1
|
Fialova L, Barilly P, Stetkarova I, Bartos A, Noskova L, Zimova D, Zido M, Hoffmanova I. Impaired intestinal permeability in patients with multiple sclerosis. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2025; 169:37-43. [PMID: 37581230 DOI: 10.5507/bp.2023.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/13/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND A number of recent studies have shown that the intestinal microbiome, part of the brain-gut axis, is implicated in the pathophysiology of multiple sclerosis. An essential part of this axis, is the intestinal barrier and gastrointestinal disorders with intestinal barrier dysregulation appear to be linked to CNS demyelination, and hence involved in the etiopathogenesis of multiple sclerosis (MS). OBJECTIVE The aim of this study was to evaluate the integrity of the intestinal barrier in patients with clinically definite multiple sclerosis (CDMS) and clinically isolated syndrome (CIS) using two serum biomarkers, claudin-3 (CLDN3), a component of tight epithelial junctions, and intestinal fatty acid binding protein (I-FABP), a cytosolic protein in enterocytes. METHODS Serum levels of CLDN3 in 37 MS patients and 22 controls, and serum levels of I-FABP in 46 MS patients and 51 controls were measured using commercial ELISA kits. Complete laboratory tests excluded the presence of gluten-related disorders in all subjects. Thirty MS patients received either disease-modifying drugs (DMD), immunosuppression (IS) or corticosteroid treatment. RESULTS CLDN3 levels were only significantly higher in the MS patients treated with DMD or IS compared to the control group (P=0.006). There were no differences in I-FABP serum levels between the groups. Serum CLDN3 levels did not correlate with serum I-FABP levels in CDMS, in CIS patients or controls. CONCLUSIONS In multiple sclerosis patients, the intestinal epithelium may be impaired with increased permeability, but without significant enterocyte damage characterized by intracellular protein leakage. Based on our data, CLDN3 serum levels appear to assess intestinal dysfunction in MS patients but mainly in treated ones.
Collapse
Affiliation(s)
- Lenka Fialova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Pavla Barilly
- Department of Neurology, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Ivana Stetkarova
- Department of Neurology, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Ales Bartos
- Department of Neurology, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Libuse Noskova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Denisa Zimova
- Department of Neurology, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Michal Zido
- Department of Neurology, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Iva Hoffmanova
- Department of Internal Medicine, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
2
|
Kölliker Frers RA, Otero-Losada M, Kobiec T, Udovin LD, Aon Bertolino ML, Herrera MI, Capani F. Multidimensional overview of neurofilament light chain contribution to comprehensively understanding multiple sclerosis. Front Immunol 2022; 13:912005. [PMID: 35967312 PMCID: PMC9368191 DOI: 10.3389/fimmu.2022.912005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory neurodegenerative disease characterized by demyelination, progressive axonal loss, and varying clinical presentations. Axonal damage associated with the inflammatory process causes neurofilaments, the major neuron structural proteins, to be released into the extracellular space, reaching the cerebrospinal fluid (CSF) and the peripheral blood. Methodological advances in neurofilaments’ serological detection and imaging technology, along with many clinical and therapeutic studies in the last years, have deepened our understanding of MS immunopathogenesis. This review examines the use of light chain neurofilaments (NFLs) as peripheral MS biomarkers in light of the current clinical and therapeutic evidence, MS immunopathology, and technological advances in diagnostic tools. It aims to highlight NFL multidimensional value as a reliable MS biomarker with a diagnostic-prognostic profile while improving our comprehension of inflammatory neurodegenerative processes, mainly RRMS, the most frequent clinical presentation of MS.
