1
|
Wagner M, Sobczyński M, Wiśniewski A, Matusiak Ł, Kuśnierczyk P, Jasek M. Polymorphisms in the CD6-ALCAM axis may modulate psoriasis risk and outcomes. Hum Immunol 2024; 85:110797. [PMID: 38580538 DOI: 10.1016/j.humimm.2024.110797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/15/2024] [Accepted: 03/27/2024] [Indexed: 04/07/2024]
Abstract
The fact that CD6, along with its ligand - ALCAM, plays a role in regulating T cell activation makes the genes encoding these molecules promising candidates for research in T cell-mediated diseases such as psoriasis vulgaris (PsV). Our study aimed to determine whether CD6 (rs17824933C>G, rs11230563C>T and rs12360861G>A) and ALCAM (rs6437585C>T, rs11559013G>A) polymorphisms may affect psoriasis susceptibility and severity (assessed by Psoriasis Area and Severity Index (PASI)). Moreover, the presence of HLA-C*06:02, the strongest psoriasis risk factor in the Caucasian population, was also investigated. 273 patients diagnosed with psoriasis vulgaris and 256 blood donors with no history of PsV or other dermatoses were included in this study. Genotyping of the investigated polymorphisms was carried out using the allelic discrimination method with the application of TaqMan SNP Genotyping Assays. We observed the association of rs17824933G allele with a higher psoriasis risk in HLA-C*06:02(+) individuals (CG + GG vs CC, OR = 1.87, CI95% = 1.03; 3.37, p = 0.0350). Furthermore, we found a difference in average PASI score among groups of patients divided according to the number of CD6 and ALCAM polymorphic sites with minor alleles (F2,173 = 6.159, p = 0.0026). Collectively, our findings suggest that polymorphisms of CD6-ALCAM axis genes may modulate psoriasis risk and outcomes.
Collapse
Affiliation(s)
- Marta Wagner
- Laboratory of Genetics and Epigenetics of Human Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.
| | - Maciej Sobczyński
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland.
| | - Andrzej Wiśniewski
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.
| | - Łukasz Matusiak
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Wrocław, Poland.
| | - Piotr Kuśnierczyk
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.
| | - Monika Jasek
- Laboratory of Genetics and Epigenetics of Human Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.
| |
Collapse
|
2
|
Casadó-Llombart S, Velasco-de Andrés M, Català C, Leyton-Pereira A, Gutiérrez-Cózar R, Suárez B, Armiger N, Carreras E, Esteller M, Ricart E, Ordás I, Gisbert JP, Chaparro M, Esteve M, Márquez L, Busquets D, Iglesias E, García-Planella E, Martín-Arranz MD, Lohmann J, Ayata CK, Niess JH, Engel P, Panés J, Salas A, Domènech E, Lozano F, ENEIDA Project of GETECCU LucendoAlfredo J.GuardiolaJordiCalvetXavierOlivá́nLorenzoPiquerasMarta. Experimental and genetic evidence for the impact of CD5 and CD6 expression and variation in inflammatory bowel disease. Front Immunol 2022; 13:966184. [PMID: 36211446 PMCID: PMC9532939 DOI: 10.3389/fimmu.2022.966184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/31/2022] [Indexed: 11/20/2022] Open
Abstract
Crohn’s disease (CD) and ulcerative colitis (UC) are inflammatory bowel diseases (IBD) resulting from the interaction of multiple environmental, genetic and immunological factors. CD5 and CD6 are paralogs encoding lymphocyte co-receptors involved in fine-tuning intracellular signals delivered upon antigen-specific recognition, microbial pattern recognition and cell adhesion. While CD5 and CD6 expression and variation is known to influence some immune-mediated inflammatory disorders, their role in IBD remains unclear. To this end, Cd5- and Cd6-deficient mice were subjected to dextran sulfate sodium (DSS)-induced colitis, the most widely used experimental animal model of IBD. The two mouse lines showed opposite results regarding body weight loss and disease activity index (DAI) changes following DSS-induced colitis, thus supporting Cd5 and Cd6 expression involvement in the pathophysiology of this experimental IBD model. Furthermore, DNA samples from IBD patients of the ENEIDA registry were used to test association of CD5 (rs2241002 and rs2229177) and CD6 (rs17824933, rs11230563, and rs12360861) single nucleotide polymorphisms with susceptibility and clinical parameters of CD (n=1352) and UC (n=1013). Generalized linear regression analyses showed association of CD5 variation with CD ileal location (rs2241002CC) and requirement of biological therapies (rs2241002C-rs2229177T haplotype), and with poor UC prognosis (rs2241002T-rs2229177T haplotype). Regarding CD6, association was observed with CD ileal location (rs17824933G) and poor prognosis (rs12360861G), and with left-sided or extensive UC, and absence of ankylosing spondylitis in IBD (rs17824933G). The present experimental and genetic evidence support a role for CD5 and CD6 expression and variation in IBD’s clinical manifestations and therapeutic requirements, providing insight into its pathophysiology and broadening the relevance of both immunomodulatory receptors in immune-mediated disorders.
