1
|
Slater N, Sooda A, McLeish E, Beer K, Brusch A, Shakya R, Bundell C, James I, Chopra A, Mastaglia FL, Needham M, Coudert JD. High-resolution HLA genotyping in inclusion body myositis refines 8.1 ancestral haplotype association to DRB1*03:01:01 and highlights pathogenic role of arginine-74 of DRβ1 chain. J Autoimmun 2024; 142:103150. [PMID: 38043487 DOI: 10.1016/j.jaut.2023.103150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/01/2023] [Accepted: 11/15/2023] [Indexed: 12/05/2023]
Abstract
OBJECTIVES Inclusion body myositis (IBM) is a progressive inflammatory-degenerative muscle disease of older individuals, with some patients producing anti-cytosolic 5'-nucleotidase 1A (NT5C1A, aka cN1A) antibodies. Human Leukocyte Antigens (HLA) is the highest genetic risk factor for developing IBM. In this study, we aimed to further define the contribution of HLA alleles to IBM and the production of anti-cN1A antibodies. METHODS We HLA haplotyped a Western Australian cohort of 113 Caucasian IBM patients and 112 ethnically matched controls using Illumina next-generation sequencing. Allele frequency analysis and amino acid alignments were performed using the Genentech/MiDAS bioinformatics package. Allele frequencies were compared using Fisher's exact test. Age at onset analysis was performed using the ggstatsplot package. All analysis was carried out in RStudio version 1.4.1717. RESULTS Our findings validated the independent association of HLA-DRB1*03:01:01 with IBM and attributed the risk to an arginine residue in position 74 within the DRβ1 protein. Conversely, DRB4*01:01:01 and DQA1*01:02:01 were found to have protective effects; the carriers of DRB1*03:01:01 that did not possess these alleles had a fourteenfold increased risk of developing IBM over the general Caucasian population. Furthermore, patients with the abovementioned genotype developed symptoms on average five years earlier than patients without. We did not find any HLA associations with anti-cN1A antibody production. CONCLUSIONS High-resolution HLA sequencing more precisely characterised the alleles associated with IBM and defined a haplotype linked to earlier disease onset. Identification of the critical amino acid residue by advanced biostatistical analysis of immunogenetics data offers mechanistic insights and future directions into uncovering IBM aetiopathogenesis.
Collapse
Affiliation(s)
- Nataliya Slater
- Murdoch University, Centre for Molecular Medicine and Innovative Therapeutics, Murdoch, WA, Australia
| | - Anuradha Sooda
- Murdoch University, Centre for Molecular Medicine and Innovative Therapeutics, Murdoch, WA, Australia
| | - Emily McLeish
- Murdoch University, Centre for Molecular Medicine and Innovative Therapeutics, Murdoch, WA, Australia
| | - Kelly Beer
- Murdoch University, Centre for Molecular Medicine and Innovative Therapeutics, Murdoch, WA, Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Anna Brusch
- PathWest Laboratory Medicine, Dept of Clinical Immunology, QEII Medical Centre, Nedlands, WA, Australia
| | - Rakesh Shakya
- PathWest Laboratory Medicine, Dept of Clinical Immunology, QEII Medical Centre, Nedlands, WA, Australia
| | - Christine Bundell
- PathWest Laboratory Medicine, Dept of Clinical Immunology, QEII Medical Centre, Nedlands, WA, Australia
| | - Ian James
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia; Murdoch University, Institute for Immunology and Infection Diseases, Murdoch, WA, Australia
| | - Abha Chopra
- Murdoch University, Institute for Immunology and Infection Diseases, Murdoch, WA, Australia
| | - Frank L Mastaglia
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia; University of Western Australia, Centre for Neuromuscular & Neurological Disorders, Crawley, WA, Australia
| | - Merrilee Needham
- Murdoch University, Centre for Molecular Medicine and Innovative Therapeutics, Murdoch, WA, Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia; University of Notre Dame Australia, School of Medicine, Fremantle, WA, Australia; Fiona Stanley Hospital, Department of Neurology, Murdoch, WA, Australia
| | - Jerome D Coudert
- Murdoch University, Centre for Molecular Medicine and Innovative Therapeutics, Murdoch, WA, Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia; University of Notre Dame Australia, School of Medicine, Fremantle, WA, Australia.
