1
|
Desu H, Balthazard R, Daigneault A, Da Cal S, Klément W, Yu J, Clénet ML, Margarido C, Levert A, Fantodji C, Tastet O, Girard JM, Duquette P, Prat A, Macaron G, Rousseau MC, Arbour N, Larochelle C. Peripheral blood age-sensitive immune markers in multiple sclerosis: relation to sex, cytomegalovirus status, and treatment. EBioMedicine 2025; 112:105559. [PMID: 39837012 PMCID: PMC11788784 DOI: 10.1016/j.ebiom.2025.105559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/17/2024] [Accepted: 01/06/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Immunosenescence is accelerated by chronic infectious and autoimmune diseases and could contribute to the pathobiology of multiple sclerosis (MS). How MS and disease-modifying therapies (DMTs) impact age-sensitive immune biomarkers is only partially understood. METHODS We analyzed 771 serum samples from 147 healthy controls and 289 people with MS (PwMS) by multiplex immunoassays. We determined cytomegalovirus (CMV) serostatus and collected retrospective clinical information. We performed unsupervised and multivariable analyses. FINDINGS Unsupervised analyses revealed that MS immune profile was characterized by low relative levels of anti-inflammatory/neuroprotective factors IL-4, IL-10, TNF, and β-NGF but high levels of growth factors EGF and bFGF. Serum levels of IL-4, β-NGF, IL-27, BDNF, and leptin were significantly influenced by sex and/or CMV status. IL-4 and β-NGF levels were lower in untreated PwMS compared to controls, while EGF and bFGF levels were influenced by age and markedly elevated in PwMS in multivariable analysis. Samples from treated PwMS, but not untreated PwMS, showed lower levels of BDNF and TNF than controls. Initiation of high efficacy DMTs, but not low efficacy DMTs, was associated with reduced levels of bFGF and EGF. Samples associated with distinct DMTs exhibited specific profiles for age-sensitive immune markers. Finally, lower levels of IL-6, TNF, IL-10, and β-NGF were observed at baseline in PwMS who subsequently experienced clinical failure after DMTs initiation. INTERPRETATION Age, sex, CMV status, and specific DMTs significantly influence levels of age-sensitive immune biomarkers associated with MS and must be considered when investigating inflammation-related biomarkers. FUNDING This work was supported by a Grant for Multiple Sclerosis Innovation by Merck KGaA (ID: 10.12039/100009945).
Collapse
Affiliation(s)
- Haritha Desu
- Department of Neurosciences, Université de Montréal, Montréal, H3T 1J4, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
| | - Renaud Balthazard
- Department of Neurosciences, Université de Montréal, Montréal, H3T 1J4, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
| | - Audrey Daigneault
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
| | - Sandra Da Cal
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
| | - Wendy Klément
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
| | - Jennifer Yu
- Armand-Frappier Santé Biotechnologie Research Centre, Institut National de la Recherche Scientifique (INRS), Laval, H7V 1B7, Canada
| | - Marie-Laure Clénet
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
| | - Clara Margarido
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
| | - Annie Levert
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
| | - Canisius Fantodji
- Armand-Frappier Santé Biotechnologie Research Centre, Institut National de la Recherche Scientifique (INRS), Laval, H7V 1B7, Canada
| | - Olivier Tastet
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
| | - Jean-Marc Girard
- Department of Neurosciences, Université de Montréal, Montréal, H3T 1J4, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada; Multiple Sclerosis Clinic of the Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, H2X 0C1, Canada
| | - Pierre Duquette
- Department of Neurosciences, Université de Montréal, Montréal, H3T 1J4, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada; Multiple Sclerosis Clinic of the Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, H2X 0C1, Canada
| | - Alexandre Prat
- Department of Neurosciences, Université de Montréal, Montréal, H3T 1J4, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada; Multiple Sclerosis Clinic of the Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, H2X 0C1, Canada
| | - Gabrielle Macaron
- Department of Neurosciences, Université de Montréal, Montréal, H3T 1J4, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada; Multiple Sclerosis Clinic of the Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, H2X 0C1, Canada
| | - Marie-Claude Rousseau
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada; Armand-Frappier Santé Biotechnologie Research Centre, Institut National de la Recherche Scientifique (INRS), Laval, H7V 1B7, Canada; School of Public Health, Université de Montréal, Montreal, H3N 1X9, Canada
| | - Nathalie Arbour
- Department of Neurosciences, Université de Montréal, Montréal, H3T 1J4, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada.