Collapse
Affiliation(s)
- Rodolfo A. Kölliker Frers
-
Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas (CAECIHS. UAI-CONICET), Buenos Aires, Argentina
- Unidad de Parasitología, Hospital J. M. Ramos Mejía, Buenos Aires, Argentina
| | - Matilde Otero-Losada
-
Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas (CAECIHS. UAI-CONICET), Buenos Aires, Argentina
- *Correspondence: Matilde Otero-Losada,
| | - Tamara Kobiec
-
Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas (CAECIHS. UAI-CONICET), Buenos Aires, Argentina
- Centro de Investigaciones en Psicología y Psicopedagogía (CIPP), Facultad de Psicología y Psicopedagogía, Pontificia Universidad Católica Argentina (UCA), Buenos Aires, Argentina
| | - Lucas D. Udovin
-
Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas (CAECIHS. UAI-CONICET), Buenos Aires, Argentina
| | - María Laura Aon Bertolino
-
Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas (CAECIHS. UAI-CONICET), Buenos Aires, Argentina
| | - María I. Herrera
-
Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas (CAECIHS. UAI-CONICET), Buenos Aires, Argentina
- Centro de Investigaciones en Psicología y Psicopedagogía (CIPP), Facultad de Psicología y Psicopedagogía, Pontificia Universidad Católica Argentina (UCA), Buenos Aires, Argentina
| | - Francisco Capani
-
Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas (CAECIHS. UAI-CONICET), Buenos Aires, Argentina
- Departamento de Biología, Universidad Argentina John Kennedy (UAJK), Buenos Aires, Argentina
| |
Collapse
|
3
|
LoPresti P. Serum-Based Biomarkers in Neurodegeneration and Multiple Sclerosis. Biomedicines 2022; 10:biomedicines10051077. [PMID: 35625814 PMCID: PMC9138270 DOI: 10.3390/biomedicines10051077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023] Open
Abstract
Multiple Sclerosis (MS) is a debilitating disease with typical onset between 20 and 40 years of age, so the disability associated with this disease, unfortunately, occurs in the prime of life. At a very early stage of MS, the relapsing-remitting mobility impairment occurs in parallel with a progressive decline in cognition, which is subclinical. This stage of the disease is considered the beginning of progressive MS. Understanding where a patient is along such a subclinical phase could be critical for therapeutic efficacy and enrollment in clinical trials to test drugs targeted at neurodegeneration. Since the disease course is uneven among patients, biomarkers are needed to provide insights into pathogenesis, diagnosis, and prognosis of events that affect neurons during this subclinical phase that shapes neurodegeneration and disability. Thus, subclinical cognitive decline must be better understood. One approach to this problem is to follow known biomarkers of neurodegeneration over time. These biomarkers include Neurofilament, Tau and phosphotau protein, amyloid-peptide-β, Brl2 and Brl2-23, N-Acetylaspartate, and 14-3-3 family proteins. A composite set of these serum-based biomarkers of neurodegeneration might provide a distinct signature in early vs. late subclinical cognitive decline, thus offering additional diagnostic criteria for progressive neurodegeneration and response to treatment. Studies on serum-based biomarkers are described together with selective studies on CSF-based biomarkers and MRI-based biomarkers.
Collapse
Affiliation(s)
- Patrizia LoPresti
- Department of Psychology, The University of Illinois at Chicago, 1007 West Harrison Street, Chicago, IL 60607, USA
| |
Collapse
|
4
|
Mohkhedkar M, Venigalla SSK, Janakiraman V. Untangling COVID-19 and autoimmunity: Identification of plausible targets suggests multi organ involvement. Mol Immunol 2021; 137:105-113. [PMID: 34242919 PMCID: PMC8241658 DOI: 10.1016/j.molimm.2021.06.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/03/2021] [Accepted: 06/27/2021] [Indexed: 10/28/2022]
Abstract
Underlying mechanisms of multi-organ manifestations and exacerbated inflammation in COVID-19 are yet to be delineated. The hypothesis of SARS-CoV-2 triggering autoimmunity is gaining attention and, in the present study, we have identified 28 human proteins harbouring regions homologous to SARS-CoV-2 peptides that could possibly be acting as autoantigens in COVID-19 patients displaying autoimmune conditions. Interestingly, these conserved regions are amongst the experimentally validated B cell epitopes of SARS-CoV-2 proteins. The reported human proteins have demonstrated presence of autoantibodies against them in typical autoimmune conditions which may explain the frequent occurrence of autoimmune conditions following SARS-CoV-2 infection. Moreover, the proposed autoantigens' widespread tissue distribution is suggestive of their involvement in multi-organ manifestations via molecular mimicry. We opine that our report may aid in directing subsequent necessary antigen-specific studies, results of which would be of long-term relevance in management of extrapulmonary symptoms of COVID-19.