| |
Collapse
|
2
|
Kumar S, Gupta MK, Gupta SK, Katara P. Investigation of molecular interaction and conformational stability of disease concomitant to HLA-DRβ3. J Biomol Struct Dyn 2023; 41:8417-8431. [PMID: 36245311 DOI: 10.1080/07391102.2022.2134211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/03/2022] [Indexed: 10/24/2022]
Abstract
Human leucocyte antigen DRβ3 is associated with specific autoimmune thyroid disease and plays a vital role in the progression of Grave's disease. The available crystallographic structure of the HLA DRA, DRβ3*0101, was selected and used to generate mutation at position 57 from valine amino acid to Aspartic acid (D), Glutamic acid (E), Alanine (A), and Serine (S) amino acids by computational modeling approach. Mutant models were minimized, and stable conformation was chosen based on the lowest root mean square deviation value. Molecular docking assessed the best binding affinity of ligands C1, C2, C3, and C4 with wild-type and mutant HLA-DRβ3 models. Molecular dynamics simulation studies were executed to evaluate the stability of selected hits with wild-type and mutant dock complexes. The C3 has shown good binding affinity with wild-type and selected mutants; V57A, V57E, and V57D. Structural and molecular dynamics insights reveal the differences between wild-type and mutant-type HLA-DRβ3, which could help design novel antagonist molecules against autoimmune thyroid disorder.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sanjay Kumar
- Department of Bioinformatics, University Institute of Engineering and Technology, Chhatrapati Shahu Ji Maharaj University Kanpur, Kanpur, Uttar Pradesh, India
| | - Manish Kumar Gupta
- Department of Biotechnology, Faculty of Science, Veer Bahadur Singh Purvanchal University Jaunpur, Jaunpur, Uttar Pradesh, India
| | - Sunil Kumar Gupta
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Pramod Katara
- Centre of Bioinformatics, IIDS, University of Allahabad, Allahabad, Uttar Pradesh, India
| |
Collapse
|
3
|
Damian L, Login CC, Solomon C, Belizna C, Encica S, Urian L, Jurcut C, Stancu B, Vulturar R. Inclusion Body Myositis and Neoplasia: A Narrative Review. Int J Mol Sci 2022; 23:ijms23137358. [PMID: 35806366 PMCID: PMC9266341 DOI: 10.3390/ijms23137358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
Inclusion body myositis (IBM) is an acquired, late-onset inflammatory myopathy, with both inflammatory and degenerative pathogenesis. Although idiopathic inflammatory myopathies may be associated with malignancies, IBM is generally not considered paraneoplastic. Many studies of malignancy in inflammatory myopathies did not include IBM patients. Indeed, IBM is often diagnosed only after around 5 years from onset, while paraneoplastic myositis is generally defined as the co-occurrence of malignancy and myopathy within 1 to 3 years of each other. Nevertheless, a significant association with large granular lymphocyte leukemia has been recently described in IBM, and there are reports of cancer-associated IBM. We review the pathogenic mechanisms supposed to be involved in IBM and outline the common mechanisms in IBM and malignancy, as well as the therapeutic perspectives. The terminally differentiated, CD8+ highly cytotoxic T cells expressing NK features are central in the pathogenesis of IBM and, paradoxically, play a role in some cancers as well. Interferon gamma plays a central role, mostly during the early stages of the disease. The secondary mitochondrial dysfunction, the autophagy and cell cycle dysregulation, and the crosstalk between metabolic and mitogenic pathways could be shared by IBM and cancer. There are intermingled subcellular mechanisms in IBM and neoplasia, and probably their co-existence is underestimated. The link between IBM and cancers deserves further interest, in order to search for efficient therapies in IBM and to improve muscle function, life quality, and survival in both diseases.