| | - Catherine Larochelle
- Department of Neurosciences, Université de Montréal, Montréal, H3T 1J4, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada; Multiple Sclerosis Clinic of the Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, H2X 0C1, Canada.
| |
Collapse
|
2
|
Gill K, Yoo HS, Chakravarthy H, Granville DJ, Matsubara JA. Exploring the role of granzyme B in subretinal fibrosis of age-related macular degeneration. Front Immunol 2024; 15:1421175. [PMID: 39091492 PMCID: PMC11291352 DOI: 10.3389/fimmu.2024.1421175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
Age-related macular degeneration (AMD), a prevalent and progressive degenerative disease of the macula, is the leading cause of blindness in elderly individuals in developed countries. The advanced stages include neovascular AMD (nAMD), characterized by choroidal neovascularization (CNV), leading to subretinal fibrosis and permanent vision loss. Despite the efficacy of anti-vascular endothelial growth factor (VEGF) therapy in stabilizing or improving vision in nAMD, the development of subretinal fibrosis following CNV remains a significant concern. In this review, we explore multifaceted aspects of subretinal fibrosis in nAMD, focusing on its clinical manifestations, risk factors, and underlying pathophysiology. We also outline the potential sources of myofibroblast precursors and inflammatory mechanisms underlying their recruitment and transdifferentiation. Special attention is given to the potential role of mast cells in CNV and subretinal fibrosis, with a focus on putative mast cell mediators, tryptase and granzyme B. We summarize our findings on the role of GzmB in CNV and speculate how GzmB may be involved in the pathological transition from CNV to subretinal fibrosis in nAMD. Finally, we discuss the advantages and drawbacks of animal models of subretinal fibrosis and pinpoint potential therapeutic targets for subretinal fibrosis.
Collapse
Affiliation(s)
- Karanvir Gill
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Hyung-Suk Yoo
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Harshini Chakravarthy
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
| | - David J. Granville
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Joanne A. Matsubara
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
| |
Collapse
|
3
|
Fu CC, Gao C, Zhang HH, Mao YQ, Lu JQ, Petritis B, Huang AS, Yang XG, Long YM, Huang RP. Serum molecular biomarkers in neuromyelitis optica and multiple sclerosis. Mult Scler Relat Disord 2022; 59:103527. [DOI: 10.1016/j.msard.2022.103527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 12/18/2022]
|
4
|
Wu Q, Wang Q, Yang J, Martens JW, Mills EA, Saad A, Chilukuri P, Dowling CA, Mao-Draayer Y. Elevated sCD40L in Secondary Progressive Multiple Sclerosis in Comparison to Non-progressive Benign and Relapsing Remitting Multiple Sclerosis. J Cent Nerv Syst Dis 2021; 13:11795735211050712. [PMID: 34720605 PMCID: PMC8552403 DOI: 10.1177/11795735211050712] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/03/2021] [Indexed: 01/01/2023] Open
Abstract
Background The long-term prognosis of relapsing-remitting multiple sclerosis (RRMS) is usually unfavorable as most patients transition to secondary progressive multiple sclerosis (SPMS) with accumulative disability. A rare form of non-progressive multiple sclerosis (MS) also exists, known as benign MS (BMS or NPMS), which lacks disease progression defined as Expanded Disability Status Scale (EDSS) ≤3 after 15 years of disease onset without treatment. Purpose Our study aims to identify soluble plasma factors predicting disease progression in multiple sclerosis (MS). Research Design and Study Sample We utilized Luminex multiplex to analyze plasma levels of 33 soluble factors, comparing 32 SPMS patients to age-, sex-, and disease duration-matched non-progressive BMS patients, as well as to RRMS patients and healthy controls. Results Plasma levels of EGF, sCD40L, MCP1/CCL2, fractalkine/CX3CL1, IL-13, Eotaxin, TNFβ/LTα, and IL-12p40 were significantly different between the various types of MS. Plasma sCD40L was significantly elevated in SPMS compared to BMS and RRMS. The combination of MCP1/CCL2 and sCD40L discriminated between RRMS and SPMS. MCP1/CCL2 was found to be the most effective classifier between BMS and RRMS, while BMS was most effectively distinguished from SPMS by the combination of sCD40L and IFNγ levels. Conclusions These differences may facilitate personalized precision medicine and aid in the discovery of new therapeutic targets for disease progression through the improvement of patient stratification.
