
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
| | - Yashar Seyed-Razavi
- Center for Translational Ocular Immunology and Cornea Service, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Chiara E Ghezzi
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
| | - Gabriela Dieckmann
- Center for Translational Ocular Immunology and Cornea Service, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Thomas J F Nieland
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
| | - Dana M Cairns
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
| | - Rachel E Pollard
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
| | - Pedram Hamrah
- Center for Translational Ocular Immunology and Cornea Service, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA.
| |
Collapse
|
9
|
Voo VTF, O'Brien T, Butzkueven H, Monif M. The role of vitamin D and P2X7R in multiple sclerosis. J Neuroimmunol 2019; 330:159-169. [PMID: 30908981 DOI: 10.1016/j.jneuroim.2019.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/11/2019] [Accepted: 03/05/2019] [Indexed: 12/13/2022]
Abstract
Multiple sclerosis (MS) is characterized by neuroinflammatory infiltrates and central nervous system demyelination. In the neuroinflammatory foci of MS there is increased expression of a purinergic receptor, P2X7R. Although implicated in the neuroinflammation, the exact role of P2X7R in the context of MS is unclear and forms the basis of this review. In this review, we also introduce the immunopathologies and inflammatory processes in MS, with a focus on P2X7R and the possible immunomodulatory role of vitamin D deficiency in this setting.
Collapse
Affiliation(s)
- Veronica Tsin Fong Voo
- Department of Physiology, The University of Melbourne, Melbourne, Australia; Department of Neuroscience, Monash University, Melbourne, Australia
| | - Terence O'Brien
- Department of Neuroscience, Monash University, Melbourne, Australia; Department of Neurology, Melbourne Health, Melbourne, Australia
| | | | - Mastura Monif
- Department of Physiology, The University of Melbourne, Melbourne, Australia; Department of Neuroscience, Monash University, Melbourne, Australia; Department of Neurology, Melbourne Health, Melbourne, Australia.
| |
Collapse
|
10
|
Blonda M, Amoruso A, Martino T, Avolio C. New Insights Into Immune Cell-Derived Extracellular Vesicles in Multiple Sclerosis. Front Neurol 2018; 9:604. [PMID: 30150969 PMCID: PMC6099084 DOI: 10.3389/fneur.2018.00604] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/06/2018] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are small vesicles including microvesicles and exosomes which differ in their distinct size, density, biogenesis, and content. Until recently, EVs were considered as simply scrap products. Nowadays, they are engendering huge interest and their shedding plays a well-recognized role in intercellular communication, not only participating in many physiological processes, but also suspected of being involved in the pathogenesis of many diseases. The present review aims to summarize the latest updates on immune cell-derived EVs, focusing on the current status of knowledge in Multiple Sclerosis. Significant progress has been made on their physical and biological characterization even though many aspects remain unclear and need to be addressed. However, it is worth further investigating in order to deepen the knowledge of this unexplored and fascinating field that could lead to intriguing findings in the evaluation of EVs as biomarkers in monitoring the course of diseases and the response to treatments.
Collapse
Affiliation(s)
- Maria Blonda
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | | | | | | |
Collapse
|
11
|
Effect of fingolimod action on the release of monocyte-derived microvesicles in multiple sclerosis patients. J Neuroimmunol 2018; 323:43-48. [PMID: 30196832 DOI: 10.1016/j.jneuroim.2018.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 12/12/2022]
Abstract
Recently, microvesicles (MVs) were considered as important mediators of intercellular communication, especially in pathological conditions as Multiple Sclerosis (MS). In myeloid cells, MV shedding is induced by the receptor P2X7 with the involvement of acid sphingomyelinase (A-SMase) and release of the IL-1β. In this study we evaluate how Fingolimod affects MVs production by the monocytes, as well as P2X7R, IL-1β expression and A-SMase activity. Treatment decreased MVs production and IL-1β expression. This effect was associated with the inhibition of A-SMase activity in BzATP-stimulated monocytes from MS patients. These evidences suggest monocyte MVs as a possible disease and drug-efficacy biomarkers.