Collapse
Affiliation(s)
- Sergi Casadó-Llombart
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - María Velasco-de Andrés
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Cristina Català
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Alejandra Leyton-Pereira
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Rebeca Gutiérrez-Cózar
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Belén Suárez
- Servei d’Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Noelia Armiger
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Esther Carreras
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Miriam Esteller
- Inflammatory Bowel Disease Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Inflammatory Bowel Disease Unit, Gastroenterology Department, Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Elena Ricart
- Inflammatory Bowel Disease Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Inflammatory Bowel Disease Unit, Gastroenterology Department, Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Ingrid Ordás
- Inflammatory Bowel Disease Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Inflammatory Bowel Disease Unit, Gastroenterology Department, Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Javier P. Gisbert
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Gastroenterology Unit, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - María Chaparro
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Gastroenterology Unit, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - María Esteve
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Gastroenterology Department, Hospital Universitari Mútua Terrassa, Terrassa, Spain
| | - Lucía Márquez
- Gastroenterology Department, Hospital del Mar and Institut Hospital del Mar Investigacions Mèdiques, Barcelona, Spain
| | - David Busquets
- Department of Gastroenterology, Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain
| | - Eva Iglesias
- Department of Gastroenterology, Hospital Universitario Reina Sofía, Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | | | - María Dolores Martín-Arranz
- Department of Gastroenterology, and Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Juliane Lohmann
- Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - C. Korcan Ayata
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Jan Hendrik Niess
- Department of Biomedicine, University of Basel, Basel, Switzerland
- University Center for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital, Basel, Switzerland
| | - Pablo Engel
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Julián Panés
- Inflammatory Bowel Disease Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Inflammatory Bowel Disease Unit, Gastroenterology Department, Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Azucena Salas
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
- Inflammatory Bowel Disease Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Eugeni Domènech
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Gastroenterology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Francisco Lozano
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
- Servei d’Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Barcelona, Spain
- *Correspondence: Francisco Lozano,
| | | |
Collapse
|
3
|
Bierhansl L, Hartung HP, Aktas O, Ruck T, Roden M, Meuth SG. Thinking outside the box: non-canonical targets in multiple sclerosis. Nat Rev Drug Discov 2022; 21:578-600. [PMID: 35668103 PMCID: PMC9169033 DOI: 10.1038/s41573-022-00477-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2022] [Indexed: 12/11/2022]
Abstract
Multiple sclerosis (MS) is an immune-mediated disease of the central nervous system that causes demyelination, axonal degeneration and astrogliosis, resulting in progressive neurological disability. Fuelled by an evolving understanding of MS immunopathogenesis, the range of available immunotherapies for clinical use has expanded over the past two decades. However, MS remains an incurable disease and even targeted immunotherapies often fail to control insidious disease progression, indicating the need for new and exceptional therapeutic options beyond the established immunological landscape. In this Review, we highlight such non-canonical targets in preclinical MS research with a focus on five highly promising areas: oligodendrocytes; the blood-brain barrier; metabolites and cellular metabolism; the coagulation system; and tolerance induction. Recent findings in these areas may guide the field towards novel targets for future therapeutic approaches in MS.