Collapse
Affiliation(s)
- Mugdha Mohkhedkar
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Siva Sai Krishna Venigalla
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Vani Janakiraman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India.
| |
Collapse
|
5
|
Verberk IMW, Koel-Simmelink M, Twaalfhoven H, Vrenken H, Korth C, Killestein J, Teunissen CE, Bridel C. Ultrasensitive immunoassay allows measurement of serum neurofilament heavy in multiple sclerosis. Mult Scler Relat Disord 2021; 50:102840. [PMID: 33626430 DOI: 10.1016/j.msard.2021.102840] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Neurofilament heavy (NfH) is a promising biomarker for neuro-axonal damage in Multiple Sclerosis (MS). We compared the performance of high-sensitivity serum-NfH immunoassays, with as aim to investigate the value of serum-NfH as biomarker for MS. METHODS We measured serum-NfH in 76 MS patients with Simoa (one commercial, one in-house) or Luminex assays. Serum-NfH measured by the immunoassay with greatest sensitivity was related to clinical and radiological outcomes with age and sex-adjusted linear regression analysis, and to biological outcomes cerebrospinal fluid (CSF)-NfH, serum neurofilament light (NfL) and CSF-NfL with Spearman's correlation analysis. RESULTS With the commercial Simoa assay, we obtained 100% serum-NfH detectability (in-house Simoa: 70%, Luminex: 61%), with lowest coefficient of variation (CV) between duplicates of 11%CV (in-house Simoa: 22%CV, Luminex: 30%CV). Serum-NfH quantified with the commercial Simoa assay was associated with disease duration (standardized beta (sβ) = 0.28, p = 0.034), T2 lesion volume (sβ = 0.23, p = 0.041), and tended to associate with black hole count (sβ = 0.21, p = 0.084) but not with Expanded Disease Disability Score (EDSS) or normalized brain volume (all: p>0.10). Furthermore, serum-NfH showed correlations with CSF-NfH (rho = 0.27, p = 0.018) and serum-NfL (rho=0.44, p < 0.001), but not with CSF-NfL. CONCLUSIONS Serum-NfH can be quantified with high-sensitivity technology. Cross-sectionally, we observed some weak correlations of serum-NfH with MS disease burden parameters, suggesting there might be some utility for serum-NfH as biomarker for MS disease burden.
Collapse
Affiliation(s)
- Inge M W Verberk
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.
| | - Marleen Koel-Simmelink
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Harry Twaalfhoven
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Hugo Vrenken
- Department of Radiology, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Carsten Korth
- Department of Neuropathology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Joep Killestein
- Multiple Sclerosis center Amsterdam, Department of neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Claire Bridel
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Department of Clinical Neurosciences, Neurology Unit, Geneva University Hospital, Geneva, Switzerland
| |
Collapse
|
6
|
Anti-neurofilament antibodies and neurodegeneration: Markers and generators. J Neuroimmunol 2020; 344:577248. [PMID: 32344161 DOI: 10.1016/j.jneuroim.2020.577248] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 11/24/2022]
Abstract
Neuroaxonal injury and loss result in the release of cytoskeleton components, including neurofilaments, into the cerebrospinal fluid and peripheral blood. Once released, neurofilaments are highly immunogenic, inducing a specific antibody response. Anti-neurofilament antibody levels correlate with the progression of diverse neurological diseases; however, their role both in the pathogenesis of disease and as a tool for monitoring disease progression is not well understood. This study reviews the current literature on anti-neurofilament antibodies. We suggest the testing of anti-neurofilament antibodies be further developed for diagnosis and targeted for treatment.