Collapse
|
12
|
Oliveira-Giacomelli Á, Naaldijk Y, Sardá-Arroyo L, Gonçalves MCB, Corrêa-Velloso J, Pillat MM, de Souza HDN, Ulrich H. Purinergic Receptors in Neurological Diseases With Motor Symptoms: Targets for Therapy. Front Pharmacol 2018; 9:325. [PMID: 29692728 PMCID: PMC5902708 DOI: 10.3389/fphar.2018.00325] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 03/21/2018] [Indexed: 12/13/2022] Open
Abstract
Since proving adenosine triphosphate (ATP) functions as a neurotransmitter in neuron/glia interactions, the purinergic system has been more intensely studied within the scope of the central nervous system. In neurological disorders with associated motor symptoms, including Parkinson's disease (PD), motor neuron diseases (MND), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), Huntington's Disease (HD), restless leg syndrome (RLS), and ataxias, alterations in purinergic receptor expression and activity have been noted, indicating a potential role for this system in disease etiology and progression. In neurodegenerative conditions, neural cell death provokes extensive ATP release and alters calcium signaling through purinergic receptor modulation. Consequently, neuroinflammatory responses, excitotoxicity and apoptosis are directly or indirectly induced. This review analyzes currently available data, which suggests involvement of the purinergic system in neuro-associated motor dysfunctions and underlying mechanisms. Possible targets for pharmacological interventions are also discussed.
Collapse
Affiliation(s)
| | - Yahaira Naaldijk
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Laura Sardá-Arroyo
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Maria C. B. Gonçalves
- Department of Neurology and Neuroscience, Medical School, Federal University of São Paulo, São Paulo, Brazil
| | - Juliana Corrêa-Velloso
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Micheli M. Pillat
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Héllio D. N. de Souza
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Russi AE, Walker-Caulfield ME, Brown MA. Mast cell inflammasome activity in the meninges regulates EAE disease severity. Clin Immunol 2018; 189:14-22. [DOI: 10.1016/j.clim.2016.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 12/16/2022]
|
14
|
Adinolfi E, Giuliani AL, De Marchi E, Pegoraro A, Orioli E, Di Virgilio F. The P2X7 receptor: A main player in inflammation. Biochem Pharmacol 2017; 151:234-244. [PMID: 29288626 DOI: 10.1016/j.bcp.2017.12.021] [Citation(s) in RCA: 285] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 12/22/2017] [Indexed: 12/21/2022]
Abstract
Damage associated molecular patterns (DAMPs) are intracellular molecules released from infected or injured cells to activate inflammatory and reparatory responses. One of the most ancient and conserved DAMPs is extracellular ATP that exerts its phlogistic activity mainly through activation of the P2X7 receptor (P2X7R). The P2X7R is an ATP gated ion channel, expressed by most immune cells, including the monocyte-derived cell lineages, T and B lymphocytes and their precursors. Here we give an overview of recent and established literature on the role of P2X7R in septic and sterile inflammation. P2X7R ability in restraining intracellular bacteria and parasite infection by modulation of the immune response are described, with particular focus on Mycobacteria and Plasmodium. Emerging literature on the role of P2X7 in viral infections such as HIV-1 is also briefly covered. Finally, we describe the numerous intracellular pathways related to inflammation and activated by the P2X7R, including the NLRP3 inflammasome, NF-kB, NFAT, GSK3β and VEGF, and discuss the involvement of P2X7R in chronic diseases. The possible therapeutic applications of P2X7R antagonists are also described.