Collapse
Affiliation(s)
- Laura Bierhansl
- Department of Neurology, Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Orhan Aktas
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- German Center of Diabetes Research, Partner Düsseldorf, Neuherberg, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
4
|
Contribution of Evolutionary Selected Immune Gene Polymorphism to Immune-Related Disorders: The Case of Lymphocyte Scavenger Receptors CD5 and CD6. Int J Mol Sci 2021; 22:ijms22105315. [PMID: 34070159 PMCID: PMC8158487 DOI: 10.3390/ijms22105315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 01/23/2023] Open
Abstract
Pathogens are one of the main selective pressures that ancestral humans had to adapt to. Components of the immune response system have been preferential targets of natural selection in response to such pathogen-driven pressure. In turn, there is compelling evidence showing that positively selected immune gene variants conferring increased resistance to past or present infectious agents are today associated with increased risk for autoimmune or inflammatory disorders but decreased risk of cancer, the other side of the same coin. CD5 and CD6 are lymphocytic scavenger receptors at the interphase of the innate and adaptive immune responses since they are involved in both: (i) microbial-associated pattern recognition; and (ii) modulation of intracellular signals mediated by the clonotypic antigen-specific receptor present in T and B cells (TCR and BCR, respectively). Here, we review available information on CD5 and CD6 as targets of natural selection as well as on the role of CD5 and CD6 variation in autoimmunity and cancer.
Collapse
|
5
|
Stefanović M, Životić I, Stojković L, Dinčić E, Stanković A, Živković M. The association of genetic variants IL2RA rs2104286, IFI30 rs11554159 and IKZF3 rs12946510 with multiple sclerosis onset and severity in patients from Serbia. J Neuroimmunol 2020; 347:577346. [PMID: 32738499 DOI: 10.1016/j.jneuroim.2020.577346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022]
Abstract
An algorithm Probabilistic Identification of Causal SNPs, identified 434 causal variants for multiple sclerosis (MS) including IL2RA rs2104286, IFI30 rs11554159 and IKZF3 rs12946510. Analysis of individual and combined effects of these variants in the Serbian population identified that Il2RA rs2104286 G allele carriers had a lower risk for developing MS (gender adjusted OR = 0.63, p = .003). With regard to the IFI30 rs11554159 recessive genetic model, among HLA-DRB1*15:01 positive patients, the AA homozygote had a significantly higher MSSS compared to the G allele carriers (p = .003). This study confirms role of IL2RA rs2104286 in MS and suggest the role of IFI30 rs11554159 in disease severity, which needs validation.
Collapse
Affiliation(s)
- Milan Stefanović
- VINČA Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | - Ivan Životić
- VINČA Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | - Ljiljana Stojković
- VINČA Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | - Evica Dinčić
- Military Medical Academy, Clinic for Neurology, Belgrade, Serbia
| | - Aleksandra Stanković
- VINČA Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | - Maja Živković
- VINČA Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
6
|
Michel L, Grasmuck C, Charabati M, Lécuyer MA, Zandee S, Dhaeze T, Alvarez JI, Li R, Larouche S, Bourbonnière L, Moumdjian R, Bouthillier A, Lahav B, Duquette P, Bar-Or A, Gommerman JL, Peelen E, Prat A. Activated leukocyte cell adhesion molecule regulates B lymphocyte migration across central nervous system barriers. Sci Transl Med 2020; 11:11/518/eaaw0475. [PMID: 31723036 DOI: 10.1126/scitranslmed.aaw0475] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 07/10/2019] [Accepted: 10/21/2019] [Indexed: 12/19/2022]
Abstract
The presence of B lymphocyte-associated oligoclonal immunoglobulins in the cerebrospinal fluid is a classic hallmark of multiple sclerosis (MS). The clinical efficacy of anti-CD20 therapies supports a major role for B lymphocytes in MS development. Although activated oligoclonal populations of pathogenic B lymphocytes are able to traffic between the peripheral circulation and the central nervous system (CNS) in patients with MS, molecular players involved in this migration have not yet been elucidated. In this study, we demonstrated that activated leukocyte cell adhesion molecule (ALCAM/CD166) identifies subsets of proinflammatory B lymphocytes and drives their transmigration across different CNS barriers in mouse and human. We also showcased that blocking ALCAM alleviated disease severity in animals affected by a B cell-dependent form of experimental autoimmune encephalomyelitis. Last, we determined that the proportion of ALCAM+ B lymphocytes was increased in the peripheral blood and within brain lesions of patients with MS. Our findings indicate that restricting access to the CNS by targeting ALCAM on pathogenic B lymphocytes might represent a promising strategy for the development of next-generation B lymphocyte-targeting therapies for the treatment of MS.