Collapse
Affiliation(s)
- Laura Damian
- Centre for Rare Autoimmune and Autoinflammatory Diseases (ERN-ReCONNET), Department of Rheumatology, Emergency Clinical County Hospital Cluj, 400347 Cluj-Napoca, Romania;
- CMI Reumatologie Dr. Damian, 6-8 Petru Maior St., 400002 Cluj-Napoca, Romania
| | - Cristian Cezar Login
- Department of Physiology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
- Correspondence:
| | - Carolina Solomon
- Radiology Department, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania;
- Radiology Department, Emergency Clinical County Hospital Cluj, 400006 Cluj-Napoca, Romania
| | - Cristina Belizna
- UMR CNRS 6015—INSERM U1083, University of Angers, 49100 Angers, France;
- Internal Medicine Department Clinique de l’Anjou, Angers and Vascular and Coagulation Department, University Hospital Angers, 49100 Angers, France
| | - Svetlana Encica
- Department of Pathology, “Niculae Stancioiu” Heart Institute Cluj-Napoca, 19-21 Calea Moților St., 400001 Cluj-Napoca, Romania;
| | - Laura Urian
- Department of Hematology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400004 Cluj-Napoca, Romania;
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, 400014 Cluj-Napoca, Romania
| | - Ciprian Jurcut
- Department of Internal Medicine, “Carol Davila” Central Military Emergency University Hospital, Calea Plevnei No 134, 010825 Bucharest, Romania;
| | - Bogdan Stancu
- 2nd Surgical Department, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Romana Vulturar
- Department of Molecular Sciences, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
- Cognitive Neuroscience Laboratory, University “Babes-Bolyai” Cluj-Napoca, 400294 Cluj-Napoca, Romania
| |
Collapse
|
4
|
Greenberg SA. Inclusion body myositis: clinical features and pathogenesis. Nat Rev Rheumatol 2020; 15:257-272. [PMID: 30837708 DOI: 10.1038/s41584-019-0186-x] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Inclusion body myositis (IBM) is often viewed as an enigmatic disease with uncertain pathogenic mechanisms and confusion around diagnosis, classification and prospects for treatment. Its clinical features (finger flexor and quadriceps weakness) and pathological features (invasion of myofibres by cytotoxic T cells) are unique among muscle diseases. Although IBM T cell autoimmunity has long been recognized, enormous attention has been focused for decades on several biomarkers of myofibre protein aggregates, which are present in <1% of myofibres in patients with IBM. This focus has given rise, together with the relative treatment refractoriness of IBM, to a competing view that IBM is not an autoimmune disease. Findings from the past decade that implicate autoimmunity in IBM include the identification of a circulating autoantibody (anti-cN1A); the absence of any statistically significant genetic risk factor other than the common autoimmune disease 8.1 MHC haplotype in whole-genome sequencing studies; the presence of a marked cytotoxic T cell signature in gene expression studies; and the identification in muscle and blood of large populations of clonal highly differentiated cytotoxic CD8+ T cells that are resistant to many immunotherapies. Mounting evidence that IBM is an autoimmune T cell-mediated disease provides hope that future therapies directed towards depleting these cells could be effective.
Collapse
Affiliation(s)
- Steven A Greenberg
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA. .,Children's Hospital Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA. .,Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW To review the advances in our understanding of the genetics of inclusion body myositis (IBM) in the past year. RECENT FINDINGS One large genetic association study focusing on immune-related genes in IBM has refined the association within the human leukocyte antigen (HLA) region to HLA-DRB1 alleles, and identified certain amino acid positions in HLA-DRB1 that may explain this risk. A suggestive association with CCR5 may indicate genetic overlap with other autoimmune diseases. Sequencing studies of candidate genes involved in related neuromuscular or neurodegenerative diseases have identified rare variants in VCP and SQSTM1. Proteomic studies of rimmed vacuoles in IBM and subsequent genetic analyses of candidate genes identified rare missense variants in FYCO1. Complex, large-scale mitochondrial deletions in cytochrome c oxidase-deficient muscle fibres expand our understanding of mitochondrial abnormalities in IBM. SUMMARY The pathogenesis of IBM is likely multifactorial, including inflammatory and degenerative changes, and mitochondrial abnormalities. There has been considerable progress in our understanding of the genetic architecture of IBM, using complementary genetic approaches to investigate these different pathways.