Collapse
Affiliation(s)
- Qi Wu
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA.,Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Qin Wang
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA.,Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jennifer Yang
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA.,Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jacob Ws Martens
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA.,Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI, USA.,Graduate Program in Immunology, Program in Biomedical Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Elizabeth A Mills
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA.,Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Aiya Saad
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA.,Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Pavani Chilukuri
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA.,Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Catherine A Dowling
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA.,Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yang Mao-Draayer
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA.,Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI, USA.,Graduate Program in Immunology, Program in Biomedical Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
5
|
Al-Ani M, Elemam NM, Hachim IY, Raju TK, Muhammad JS, Hachim MY, Bendardaf R, Maghazachi AA. Molecular Examination of Differentially Expressed Genes in the Brains of Experimental Autoimmune Encephalomyelitis Mice Post Herceptin Treatment. J Inflamm Res 2021; 14:2601-2617. [PMID: 34168483 PMCID: PMC8216756 DOI: 10.2147/jir.s310535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/22/2021] [Indexed: 11/23/2022] Open
Abstract
Objective Herceptin (trastuzumab) is an approved drug for treating HER2+ breast cancer patients, but its use for other diseases is not established. We sought to investigate the effects of Herceptin on ameliorating experimental autoimmune encephalomyelitis (EAE) and to examine its effects on the expression of various genes. Methods We used in-silico analysis of publicly available data, qRT-PCR, and immunohistochemistry (IHC) to determine the expression of HER2+ cells in the brains of EAE mice. IHC was also utilized to determine the anti-inflammatory effects of Herceptin. The ability of Herceptin to alleviate the EAE clinical score was measured in these mice. Bioinformatics analysis of publicly available data and qRT-PCR were performed to investigate the differentially expressed genes that were either up-regulated or down-regulated during the high clinical score (HCS) of the disease. Results We observed that HER2/Erbb2, the receptor for Herceptin is upregulated in the brains of EAE mice when the brains were examined at the HCS stage. Further, we demonstrated that Herceptin ameliorates the EAE disease, increasing re-myelination, reducing brain inflammation, CD3+ T cell accumulation, and HER2+ cells in the brains of these mice. Molecular analysis demonstrated the expression of different genes that were either up-regulated or down-regulated during the HCS of the disease. Our combined bioinformatics and qRT-PCR analyses show increased mRNA expression of Atp6v0d2, C3, C3ar1, Ccl3, Ccl6, Cd74, Clec7a, Cybb, H2-Aa, Hspb1, Lilr4b, Lilrb4a, Mpeg1, Ms4a4a, Ms4a6c, Saa3, Serpina3n and Timp1, at HCS. Except for the mRNA levels of Cd74 and Clec7a which were increased at HCS when Herceptin was used in both prophylactic and therapeutic regimens, the levels of other described mRNAs were reduced. Conclusion These novel findings show that Herceptin ameliorates the clinical score in EAE mice and are the first to investigate in detail the differential gene expression post-treatment with the drug.