Collapse
Affiliation(s)
- Laure Michel
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montréal, QC Canada.,Neuroimmunology Unit, Centre de recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada
| | - Camille Grasmuck
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montréal, QC Canada.,Neuroimmunology Unit, Centre de recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada
| | - Marc Charabati
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montréal, QC Canada.,Neuroimmunology Unit, Centre de recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada
| | - Marc-André Lécuyer
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montréal, QC Canada.,Neuroimmunology Unit, Centre de recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada
| | - Stephanie Zandee
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montréal, QC Canada.,Neuroimmunology Unit, Centre de recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada
| | - Tessa Dhaeze
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montréal, QC Canada.,Neuroimmunology Unit, Centre de recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada
| | - Jorge I Alvarez
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montréal, QC Canada.,Neuroimmunology Unit, Centre de recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada
| | - Rui Li
- Center for Neuroinflammation and Experimental Therapeutics and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sandra Larouche
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montréal, QC Canada.,Neuroimmunology Unit, Centre de recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada
| | - Lyne Bourbonnière
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montréal, QC Canada.,Neuroimmunology Unit, Centre de recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada
| | | | | | - Boaz Lahav
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montréal, QC Canada.,Neuroimmunology Unit, Centre de recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada
| | - Pierre Duquette
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montréal, QC Canada.,Neuroimmunology Unit, Centre de recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada
| | - Amit Bar-Or
- Center for Neuroinflammation and Experimental Therapeutics and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Evelyn Peelen
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montréal, QC Canada.,Neuroimmunology Unit, Centre de recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada
| | - Alexandre Prat
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montréal, QC Canada. .,Neuroimmunology Unit, Centre de recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada
| |
Collapse
|
7
|
Lyck R, Lécuyer MA, Abadier M, Wyss CB, Matti C, Rosito M, Enzmann G, Zeis T, Michel L, García Martín AB, Sallusto F, Gosselet F, Deutsch U, Weiner JA, Schaeren-Wiemers N, Prat A, Engelhardt B. ALCAM (CD166) is involved in extravasation of monocytes rather than T cells across the blood-brain barrier. J Cereb Blood Flow Metab 2017; 37:2894-2909. [PMID: 28273717 PMCID: PMC5536797 DOI: 10.1177/0271678x16678639] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Activated leukocyte cell adhesion molecule (ALCAM) has been proposed to mediate leukocyte migration across the blood-brain barrier (BBB) in multiple sclerosis or experimental autoimmune encephalomyelitis (EAE). Here, we confirmed vascular ALCAM expression in human brain tissue samples in situ and on two different human in vitro BBB models. Antibody-mediated inhibition of ALCAM reduced diapedesis of human CD4+ Th1 but not of Th17 cells across the human BBB in vitro. In accordance to human Th1 cells, mouse Th1 cells showed reduced diapedesis across an ALCAM-/- in vitro BBB model under static but no longer under flow conditions. In contrast to the limited role of ALCAM in T cell extravasation across the BBB, we found a contribution of ALCAM to rolling, adhesion, and diapedesis of human CD14+ monocytes across the human BBB under flow and static conditions. Taken together, our study highlights the potential differences in the CNS expression of ALCAM in mouse and human and supports a prominent role for ALCAM in the multi-step extravasation of monocytes across the BBB.