Collapse
Affiliation(s)
- Elena Adinolfi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Anna Lisa Giuliani
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Elena De Marchi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Anna Pegoraro
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Elisa Orioli
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
15
|
Amadio S, Parisi C, Piras E, Fabbrizio P, Apolloni S, Montilli C, Luchetti S, Ruggieri S, Gasperini C, Laghi-Pasini F, Battistini L, Volonté C. Modulation of P2X7 Receptor during Inflammation in Multiple Sclerosis. Front Immunol 2017; 8:1529. [PMID: 29187851 PMCID: PMC5694754 DOI: 10.3389/fimmu.2017.01529] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/27/2017] [Indexed: 11/18/2022] Open
Abstract
Multiple sclerosis (MS) is characterized by macrophage accumulation and inflammatory infiltrates into the CNS contributing to demyelination. Because purinergic P2X7 receptor (P2X7R) is known to be abundantly expressed on cells of the hematopoietic lineage and of the nervous system, we further investigated its phenotypic expression in MS and experimental autoimmune encephalomyelitis conditions. By quantitative reverse transcription polymerase chain reaction and flow cytometry, we analyzed the P2X7R expression in human mononuclear cells of peripheral blood from stable and acute relapsing-remitting MS phases. Human monocytes were also challenged in vitro with pro-inflammatory stimuli such as the lipopolysaccharide, or the P2X7R preferential agonist 2′(3′)-O-(4 Benzoylbenzoyl)adenosine 5′-triphosphate, before evaluating P2X7R protein expression. Finally, by immunohistochemistry and immunofluorescence confocal analysis, we investigated the P2X7R expression in frontal cortex from secondary progressive MS cases. We demonstrated that P2X7R is present and inhibited on peripheral monocytes isolated from MS donors during the acute phase of the disease, moreover it is down-regulated in human monocytes after pro-inflammatory stimulation in vitro. P2X7R is instead up-regulated on astrocytes in the parenchyma of frontal cortex from secondary progressive MS patients, concomitantly with monocyte chemoattractant protein-1 chemokine, while totally absent from microglia/macrophages or oligodendrocytes, despite the occurrence of inflammatory conditions. Our results suggest that inhibition of P2X7R on monocytes and up-regulation in astrocytes might contribute to sustain inflammatory mechanisms in MS. By acquiring further knowledge about P2X7R dynamics and identifying P2X7R as a potential marker for the disease, we expect to gain insights into the molecular pathways of MS.
Collapse
Affiliation(s)
- Susanna Amadio
- Cellular Neurobiology Unit, Santa Lucia Foundation, Rome, Italy
| | - Chiara Parisi
- Institute of Cell Biology and Neurobiology, Consiglio Nazionale Delle Ricerche (CNR), Rome, Italy
| | - Eleonora Piras
- Neuroimmunology Unit, Santa Lucia Foundation, Rome, Italy
| | - Paola Fabbrizio
- Cellular Neurobiology Unit, Santa Lucia Foundation, Rome, Italy.,Institute of Cell Biology and Neurobiology, Consiglio Nazionale Delle Ricerche (CNR), Rome, Italy
| | - Savina Apolloni
- Cellular Neurobiology Unit, Santa Lucia Foundation, Rome, Italy
| | - Cinzia Montilli
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Sabina Luchetti
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Serena Ruggieri
- Neurology Unit "Lancisi", San Camillo Forlanini Hospital, Rome, Italy.,Department of Neurology and Psychiatry, University of Rome "Sapienza", Rome, Italy
| | - Claudio Gasperini
- Neurology Unit "Lancisi", San Camillo Forlanini Hospital, Rome, Italy
| | - Franco Laghi-Pasini
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | | | - Cinzia Volonté
- Cellular Neurobiology Unit, Santa Lucia Foundation, Rome, Italy.,Institute of Cell Biology and Neurobiology, Consiglio Nazionale Delle Ricerche (CNR), Rome, Italy
| |
Collapse
|
16
|
Lin CC, Edelson BT. New Insights into the Role of IL-1β in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis. THE JOURNAL OF IMMUNOLOGY 2017; 198:4553-4560. [PMID: 28583987 DOI: 10.4049/jimmunol.1700263] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/23/2017] [Indexed: 01/05/2023]
Abstract
Multiple sclerosis (MS), and its animal model experimental autoimmune encephalomyelitis, are neuroinflammatory diseases driven by autoreactive pathogenic TH cells that elicit demyelination and axonal damage. How TH cells acquire pathogenicity and communicate with myeloid cells and cells of the CNS remain unclear. IL-1β is recognized to play an important role in experimental autoimmune encephalomyelitis (EAE) and perhaps MS. Clinical EAE is significantly attenuated in IL-1R-deficient and IL-1β-deficient mice, and IL-1β is found in the blood, cerebrospinal fluid, and CNS lesions of MS patients. In this article, we focus on new reports that elucidate the cellular sources of IL-1β and its actions during EAE, in both lymphoid tissues and within the CNS. Several immune cell types serve as critical producers of IL-1β during EAE, with this cytokine inducing response in both hematopoietic and nonhematopoietic cells. These findings from the EAE model should inspire efforts toward investigating the therapeutic potential of IL-1 blockade in MS.