Collapse
Affiliation(s)
- Simon Rothwell
- Centre for Musculoskeletal Research, Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester
| | - James B. Lilleker
- Centre for Musculoskeletal Research, Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester
- Greater Manchester Neurosciences Centre, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Trust, Stott Lane, Salford
| | - Janine A. Lamb
- Centre for Epidemiology, Division of Population Health, Health Services Research and Primary Care, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
6
|
Needham M, Mastaglia F. Advances in inclusion body myositis: genetics, pathogenesis and clinical aspects. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1318056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Rothwell S, Cooper RG, Lundberg IE, Gregersen PK, Hanna MG, Machado PM, Herbert MK, Pruijn GJM, Lilleker JB, Roberts M, Bowes J, Seldin MF, Vencovsky J, Danko K, Limaye V, Selva‐O'Callaghan A, Platt H, Molberg Ø, Benveniste O, Radstake TRDJ, Doria A, De Bleecker J, De Paepe B, Gieger C, Meitinger T, Winkelmann J, Amos CI, Ollier WE, Padyukov L, Lee AT, Lamb JA, Chinoy H, for the Myositis Genetics Consortium. Immune-Array Analysis in Sporadic Inclusion Body Myositis Reveals HLA-DRB1 Amino Acid Heterogeneity Across the Myositis Spectrum. Arthritis Rheumatol 2017; 69:1090-1099. [PMID: 28086002 PMCID: PMC5516174 DOI: 10.1002/art.40045] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/10/2017] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Inclusion body myositis (IBM) is characterized by a combination of inflammatory and degenerative changes affecting muscle. While the primary cause of IBM is unknown, genetic factors may influence disease susceptibility. To determine genetic factors contributing to the etiology of IBM, we conducted the largest genetic association study of the disease to date, investigating immune-related genes using the Immunochip. METHODS A total of 252 Caucasian patients with IBM were recruited from 11 countries through the Myositis Genetics Consortium and compared with 1,008 ethnically matched controls. Classic HLA alleles and amino acids were imputed using SNP2HLA. RESULTS The HLA region was confirmed as the most strongly associated region in IBM (P = 3.58 × 10-33 ). HLA imputation identified 3 independent associations (with HLA-DRB1*03:01, DRB1*01:01, and DRB1*13:01), although the strongest association was with amino acid positions 26 and 11 of the HLA-DRB1 molecule. No association with anti-cytosolic 5'-nucleotidase 1A-positive status was found independent of HLA-DRB1*03:01. There was no association of HLA genotypes with age at onset of IBM. Three non-HLA regions reached suggestive significance, including the chromosome 3 p21.31 region, an established risk locus for autoimmune disease, where a frameshift mutation in CCR5 is thought to be the causal variant. CONCLUSION This is the largest, most comprehensive genetic association study to date in IBM. The data confirm that HLA is the most strongly associated region and identifies novel amino acid associations that may explain the risk in this locus. These amino acid associations differentiate IBM from polymyositis and dermatomyositis and may determine properties of the peptide-binding groove, allowing it to preferentially bind autoantigenic peptides. A novel suggestive association within the chromosome 3 p21.31 region suggests a role for CCR5.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Megan K. Herbert
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, and Radboud University NijmegenNijmegenThe Netherlands
| | | | - James B. Lilleker
- University of Manchester, Manchester, UK, and Salford Royal NHS Foundation TrustSalfordUK
| | | | | | | | | | | | - Vidya Limaye
- Royal Adelaide Hospital, AdelaideSouth AustraliaAustralia
| | | | | | | | | | | | | | | | | | | | - Thomas Meitinger
- Technische Universität München, Munich, Germany, and Helmholtz Zentrum MünchenNeuherbergGermany
| | - Juliane Winkelmann
- Technische Universität München, Munich, Germany, and Helmholtz Zentrum MünchenNeuherbergGermany
| | | | | | | | - Annette T. Lee
- Feinstein Institute for Medical ResearchManhassetNew York