Collapse
Affiliation(s)
- Ruth Lyck
- 1 Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Marc-André Lécuyer
- 2 Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Neuroimmunology Research Laboratory, Montréal, Québec, Canada
| | - Michael Abadier
- 1 Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Christof B Wyss
- 1 Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Christoph Matti
- 1 Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Maria Rosito
- 1 Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Gaby Enzmann
- 1 Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Thomas Zeis
- 3 Neurobiology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Laure Michel
- 2 Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Neuroimmunology Research Laboratory, Montréal, Québec, Canada
| | | | | | | | - Urban Deutsch
- 1 Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Joshua A Weiner
- 6 Departments of Biology and Psychiatry, The University of Iowa, Iowa City, IA, USA
| | - Nicole Schaeren-Wiemers
- 3 Neurobiology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Alexandre Prat
- 2 Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Neuroimmunology Research Laboratory, Montréal, Québec, Canada
| | | |
Collapse
|
8
|
Wagner M, Sobczyński M, Bilińska M, Pokryszko-Dragan A, Cyrul M, Kuśnierczyk P, Jasek M. Preliminary Study on the Role of TMEM39A Gene in Multiple Sclerosis. J Mol Neurosci 2017; 62:181-187. [PMID: 28444502 PMCID: PMC5486520 DOI: 10.1007/s12031-017-0921-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 04/13/2017] [Indexed: 11/29/2022]
Abstract
Genome-wide association studies (GWAS) have identified hundreds of new potential genetic risk loci associated with numerous complex diseases such as multiple sclerosis (MS). Genes which have been discovered by GWAS are now the focus of numerous ongoing studies. The goal of this study was to confirm and understand the potential role of one of such genes—transmembrane protein 39A gene (TMEM39A)—in multiple sclerosis. We showed the difference in TMEM39A messenger RNA (mRNA) expression between MS patients and controls (T22;74 = 5.429; p = 0.0063). In our study, the lower mRNA expression of TMEM39A gene in patients did not correlate with a higher methylation level of the TMEM39A promoter. Moreover, a decreased level of TMEM39A mRNA was associated neither with rs1132200 nor with rs17281647. Additionally, we did not find an association between these two TMEM39A polymorphisms and the risk and progression of multiple sclerosis. Our investigation is the first which indicates that TMEM39A mRNA expression may be associated with the development and/or course of multiple sclerosis.
Collapse
Affiliation(s)
- Marta Wagner
- Department of Clinical Immunology, Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Weigla 12, 53-114, Wrocław, Poland.
| | - Maciej Sobczyński
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, ul. Fryderyka Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Małgorzata Bilińska
- Department and Clinic of Neurology, Wroclaw Medical University, ul. Borowska 213, 50-566, Wrocław, Poland
| | - Anna Pokryszko-Dragan
- Department and Clinic of Neurology, Wroclaw Medical University, ul. Borowska 213, 50-566, Wrocław, Poland
| | - Małgorzata Cyrul
- Department and Clinic of Neurology, Wroclaw Medical University, ul. Borowska 213, 50-566, Wrocław, Poland
| | - Piotr Kuśnierczyk
- Department of Clinical Immunology, Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Weigla 12, 53-114, Wrocław, Poland
| | - Monika Jasek
- Department of Clinical Immunology, Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Weigla 12, 53-114, Wrocław, Poland.