Collapse
Affiliation(s)
- Chih-Chung Lin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Brian T Edelson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
17
|
Blonda M, Amoruso A, Grasso R, Di Francescantonio V, Avolio C. Multiple Sclerosis Treatments Affect Monocyte-Derived Microvesicle Production. Front Neurol 2017; 8:422. [PMID: 28878732 PMCID: PMC5572278 DOI: 10.3389/fneur.2017.00422] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 08/04/2017] [Indexed: 12/17/2022] Open
Abstract
Microvesicles (MVs) are released by immune cells especially of the myeloid lineage upon stimulation with ATP on its cognate receptor P2X7, both in physiological and pathological conditions. In multiple sclerosis (MS) the role of MVs remains little investigated. We aimed to compare the release of MVs in peripheral blood monocytes from MS patients with healthy donors (HDs) and to see how current MS treatment may affect such a production. We also assessed the treatment effect on M1 and M2 monocyte polarization and on the inflammasome components. Spectrophotometric quantification was performed to compare monocyte-derived MVs from 20 untreated relapsing-remitting MS patients and 20 HDs and to evaluate the effect of different treatments. Subgroups of nine interferon-beta and of five teriflunomide-treated MS patients were evaluated at baseline and after 2, 6, and 12 months of treatment. Six MS patients taking Fingolimod, after switching from a first-line therapy, were included in the study and analyzed only at 12 months of treatment. MVs analysis revealed that monocytes from MS patients produced vesicles in higher amounts than controls. All treatments reduced vesicle production but only teriflunomide was associated with a downregulation of purinergic P2X7 receptor and inflammasome components expression. The therapies modulated mRNA expression of both M1 and M2 monocyte markers. Our results, suggesting new molecular targets for drugs currently used in MS, may potentially provide useful novel evidence to approach the disease.
Collapse
Affiliation(s)
- Maria Blonda
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Antonella Amoruso
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Roberta Grasso
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | | | - Carlo Avolio
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
18
|
Sun Y, Narayan VA, Wittenberg GM. Side effect profile similarities shared between antidepressants and immune-modulators reveal potential novel targets for treating major depressive disorders. BMC Pharmacol Toxicol 2016; 17:47. [PMID: 27765060 PMCID: PMC5073882 DOI: 10.1186/s40360-016-0090-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 09/28/2016] [Indexed: 12/20/2022] Open
Abstract
Background Side effects, or the adverse effects of drugs, contain important clinical phenotypic information that may be useful in predicting novel or unknown targets of a drug. It has been suggested that drugs with similar side-effect profiles may share common targets. The diagnostic class, Major Depressive Disorder, is increasingly viewed as being comprised of multiple depression subtypes with different biological root causes. One ‘type’ of depression generating substantial interest today focuses on patients with high levels of inflammatory burden, indicated by elevated levels of C-reactive proteins (CRP) and pro-inflammatory cytokines such as interleukin 6 (IL-6). It has been suggested that drugs targeting the immune system may have beneficial effect on this subtype of depressed patients, and several studies are underway to test this hypothesis directly. However, patients have been treated with both anti-inflammatory and antidepressant compounds for decades. It may be possible to exploit similarities in clinical readouts to better understand the antidepressant effects of immune-related drugs. Methods Here we explore the space of approved drugs by comparing the drug side effect profiles of known antidepressants and drugs targeting the immune system, and further examine the findings by comparing the human cell line expression profiles induced by them with those induced by antidepressants. Results We found 7 immune-modulators and 14 anti-inflammatory drugs sharing significant side effect profile similarities with antidepressants. Five of the 7 immune modulators share most similar side effect profiles with antidepressants that modulate dopamine release and/or uptake. In addition, the immunosuppressant rapamycin and the glucocorticoid alclometasone induces transcriptional changes similar to multiple antidepressants. Conclusions These findings suggest that some antidepressants and some immune-related drugs may affect common molecular pathways. Our findings support the idea that certain medications aimed at the immune system may be helpful in relieving depressive symptoms, and suggest that it may be of value to test immune-modulators for antidepressant-like activity in future proof-of-concept studies.