| | | | - Hector Chinoy
- Central Manchester University Hospitals NHS Foundation Trust, University of ManchesterManchesterUK
| | | |
Collapse
|
8
|
Johari M, Arumilli M, Palmio J, Savarese M, Tasca G, Mirabella M, Sandholm N, Lohi H, Hackman P, Udd B. Association study reveals novel risk loci for sporadic inclusion body myositis. Eur J Neurol 2017; 24:572-577. [PMID: 28233382 DOI: 10.1111/ene.13244] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/04/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE The aim was to identify potential genetic risk factors associated with sporadic inclusion body myositis (sIBM). METHODS An association based case-control approach was utilized on whole exome sequencing data of 30 Finnish sIBM patients and a control cohort (n = 193). A separate Italian cohort of sIBM patients (n = 12) was used for evaluation of the results. RESULTS Seven single nucleotide polymorphisms were identified in five genes that have a considerably higher observed frequency in Finnish sIBM patients compared to the control population, and the previous association of the genetic human leukocyte antigen region was confirmed. CONCLUSIONS All seven identified variants could individually or in combination increase the susceptibility for sIBM.
Collapse
Affiliation(s)
- M Johari
- Folkhälsan Institute of Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - M Arumilli
- Folkhälsan Institute of Genetics, Medicum, University of Helsinki, Helsinki, Finland.,Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland.,Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - J Palmio
- Neuromuscular Research Center, Tampere University and University Hospital, Tampere, Finland
| | - M Savarese
- Folkhälsan Institute of Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - G Tasca
- Institute of Neurology, Policlinico 'A. Gemelli' Foundation University Hospital, Rome, Italy
| | - M Mirabella
- Institute of Neurology, Catholic University School of Medicine, Rome, Italy
| | - N Sandholm
- Folkhälsan Institute of Genetics, Medicum, University of Helsinki, Helsinki, Finland.,Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - H Lohi
- Folkhälsan Institute of Genetics, Medicum, University of Helsinki, Helsinki, Finland.,Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland.,Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - P Hackman
- Folkhälsan Institute of Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - B Udd
- Folkhälsan Institute of Genetics, Medicum, University of Helsinki, Helsinki, Finland.,Neuromuscular Research Center, Tampere University and University Hospital, Tampere, Finland.,Department of Neurology, Vaasa Central Hospital, Vaasa, Finland
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW To describe recent developments in the genetics of sporadic inclusion body myositis (sIBM). RECENT FINDINGS Genes located within major histocompatibility complex regions remain the strongest genetic association with sIBM. The rs10527454 polymorphism in the TOMM40 gene seems to have a disease modifying effect on sIBM by delaying the onset of symptoms, and this effect may be enhanced by the APOE ε3/ε3 genotype. Rare variants in the VCP and SQSTM1 genes have been identified in sIBM patients in two studies using targeted next-generation sequencing and whole-exome sequencing. Two studies have confirmed the correlation between the amount of cytochrome c oxidase -deficient fibres and the proportion of mitochondrial DNA (mtDNA) deletions in sIBM. Some rare variants in mtDNA-related nuclear genes have also been reported. SUMMARY There have been advances in the genetics of sIBM over the past 2 years facilitated by the use of next-generation sequencing. Genes that cause hereditary IBM, which has clinical or pathological features resembling sIBM, have provided clues to the genetic basis of sIBM. To date, genes located in major histocompatibility complex regions and genes involved in protein homeostasis or mtDNA maintenance have been implicated in sIBM. Whole-exome sequencing-association studies, RNA sequencing, and whole-genome sequencing in large sIBM cohorts will be key tools to unravel the genetics of sIBM and its contribution to disease aetiopathogenesis.