| |
Collapse
|
9
|
Dual role of ALCAM in neuroinflammation and blood-brain barrier homeostasis. Proc Natl Acad Sci U S A 2017; 114:E524-E533. [PMID: 28069965 DOI: 10.1073/pnas.1614336114] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Activated leukocyte cell adhesion molecule (ALCAM) is a cell adhesion molecule found on blood-brain barrier endothelial cells (BBB-ECs) that was previously shown to be involved in leukocyte transmigration across the endothelium. In the present study, we found that ALCAM knockout (KO) mice developed a more severe myelin oligodendrocyte glycoprotein (MOG)35-55-induced experimental autoimmune encephalomyelitis (EAE). The exacerbated disease was associated with a significant increase in the number of CNS-infiltrating proinflammatory leukocytes compared with WT controls. Passive EAE transfer experiments suggested that the pathophysiology observed in active EAE was linked to the absence of ALCAM on BBB-ECs. In addition, phenotypic characterization of unimmunized ALCAM KO mice revealed a reduced expression of BBB junctional proteins. Further in vivo, in vitro, and molecular analysis confirmed that ALCAM is associated with tight junction molecule assembly at the BBB, explaining the increased permeability of CNS blood vessels in ALCAM KO animals. Collectively, our data point to a biologically important function of ALCAM in maintaining BBB integrity.
Collapse
|
10
|
Genetic polymorphisms of cell adhesion molecules in Behcet's disease in a Chinese Han population. Sci Rep 2016; 6:24974. [PMID: 27108704 PMCID: PMC4842956 DOI: 10.1038/srep24974] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 04/08/2016] [Indexed: 12/20/2022] Open
Abstract
Cell adhesion molecules (CAMs) are involved in various immune-mediated diseases. This study was conducted to investigate the association of single nucleotide polymorphisms (SNPs) of CAMs with Behçet’s disease (BD) in a Chinese Han population. A two-stage association study was carried out in 1149 BD patients and 2107 normal controls. Genotyping of 43 SNPs was performed using MassARRAY System (Sequenom), polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and TaqMan SNP assays. The expression of CD6 and CD11c was examined by real-time PCR and cytokine production was measured by ELISA. A significantly higher frequency of the CT genotype, and a lower frequency of the CC genotype and C allele of CD6 rs11230563 were observed in BD as compared with controls. Analysis of CD11c rs2929 showed that patients with BD had a significantly higher frequency of the GG genotype and G allele, and a lower frequency of the AG genotype as compared with controls. Functional experiments showed an increased CD11c expression and increased production of TNF-α and IL-1beta by LPS stimulated PBMCs in GG carriers of CD11c rs2929 compared to AA/AG carriers. Our study provides evidence that CD6 and CD11c are involved in the susceptibility to BD in a Chinese Han population.
Collapse
|
11
|
Wagner M, Sobczyński M, Karabon L, Bilińska M, Pokryszko-Dragan A, Pawlak-Adamska E, Cyrul M, Kuśnierczyk P, Jasek M. Polymorphisms in CD28, CTLA-4, CD80 and CD86 genes may influence the risk of multiple sclerosis and its age of onset. J Neuroimmunol 2015; 288:79-86. [DOI: 10.1016/j.jneuroim.2015.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/07/2015] [Accepted: 09/10/2015] [Indexed: 01/01/2023]
|
12
|
Boullerne AI, Skias D, Hartman EM, Testai FD, Kalinin S, Polak PE, Feinstein DL. A single-nucleotide polymorphism in serine-threonine kinase 11, the gene encoding liver kinase B1, is a risk factor for multiple sclerosis. ASN Neuro 2015; 7:1759091415568914. [PMID: 25694554 PMCID: PMC4342367 DOI: 10.1177/1759091415568914] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
We identified a family in which five siblings were diagnosed with multiple sclerosis (MS) or clinically isolated syndrome. Several women in the maternal lineage have comorbidities typically associated with Peutz Jeghers Syndrome, a rare autosomal-dominant disease caused by mutations in the serine-threonine-kinase 11 (STK11) gene, which encodes liver kinase B1. Sequence analysis of DNA from one sibling identified a single-nucleotide polymorphism (SNP) within STK11 intron 5. This SNP (dbSNP ID: rs9282860) was identified by TaqMan polymerase chain reaction (PCR) assays in DNA samples available from two other siblings. Further screening was carried out in samples from 654 relapsing-remitting MS patients, 100 primary progressive MS patients, and 661 controls. The STK11-SNP has increased frequency in all female patients versus controls (odds ratio = 1.66, 95% CI = 1.05, 2.64, p = .032). The STK11-SNP was not associated with disease duration or onset; however, it was significantly associated with reduced severity (assessed by MS severity scores), with the lowest scores in patients who also harbored the HLA-DRB1*1501 allele. In vitro studies showed that peripheral blood mononuclear cells from members of the family were more sensitive to the mitochondrial inhibitor metformin than cells from MS patients with the major STK11 allele. The increased association of SNP rs9282860 in women with MS defines this variant as a genetic risk factor. The lower disease severity observed in the context of HLA-DRB1*1501 combined with limited in vitro studies raises the provocative possibility that cells harboring the STK11-SNP could be targeted by drugs which increase metabolic stress.