Collapse
Affiliation(s)
- Mena Al-Ani
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,The Immuno-Oncology Group, Sharjah Institute for Medical Research (SIMR), University of Sharjah, Sharjah, United Arab Emirates
| | - Noha Mousaad Elemam
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,The Immuno-Oncology Group, Sharjah Institute for Medical Research (SIMR), University of Sharjah, Sharjah, United Arab Emirates
| | - Ibrahim Y Hachim
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Tom K Raju
- The Immuno-Oncology Group, Sharjah Institute for Medical Research (SIMR), University of Sharjah, Sharjah, United Arab Emirates
| | - Jibran Sualeh Muhammad
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,The Immuno-Oncology Group, Sharjah Institute for Medical Research (SIMR), University of Sharjah, Sharjah, United Arab Emirates
| | - Mahmood Y Hachim
- College of Medicine, Mohammed bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Riyad Bendardaf
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,University Hospital Sharjah, Sharjah, United Arab Emirates
| | - Azzam A Maghazachi
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,The Immuno-Oncology Group, Sharjah Institute for Medical Research (SIMR), University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
6
|
Treatment with Anti-EGF Ab Ameliorates Experimental Autoimmune Encephalomyelitis via Induction of Neurogenesis and Oligodendrogenesis. Mult Scler Int 2014; 2014:926134. [PMID: 25610650 PMCID: PMC4295609 DOI: 10.1155/2014/926134] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/11/2014] [Accepted: 12/12/2014] [Indexed: 01/15/2023] Open
Abstract
Background. The neural stem cells (NSCs) migrate to the damaged sites in multiple sclerosis (MS) and in experimental autoimmune encephalomyelitis (EAE). However, the differentiation into neurons or oligodendrocytes is blocked. Epidermal growth factor (EGF) stimulates NSC proliferation and mobilization to demyelinated lesions but also induces astrogenesis and glial scar. Objective. To examine the clinical and histopathological effects of EGF neutralization on EAE. Methods. EAE-induced SJL mice were intravenously treated with either anti-EGF neutralizing antibody (Ab) or isotype control or PBS. On day 9 after immunization, 3 mice of each group were daily treated for 9 days with BrdU and then sacrificed for immunohistochemical analysis. Results. Treatment with anti-EGF Ab significantly ameliorated EAE symptoms during the second relapse. Anti-EGF Ab induced a shift from BrdU+GFAP+ NSCs to BrdU+DCX+ neuroblasts in the subventricular zone (SVZ), increased BrdU+NeuN+ neurons in the granular cell layer of the dentate gyrus, and increased BrdU+O4+ oligodendrocytes in the SVZ. There was no change in the inflammatory infiltrates in response to anti-EGF Ab. Conclusions. Therapy with anti-EGF Ab ameliorates EAE via induction of neurogenesis and oligodendrogenesis. No immunosuppressive effect was found. Further investigation is needed to support these notions of beneficial effect of anti-EGF Ab in MS.
Collapse
|
7
|
Angiogenesis in multiple sclerosis and experimental autoimmune encephalomyelitis. Acta Neuropathol Commun 2014; 2:84. [PMID: 25047180 PMCID: PMC4149233 DOI: 10.1186/s40478-014-0084-z] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/09/2014] [Indexed: 02/07/2023] Open
Abstract
Angiogenesis, the formation of new vessels, is found in Multiple Sclerosis (MS) demyelinating lesions following Vascular Endothelial Growth Factor (VEGF) release and the production of several other angiogenic molecules. The increased energy demand of inflammatory cuffs and damaged neural cells explains the strong angiogenic response in plaques and surrounding white matter. An angiogenic response has also been documented in an experimental model of MS, experimental allergic encephalomyelitis (EAE), where blood–brain barrier disruption and vascular remodelling appeared in a pre-symptomatic disease phase. In both MS and EAE, VEGF acts as a pro-inflammatory factor in the early phase but its reduced responsivity in the late phase can disrupt neuroregenerative attempts, since VEGF naturally enhances neuron resistance to injury and regulates neural progenitor proliferation, migration, differentiation and oligodendrocyte precursor cell (OPC) survival and migration to demyelinated lesions. Angiogenesis, neurogenesis and oligodendroglia maturation are closely intertwined in the neurovascular niches of the subventricular zone, one of the preferential locations of inflammatory lesions in MS, and in all the other temporary vascular niches where the mutual fostering of angiogenesis and OPC maturation occurs. Angiogenesis, induced either by CNS inflammation or by hypoxic stimuli related to neurovascular uncoupling, appears to be ineffective in chronic MS due to a counterbalancing effect of vasoconstrictive mechanisms determined by the reduced axonal activity, astrocyte dysfunction, microglia secretion of free radical species and mitochondrial abnormalities. Thus, angiogenesis, that supplies several trophic factors, should be promoted in therapeutic neuroregeneration efforts to combat the progressive, degenerative phase of MS.
Collapse
|