Collapse
Affiliation(s)
- Yu Sun
- Neuroscience Integrative Solutions and Informatics, Janssen Research & Development, LLC, Janssen Pharmaceutical Companies of Johnson and Johnson, Titusville, NJ, USA.
| | - Vaibhav A Narayan
- Neuroscience Integrative Solutions and Informatics, Janssen Research & Development, LLC, Janssen Pharmaceutical Companies of Johnson and Johnson, Titusville, NJ, USA
| | - Gayle M Wittenberg
- Neuroscience Integrative Solutions and Informatics, Janssen Research & Development, LLC, Janssen Pharmaceutical Companies of Johnson and Johnson, Titusville, NJ, USA
| |
Collapse
|
19
|
Gu BJ, Huang X, Ou A, Rembach A, Fowler C, Avula PK, Horton A, Doecke JD, Villemagne VL, Macaulay SL, Maruff P, Fletcher EL, Guymer R, Wiley JS, Masters CL. Innate phagocytosis by peripheral blood monocytes is altered in Alzheimer's disease. Acta Neuropathol 2016; 132:377-89. [PMID: 27411339 DOI: 10.1007/s00401-016-1596-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/27/2016] [Accepted: 07/05/2016] [Indexed: 11/30/2022]
Abstract
Sporadic Alzheimer's disease (AD) is characterised by the deposition and accumulation of specific protein aggregates. Failure of clearance could underlie this process, and recent genetic association studies point towards involvement of the phagocytosis and autophagy pathways. We developed a real-time tri-color flow cytometry method to quantitate the phagocytic function of human peripheral blood monocyte subsets including non-classic CD14(dim)CD16(+), intermediate CD14(+)CD16(+) and classic CD14(+)CD16(-) monocytes. Using this method, we have measured the phagocytic ability of fresh monocytes in a study of preclinical, prodromal and clinical AD, matched with cognitively normal healthy control subjects. Basal levels of phagocytosis in all three subsets of monocytes were similar between healthy controls and AD patients, while a significant increase of basal phagocytosis was found in subjects with high Aβ-amyloid burden as assessed by PET scans. Pre-treating cells with Copaxone (CPX, to stimulate phagocytosis) or ATP (an inhibitor of P2X7-mediated phagocytosis) showed a differential response depending on clinical or Aβ-burden status, indicating a relative functional deficit. Overall the results are consistent with a perturbation of basal and stimulated innate phagocytosis in sporadic AD.
Collapse
Affiliation(s)
- Ben J Gu
- The Florey Institute of Neuroscience & Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia.
| | - Xin Huang
- The Florey Institute of Neuroscience & Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
| | - Amber Ou
- The Florey Institute of Neuroscience & Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
| | - Alan Rembach
- The Florey Institute of Neuroscience & Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
| | - Christopher Fowler
- The Florey Institute of Neuroscience & Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
| | - Pavan K Avula
- The Florey Institute of Neuroscience & Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
| | - Adam Horton
- The Florey Institute of Neuroscience & Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
| | - James D Doecke
- CSIRO Health and Biosecurity/Australian E-Health Research Centre, Herston, QLD, 4029, Australia
| | - Victor L Villemagne
- The Florey Institute of Neuroscience & Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
- Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, VIC, 3084, Australia
| | | | - Paul Maruff
- The Florey Institute of Neuroscience & Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
- Cogstate Pty Ltd, Melbourne, VIC, 3000, Australia
| | - Erica L Fletcher
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Robyn Guymer
- Centre for Eye Research Australia Royal Victorian Eye and Ear Hospital, The University of Melbourne, East Melbourne, VIC, 3002, Australia
| | - James S Wiley
- The Florey Institute of Neuroscience & Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
| | - Colin L Masters
- The Florey Institute of Neuroscience & Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
| |
Collapse
|
20
|
De Marchi E, Orioli E, Dal Ben D, Adinolfi E. P2X7 Receptor as a Therapeutic Target. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 104:39-79. [PMID: 27038372 DOI: 10.1016/bs.apcsb.2015.11.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
P2X7 receptor is an ATP-gated cation channel that upon agonist interaction leads to cellular influx of Na(+) and Ca(2+) and efflux of K(+). P2X7 is expressed by a wide variety of cells and its activation mediates a large number of biological processes like inflammation, neuromodulation, cell death or cell proliferation and it has been associated to related pathological conditions including infectious, inflammatory, autoimmune, neurological, and musculoskeletal disorders and, in the last years, to cancer. This chapter describes structural features of P2X7, chemical properties of its agonist, antagonist, and allosteric modulators and summarizes recent advances on P2X7 receptor as therapeutic target in the aforementioned diseases. We also give an overview on recent literature suggesting that P2X7 single-nucleotide polymorphisms could be exploited as diagnostic biomarkers for the development of tailored therapies.