Collapse
Affiliation(s)
- Anne I Boullerne
- Department of Anesthesiology, University of Illinois at Chicago, IL, USA
| | - Demetrios Skias
- Department of Veterans Affairs, Jesse Brown VA Medical Center, Chicago, IL, USA Department of Neurology, University of Illinois at Chicago, IL, USA
| | | | | | - Sergey Kalinin
- Department of Anesthesiology, University of Illinois at Chicago, IL, USA
| | - Paul E Polak
- Department of Anesthesiology, University of Illinois at Chicago, IL, USA
| | - Douglas L Feinstein
- Department of Anesthesiology, University of Illinois at Chicago, IL, USA Department of Veterans Affairs, Jesse Brown VA Medical Center, Chicago, IL, USA
| |
Collapse
|
13
|
Wagner M, Bilinska M, Pokryszko-Dragan A, Sobczynski M, Cyrul M, Kusnierczyk P, Jasek M. ALCAM and CD6--multiple sclerosis risk factors. J Neuroimmunol 2014; 276:98-103. [PMID: 25216742 DOI: 10.1016/j.jneuroim.2014.08.621] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/19/2014] [Accepted: 08/20/2014] [Indexed: 10/24/2022]
Abstract
ALCAM and CD6 may play an important role in the pathogenesis of multiple sclerosis (MS), since they are involved in the transmigration of leukocytes across the blood-brain barrier. In this study, we confirmed our previous findings about the association of the ALCAM gene with risk, development and progression of MS. Additionally, we showed that in the case of the CD6 gene (encoding receptor of ALCAM) not only polymorphisms but also mRNA expression level are associated with MS. Our analysis revealed that the risk of the disease for AA individuals in rs12360861 was almost 3.0-fold lower in comparison to GG individuals (OR=0.34; CI95%=0.12; 0.81). Moreover, we observed lower expression of CD6 mRNA in patients than in healthy individuals (T(2)2,74=6.678; p=0.002).
Collapse
Affiliation(s)
- M Wagner
- Laboratory of Immunogenetics and Tissue Immunology, Department of Clinical Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Ul. Weigla 12, 53-114 Wroclaw, Poland.
| | - M Bilinska
- Department and Clinic of Neurology, Wroclaw Medical University, Ul. Borowska 213, 50-566 Wroclaw, Poland
| | - A Pokryszko-Dragan
- Department and Clinic of Neurology, Wroclaw Medical University, Ul. Borowska 213, 50-566 Wroclaw, Poland
| | - M Sobczynski
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, Ul. Fryderyka Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - M Cyrul
- Department and Clinic of Neurology, Wroclaw Medical University, Ul. Borowska 213, 50-566 Wroclaw, Poland
| | - P Kusnierczyk
- Laboratory of Immunogenetics and Tissue Immunology, Department of Clinical Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Ul. Weigla 12, 53-114 Wroclaw, Poland
| | - M Jasek
- Laboratory of Immunogenetics and Tissue Immunology, Department of Clinical Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Ul. Weigla 12, 53-114 Wroclaw, Poland.