Collapse
|
10
|
Needham M, Mastaglia FL. Sporadic inclusion body myositis: A review of recent clinical advances and current approaches to diagnosis and treatment. Clin Neurophysiol 2015; 127:1764-73. [PMID: 26778717 DOI: 10.1016/j.clinph.2015.12.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/08/2015] [Accepted: 12/13/2015] [Indexed: 01/01/2023]
Abstract
Sporadic inclusion body myositis is the most frequent acquired myopathy of middle and later life and is distinguished from other inflammatory myopathies by its selective pattern of muscle involvement and slowly progressive course, and by the combination of inflammatory and degenerative muscle pathology and multi-protein deposits in muscle tissue. This review summarises the findings of recent studies that provide a more complete picture of the clinical phenotype and natural history of the disease and its global prevalence and genetic predisposition. Current diagnostic criteria, including the role of electrophysiological and muscle imaging studies and the recently identified anti-5'-nucleotidase (anti-cN1A) antibody in diagnosis are also discussed as well as current trends in the treatment of the disease.
Collapse
Affiliation(s)
- Merrilee Needham
- Institute for Immunology and Infectious Diseases, Murdoch University, Western Australia, Australia; Fiona Stanley Hospital, Murdoch, Western Australia, Australia; Notre Dame University, Fremantle, Western Australia, Australia.
| | - Frank L Mastaglia
- Institute for Immunology and Infectious Diseases, Murdoch University, Western Australia, Australia
| |
Collapse
|
11
|
Abstract
Sporadic inclusion body myositis is the most common inflammatory muscle disorder preferentially affecting males over the age of 40 years. Progressive muscle weakness of the finger flexors and quadriceps muscles results in loss of independence with activities of daily living and eventual wheelchair dependence. Initial signs of disease are often overlooked and can lead to mis- or delayed diagnosis. The underlying cause of disease is unknown, and disease progression appears refractory to available treatment options. This review discusses the clinical presentation of inclusion body myositis and the current efforts in diagnosis, and focuses on the current state of research for both nonpharmacological and pharmacological treatment options for this patient group.
Collapse
Affiliation(s)
- Lindsay N Alfano
- Nationwide Children's Hospital, Center for Gene Therapy, Columbus, OH, USA
| | - Linda P Lowes
- Nationwide Children's Hospital, Center for Gene Therapy, Columbus, OH, USA
| |
Collapse
|
12
|
Findlay AR, Goyal NA, Mozaffar T. An overview of polymyositis and dermatomyositis. Muscle Nerve 2015; 51:638-56. [PMID: 25641317 DOI: 10.1002/mus.24566] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2015] [Indexed: 12/23/2022]
Abstract
Polymyositis and dermatomyositis are inflammatory myopathies that differ in their clinical features, histopathology, response to treatment, and prognosis. Although their clinical pictures differ, they both present with symmetrical, proximal muscle weakness. Treatment relies mainly upon empirical use of corticosteroids and immunosuppressive agents. A deeper understanding of the molecular pathways that drive pathogenesis, careful phenotyping, and accurate disease classification will aid clinical research and development of more efficacious treatments. In this review we address the current knowledge of the epidemiology, clinical characteristics, diagnostic evaluation, classification, pathogenesis, treatment, and prognosis of polymyositis and dermatomyositis.
Collapse
Affiliation(s)
- Andrew R Findlay
- Department of Neurology, University of California, Irvine UC Irvine, MDA ALS and Neuromuscular Center, 200 South Manchester Avenue, Suite 110, Orange, California, 92868, USA
| | | | | |
Collapse
|
13
|
Murnyák B, Bodoki L, Vincze M, Griger Z, Csonka T, Szepesi R, Kurucz A, Dankó K, Hortobágyi T. Inclusion body myositis - pathomechanism and lessons from genetics. Open Med (Wars) 2015; 10:188-193. [PMID: 28352694 PMCID: PMC5152972 DOI: 10.1515/med-2015-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 01/30/2015] [Indexed: 11/26/2022] Open
Abstract
Inclusion body myositis is a rare, late-onset myopathy. Both inflammatory and myodegenerative features play an important role in their pathogenesis. Overlapping clinicopathological entities are the familial inclusion body myopathies with or without dementia. These myopathies share several clinical and pathological features with the sporadic inflammatory disease. Therefore, better understanding of the genetic basis and pathomechanism of these rare familial cases may advance our knowledge and enable more effective treatment options in sporadic IBM, which is currently considered a relentlessly progressive incurable disease.