Collapse
Affiliation(s)
- Elena De Marchi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Elisa Orioli
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Diego Dal Ben
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy
| | - Elena Adinolfi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
21
|
Central nervous system myeloid cells as drug targets: current status and translational challenges. Nat Rev Drug Discov 2015; 15:110-24. [DOI: 10.1038/nrd.2015.14] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Cortés-Garcia JD, López-López C, Cortez-Espinosa N, García-Hernández MH, Guzmán-Flores JM, Layseca-Espinosa E, Portales-Cervantes L, Portales-Pérez DP. Evaluation of the expression and function of the P2X7 receptor and ART1 in human regulatory T-cell subsets. Immunobiology 2015; 221:84-93. [PMID: 26307000 DOI: 10.1016/j.imbio.2015.07.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/10/2015] [Accepted: 07/23/2015] [Indexed: 01/11/2023]
Abstract
Regulatory T cells that express CD39 (CD39+ Treg) exhibit specific immunomodulatory properties. Ectonucleotidase CD39 hydrolyses ATP and ADP. ATP is a ligand of the P2X7 receptor and induces the shedding of CD62L and apoptosis. However, the role of ATP in CD39+ Treg cells has not been defined. Furthermore, NAD can activate the P2X7 receptor via ADP-ribosyltransferase (ART) enzymes and cause cell depletion in murine models. We evaluated the expression and function of P2X7 and ART1 in CD39+ Treg and CD39- Treg cells in the presence or absence of ATP and NAD. We isolated peripheral blood mononuclear cells from healthy subjects and purified CD4+ T cells, CD4+ CD25+ T cells and CD4+ CD25+ CD39+ T cells. P2X7 and ART1 expression was assessed by flow cytometry and real-time PCR. Our results showed low P2X7 expression on CD39+ Treg cells and higher levels of ART1 expression in CD4+ CD39+ T cells than the other subtypes studied. Neither shedding of CD62L nor cell death of CD39+ Treg or CD39- Treg cells was observed by 1mM ATP or 60μM NAD. In contrast, P2Xs receptor-dependent proliferation with 300μM ATP, was inhibited by NAD in the different cell types analysed. The NAD proliferation-inhibition was increased with P2Xs and A2a agonist and was reversed with P2Xs and A2a antagonist, therefore NAD inhibits P2Xs-dependent proliferation and A2a activation. In conclusion, our results suggest that the altered function and expression of P2X7 and ART1 in the human CD39+ Treg or CD39- Treg cells could participate in the resistance against cell death induced by ATP or NAD.