| |
Collapse
|
14
|
Investigation of gene-gene interactions between CD40 and CD40L in Polish multiple sclerosis patients. Hum Immunol 2014; 75:796-801. [PMID: 24912008 DOI: 10.1016/j.humimm.2014.05.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 03/11/2014] [Accepted: 05/29/2014] [Indexed: 12/11/2022]
Abstract
CD40-CD40L interaction is necessary for the activation of both humoral and cellular immune response and has been suggested to play a role in the pathogenesis of multiple sclerosis (MS). Therefore, we analyzed the combined influence of the CD40 and CD40L variants on MS susceptibility and progression on well-defined Polish population. Our investigation revealed that CT individuals in rs1883832 locus of CD40 possessed almost 1.5-fold higher risk for MS than CC individuals (OR = 1.44; 95%CI = 1.03-2.1; p = 0.032), while this risk for TT individuals was almost 2.5-fold higher (OR = 2.36; 95%CI = 1.19-4.78; p = 0.014). Moreover, for the first time, we observed the association of CD40 gene with MS development and progression. We observed that for the rs1883832CC individuals the age at diagnosis was on average 2 years lower than for the rs1883832CT and rs1883832TT individuals (CI95% = -3.69-(-0.29); p = 0.023). Additionally, we detected that individuals with TT and CT genotypes showed lower risk of developing secondary progressive course in comparison to those with CC genotype. For rs1883832TT individuals this risk was 4-fold lower (HR = 0.24; CI95% = 0.10-0.53; p = 0.00062). Despite the fact that CD40-CD40L pathway plays a key role in development of autoimmune diseases, we were not able to detect gene-gene interactions between CD40 and CD40L polymorphisms associated with multiple sclerosis.
Collapse
|
15
|
von Bauer R, Oikonomou D, Sulaj A, Mohammed S, Hotz-Wagenblatt A, Gröne HJ, Arnold B, Falk C, Luethje D, Erhardt A, Stern DM, Bierhaus A, Nawroth PP. CD166/ALCAM mediates proinflammatory effects of S100B in delayed type hypersensitivity. THE JOURNAL OF IMMUNOLOGY 2013; 191:369-77. [PMID: 23729438 DOI: 10.4049/jimmunol.1201864] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Promiscuity of pattern recognition receptors, such as receptor for advanced glycation end products (RAGE), allows for a complex regulatory network controlling inflammation. Scavenging of RAGE ligands by soluble RAGE treatment is effective in reducing delayed-type hypersensitivity (DTH), even in RAGE(-/-) mice by 50% (p < 0.001). This has led to the hypothesis that molecules scavenged by soluble RAGE bind to receptors other than RAGE. This study identifies CD166/ALCAM (ALCAM) as a close structural and functional homolog of RAGE, and it shows that binding of S100B to CD166/ALCAM induces dose- and time-dependent expression of members of the NF-κB family in wild type (WT) and RAGE(-/-) mouse endothelial cells. Blocking CD166/ALCAM expression using small interfering RNA completely inhibited S100B-induced NF-κB activation in RAGE(-/-), but not in WT cells. The in vivo significance of these observations was demonstrated by attenuation of DTH in WT and RAGE(-/-) animals pretreated with CD166/ALCAM small interfering RNA by 50% and 40%, respectively (p < 0.001). Experiments in ALCAM(-/-) animals displayed an only slight reduction of 16% in DTH, explained by compensatory reciprocal upregulation of RAGE in animals devoid of CD166/ALCAM, and vice versa. Consistently, ALCAM(-/-) mice, but not WT mice treated with RAGE small interfering RNA show a 35% reduction in DTH, and ALCAM(-/-) RAGE(-/-) double-knockout mice show a 27% reduction in DTH reaction. Thus, S100B is a proinflammatory cytokine bridging RAGE and CD166/ALCAM downstream effector mechanisms, both being compensatory upregulated after genetic deletion of its counterpart.
Collapse
Affiliation(s)
- Rüdiger von Bauer
- Department of Medicine I and Clinical Chemistry, University of Heidelberg, D-69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|