Collapse
Affiliation(s)
| | - Levente Bodoki
- Institute of Internal Medicine, Third Department of Internal Medicine, Division of Clinical Immunology
| | - Melinda Vincze
- Institute of Internal Medicine, Third Department of Internal Medicine, Division of Clinical Immunology
| | - Zoltán Griger
- Institute of Internal Medicine, Third Department of Internal Medicine, Division of Clinical Immunology
| | - Tamás Csonka
- Division of Neuropathology, Institute of Pathology
| | - Rita Szepesi
- Department of Neurology, University of Debrecen, Faculty of Medicine, Debrecen, Hungary
| | | | - Katalin Dankó
- Institute of Internal Medicine, Third Department of Internal Medicine, Division of Clinical Immunology
| | - Tibor Hortobágyi
- University of Debrecen, Faculty of Medicine, Institute of Pathology, Division of Neuropathology, 4032 Debrecen, Nagyerdei krt. 98. Tel.: + 36 52 255-248
| |
Collapse
|
14
|
Mastaglia FL, Needham M. Inclusion body myositis: a review of clinical and genetic aspects, diagnostic criteria and therapeutic approaches. J Clin Neurosci 2014; 22:6-13. [PMID: 25510538 DOI: 10.1016/j.jocn.2014.09.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 09/14/2014] [Indexed: 10/24/2022]
Abstract
Inclusion body myositis is the most common myopathy in patients over the age of 40 years encountered in neurological practice. Although it is usually sporadic, there is increasing awareness of the influence of genetic factors on disease susceptibility and clinical phenotype. The diagnosis is based on recognition of the distinctive pattern of muscle involvement and temporal profile of the disease, and the combination of inflammatory and myodegenerative changes and protein deposits in the muscle biopsy. The diagnostic importance of immunohistochemical staining for major histocompatibility complex I and II antigens, for the p62 protein, and of the recently identified anti-cN1A autoantibody in the serum, are discussed. The condition is generally poorly responsive to conventional immune therapies but there have been relatively few randomised controlled trials and most of these have been under-powered and of short duration. There is an urgent need for further well-designed multicentre trials of existing and novel therapies that may alter the natural history of the disease.
Collapse
Affiliation(s)
- Frank L Mastaglia
- Institute of Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia; Western Australian Neuroscience Research Institute, Queen Elizabeth II Medical Centre, Verdun Street, Nedlands, WA 6009, Australia.
| | - Merrilee Needham
- Institute of Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia; Western Australian Neuroscience Research Institute, Queen Elizabeth II Medical Centre, Verdun Street, Nedlands, WA 6009, Australia
| |
Collapse
|
15
|
Rider LG, Dankó K, Miller FW. Myositis registries and biorepositories: powerful tools to advance clinical, epidemiologic and pathogenic research. Curr Opin Rheumatol 2014; 26:724-41. [PMID: 25225838 PMCID: PMC5081267 DOI: 10.1097/bor.0000000000000119] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Clinical registries and biorepositories have proven extremely useful in many studies of diseases, especially rare diseases. Given their rarity and diversity, the idiopathic inflammatory myopathies, or myositis syndromes, have benefited from individual researchers' collections of cohorts of patients. Major efforts are being made to establish large registries and biorepositories that will allow many additional studies to be performed that were not possible before. Here, we describe the registries developed by investigators and patient support groups that are currently available for collaborative research purposes. RECENT FINDINGS We have identified 46 myositis research registries, including many with biorepositories, which have been developed for a wide variety of purposes and have resulted in great advances in understanding the range of phenotypes, clinical presentations, risk factors, pathogenic mechanisms, outcome assessment, therapeutic responses, and prognoses. These are now available for collaborative use to undertake additional studies. Two myositis patient registries have been developed for research, and myositis patient support groups maintain demographic registries with large numbers of patients available to be contacted for potential research participation. SUMMARY Investigator-initiated myositis research registries and biorepositories have proven extremely useful in understanding many aspects of these rare and diverse autoimmune diseases. These registries and biorepositories, in addition to those developed by myositis patient support groups, deserve continued support to maintain the momentum in this field as they offer major opportunities to improve understanding of the pathogenesis and treatment of these diseases in cost-effective ways.