Collapse
Affiliation(s)
- Juan D Cortés-Garcia
- Laboratory of Immunology and Cellular and Molecular Biology, Faculty of Chemical Sciences, UASLP, San Luis Potosí, S.L.P., Mexicohttp://10.10.23.110:8080/TDXPSLIVELATEX/gateway/elsevierjournal/index.jsp#
| | - Cintya López-López
- Division of Molecular Biology, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, S.L.P. Mexico
| | - Nancy Cortez-Espinosa
- Laboratory of Immunology and Cellular and Molecular Biology, Faculty of Chemical Sciences, UASLP, San Luis Potosí, S.L.P., Mexicohttp://10.10.23.110:8080/TDXPSLIVELATEX/gateway/elsevierjournal/index.jsp#
| | | | - Juan M Guzmán-Flores
- Laboratory of Immunology and Cellular and Molecular Biology, Faculty of Chemical Sciences, UASLP, San Luis Potosí, S.L.P., Mexicohttp://10.10.23.110:8080/TDXPSLIVELATEX/gateway/elsevierjournal/index.jsp#
| | | | - Liliana Portales-Cervantes
- Laboratory of Immunology and Cellular and Molecular Biology, Faculty of Chemical Sciences, UASLP, San Luis Potosí, S.L.P., Mexicohttp://10.10.23.110:8080/TDXPSLIVELATEX/gateway/elsevierjournal/index.jsp#
| | - Diana P Portales-Pérez
- Laboratory of Immunology and Cellular and Molecular Biology, Faculty of Chemical Sciences, UASLP, San Luis Potosí, S.L.P., Mexicohttp://10.10.23.110:8080/TDXPSLIVELATEX/gateway/elsevierjournal/index.jsp#.
| |
Collapse
|
23
|
Gentile A, De Vito F, Fresegna D, Musella A, Buttari F, Bullitta S, Mandolesi G, Centonze D. Exploring the role of microglia in mood disorders associated with experimental multiple sclerosis. Front Cell Neurosci 2015; 9:243. [PMID: 26161070 PMCID: PMC4479791 DOI: 10.3389/fncel.2015.00243] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/15/2015] [Indexed: 01/01/2023] Open
Abstract
Microglia is increasingly recognized to play a crucial role in the pathogenesis of psychiatric diseases. In particular, microglia may be the cellular link between inflammation and behavioral alterations: by releasing a number of soluble factors, among which pro-inflammatory cytokines, that can regulate synaptic activity, thereby leading to perturbation of behavior. In multiple sclerosis (MS), the most common neuroinflammatory disorder affecting young adults, microglia activation and dysfunction may account for mood symptoms, like depression and anxiety, that are often diagnosed in patients even in the absence of motor disability. Behavioral studies in experimental autoimmune encephalomyelitis (EAE), the animal model of MS, have shown that emotional changes occur early in the disease and in correlation to inflammatory mediator and neurotransmitter level alterations. However, such studies lack a full and comprehensive analysis of the role played by microglia in EAE-behavioral syndrome. We review the experimental studies addressing behavioral symptoms in EAE, and propose the study of neuron-glia interaction as a powerful but still poorly explored tool to investigate the burden of microglia in mood alterations associated to MS.
Collapse
Affiliation(s)
- Antonietta Gentile
- Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC) Rome, Italy ; Clinica Neurologica, Dipartimento di Medicina dei Sistemi, Università Tor Vergata Rome, Italy
| | - Francesca De Vito
- Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC) Rome, Italy ; Clinica Neurologica, Dipartimento di Medicina dei Sistemi, Università Tor Vergata Rome, Italy
| | - Diego Fresegna
- Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC) Rome, Italy ; Clinica Neurologica, Dipartimento di Medicina dei Sistemi, Università Tor Vergata Rome, Italy
| | - Alessandra Musella
- Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC) Rome, Italy
| | - Fabio Buttari
- Clinica Neurologica, Dipartimento di Medicina dei Sistemi, Università Tor Vergata Rome, Italy ; IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed Pozzilli, Italy
| | - Silvia Bullitta
- Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC) Rome, Italy
| | - Georgia Mandolesi
- Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC) Rome, Italy
| | - Diego Centonze
- Clinica Neurologica, Dipartimento di Medicina dei Sistemi, Università Tor Vergata Rome, Italy ; IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed Pozzilli, Italy
| |
Collapse
|
24
|
Castrichini M, Lazzerini PE, Gamberucci A, Capecchi PL, Franceschini R, Natale M, Hammoud M, Moramarco A, Zimbone S, Gianchecchi E, Montilli C, Ricci G, Selvi E, Cantarini L, Galeazzi M, Laghi-Pasini F. The purinergic P2×7 receptor is expressed on monocytes in Behçet's disease and is modulated by TNF-α. Eur J Immunol 2013; 44:227-38. [PMID: 24105615 DOI: 10.1002/eji.201343353] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 07/30/2013] [Accepted: 09/10/2013] [Indexed: 02/01/2023]
Abstract
The P2×7 receptor (P2×7r) is expressed in innate immune cells (e.g. monocyte/macrophages), playing a key role in IL-1β release. Since innate immune activation and IL-1β release seem to be implicated in Behçet's disease (BD), a systemic immune-inflammatory disorder of unknown origin, we hypothesized that P2×7r is involved in the pathogenesis of the disease. Monocytes were isolated from 18 BD patients and 17 healthy matched controls. In BD monocytes, an increased P2×7r expression and Ca(2+) permeability induced by the selective P2×7r agonist 2'-3'-O-(4-benzoylbenzoyl)ATP (BzATP) was observed. Moreover, IL-1β release from LPS-primed monocytes stimulated with BzATP was markedly higher in BD patients than in controls. TNF-α-incubated monocytes from healthy subjects almost reproduced the findings observed in BD patients, as demonstrated by the increase in P2×7r expression and BzATP-induced Ca(2+) intake. Our results provide evidence that in BD monocytes both the expression and function of the P2×7r are increased compared with healthy controls, as the possible result, at least in part, of a positive modulating effect of TNF-α on the receptor. These data indicate P2×7r as a new potential therapeutic target for the control of BD, further supporting the rationale for the use of anti-TNF-α drugs in the treatment of the disease.
Collapse
Affiliation(s)
- Monica Castrichini
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Thamilarasan M, Hecker M, Goertsches RH, Paap BK, Schröder I, Koczan D, Thiesen HJ, Zettl UK. Glatiramer acetate treatment effects on gene expression in monocytes of multiple sclerosis patients. J Neuroinflammation 2013; 10:126. [PMID: 24134771 PMCID: PMC3852967 DOI: 10.1186/1742-2094-10-126] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 10/06/2013] [Indexed: 12/20/2022] Open
Abstract
Background Glatiramer acetate (GA) is a mixture of synthetic peptides used in the treatment of patients with relapsing-remitting multiple sclerosis (RRMS). The aim of this study was to investigate the effects of GA therapy on the gene expression of monocytes. Methods Monocytes were isolated from the peripheral blood of eight RRMS patients. The blood was obtained longitudinally before the start of GA therapy as well as after one day, one week, one month and two months. Gene expression was measured at the mRNA level by microarrays. Results More than 400 genes were identified as up-regulated or down-regulated in the course of therapy, and we analyzed their biological functions and regulatory interactions. Many of those genes are known to regulate lymphocyte activation and proliferation, but only a subset of genes was repeatedly differentially expressed at different time points during treatment. Conclusions Overall, the observed gene regulatory effects of GA on monocytes were modest and not stable over time. However, our study revealed several genes that are worthy of investigation in future studies on the molecular mechanisms of GA therapy.
Collapse
Affiliation(s)
| | - Michael Hecker
- Institute of Immunology, University of Rostock, Schillingallee 68, Rostock 18057, Germany.
| | | | | | | | | | | | | |
Collapse
|
26
|
Glatiramer Acetate Protects Against Inflammatory Synaptopathy in Experimental Autoimmune Encephalomyelitis. J Neuroimmune Pharmacol 2013; 8:651-63. [DOI: 10.1007/s11481-013-9436-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 01/17/2013] [Indexed: 11/25/2022]
|
27
|
Abstract
Inflammasomes are cytosolic sensors that detect pathogens and danger signals in the innate immune system. The NLRP3 inflammasome is currently the most fully characterized inflammasome and is known to detect a wide array of microbes and endogenous damage-associated molecules. Possible involvement of the NLRP3 inflammasome (or inflammasomes) in the development of multiple sclerosis (MS) was suggested in a number of studies. Recent studies showed that the NLRP3 inflammasome exacerbates experimental autoimmune encephalomyelitis (EAE), an animal model of MS, although EAE can also develop without the NLRP3 inflammasome. In this paper, we discuss the NLRP3 inflammasome in MS and EAE development.
Collapse
|