Collapse
Affiliation(s)
- Lisa G. Rider
- Environmental Autoimmunity Group, Program of Clinical Research, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), DHHS, Bethesda, MD
| | - Katalin Dankó
- Division of Immunology, 3rd Dept. of Internal Medicine, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - Frederick W. Miller
- Environmental Autoimmunity Group, Program of Clinical Research, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), DHHS, Bethesda, MD
| |
Collapse
|
16
|
Gang Q, Bettencourt C, Machado P, Hanna MG, Houlden H. Sporadic inclusion body myositis: the genetic contributions to the pathogenesis. Orphanet J Rare Dis 2014; 9:88. [PMID: 24948216 PMCID: PMC4071018 DOI: 10.1186/1750-1172-9-88] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 06/12/2014] [Indexed: 11/10/2022] Open
Abstract
Sporadic inclusion body myositis (sIBM) is the commonest idiopathic inflammatory muscle disease in people over 50 years old. It is characterized by slowly progressive muscle weakness and atrophy, with typical pathological changes of inflammation, degeneration and mitochondrial abnormality in affected muscle fibres. The cause(s) of sIBM are still unknown, but are considered complex, with the contribution of multiple factors such as environmental triggers, ageing and genetic susceptibility. This review summarizes the current understanding of the genetic contributions to sIBM and provides some insights for future research in this mysterious disease with the advantage of the rapid development of advanced genetic technology. An international sIBM genetic study is ongoing and whole-exome sequencing will be applied in a large cohort of sIBM patients with the aim of unravelling important genetic risk factors for sIBM.
Collapse
Affiliation(s)
- Qiang Gang
- Department of Molecular Neuroscience, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK.
| | | | | | | | | |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW To review the progress that has been made in understanding the genetics of the idiopathic inflammatory myopathies (IIMs) in the past 2 years, with particular focus on polymyositis, dermatomyositis and inclusion body myositis. RECENT FINDINGS Candidate gene studies in the Japanese population have implicated signal transducer and activator of transcription 4 as a risk locus for IIM, and HLA-DRB1 as a risk locus for anti-melanoma differentiation-associated gene 5-positive dermatomyositis. Evidence for gene-environment interactions has been found between HLA-DRB1*03 and smoking as a risk factor for the development of anti-histidyl tRNA synthetase antibodies, and HLA-DRB1*11:01 and statins for the development of anti-hydroxymethyl glutaryl-coenzyme A reductase-positive statin-induced myopathy. The HLA-DRB1*03:01/*01:01 genotype confers the highest disease risk in inclusion body myositis. A recent genome-wide association study has been performed in dermatomyositis. The most significant signals were in the major histocompatibility complex region, with other loci suggesting evidence of genetic overlap with different autoimmune diseases. SUMMARY Recent association and gene-environment interaction studies have increased our knowledge of genetic risk factors for the IIMs. Ongoing international collaborations will facilitate larger and more meaningful genetic studies revealing much about the genetic architecture of these complex diseases.
Collapse
|
18
|
Polymorphism in the TOMM40 gene modifies the risk of developing sporadic inclusion body myositis and the age of onset of symptoms. Neuromuscul Disord 2013; 23:969-74. [DOI: 10.1016/j.nmd.2013.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/28/2013] [Accepted: 09/10/2013] [Indexed: 10/26/2022]
|