Collapse
|
7
|
Bridel C, van Wieringen WN, Zetterberg H, Tijms BM, Teunissen CE, and the NFL Group. Diagnostic Value of Cerebrospinal Fluid Neurofilament Light Protein in Neurology: A Systematic Review and Meta-analysis. JAMA Neurol 2019; 76:1035-1048. [PMID: 31206160 PMCID: PMC6580449 DOI: 10.1001/jamaneurol.2019.1534] [Citation(s) in RCA: 519] [Impact Index Per Article: 86.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/27/2019] [Indexed: 12/13/2022]
Abstract
IMPORTANCE Neurofilament light protein (NfL) is elevated in cerebrospinal fluid (CSF) of a number of neurological conditions compared with healthy controls (HC) and is a candidate biomarker for neuroaxonal damage. The influence of age and sex is largely unknown, and levels across neurological disorders have not been compared systematically to date. OBJECTIVES To assess the associations of age, sex, and diagnosis with NfL in CSF (cNfL) and to evaluate its potential in discriminating clinically similar conditions. DATA SOURCES PubMed was searched for studies published between January 1, 2006, and January 1, 2016, reporting cNfL levels (using the search terms neurofilament light and cerebrospinal fluid) in neurological or psychiatric conditions and/or in HC. STUDY SELECTION Studies reporting NfL levels measured in lumbar CSF using a commercially available immunoassay, as well as age and sex. DATA EXTRACTION AND SYNTHESIS Individual-level data were requested from study authors. Generalized linear mixed-effects models were used to estimate the fixed effects of age, sex, and diagnosis on log-transformed NfL levels, with cohort of origin modeled as a random intercept. MAIN OUTCOME AND MEASURE The cNfL levels adjusted for age and sex across diagnoses. RESULTS Data were collected for 10 059 individuals (mean [SD] age, 59.7 [18.8] years; 54.1% female). Thirty-five diagnoses were identified, including inflammatory diseases of the central nervous system (n = 2795), dementias and predementia stages (n = 4284), parkinsonian disorders (n = 984), and HC (n = 1332). The cNfL was elevated compared with HC in a majority of neurological conditions studied. Highest levels were observed in cognitively impaired HIV-positive individuals (iHIV), amyotrophic lateral sclerosis, frontotemporal dementia (FTD), and Huntington disease. In 33.3% of diagnoses, including HC, multiple sclerosis, Alzheimer disease (AD), and Parkinson disease (PD), cNfL was higher in men than women. The cNfL increased with age in HC and a majority of neurological conditions, although the association was strongest in HC. The cNfL overlapped in most clinically similar diagnoses except for FTD and iHIV, which segregated from other dementias, and PD, which segregated from atypical parkinsonian syndromes. CONCLUSIONS AND RELEVANCE These data support the use of cNfL as a biomarker of neuroaxonal damage and indicate that age-specific and sex-specific (and in some cases disease-specific) reference values may be needed. The cNfL has potential to assist the differentiation of FTD from AD and PD from atypical parkinsonian syndromes.
Collapse
Affiliation(s)
- Claire Bridel
- Neurochemistry Laboratory, Department of Clinical Chemistry, VU University Medical Centre, Neuroscience Campus Amsterdam, Amsterdam, the Netherlands
| | - Wessel N. van Wieringen
- Department of Epidemiology and Biostatistics, VU University Medical Centre, Amsterdam, the Netherlands
- Department of Mathematics, VU University, Amsterdam, the Netherlands
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, United Kingdom
- Dementia Research Institute at UCL, London, United Kingdom
| | - Betty M. Tijms
- Department of Neurology and Alzheimer Centre, VU University Medical Centre, Neuroscience Campus Amsterdam, Amsterdam, the Netherlands
| | - Charlotte E. Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, VU University Medical Centre, Neuroscience Campus Amsterdam, Amsterdam, the Netherlands
| | | |
Collapse
|
8
|
Mazón-Cabrera R, Vandormael P, Somers V. Antigenic Targets of Patient and Maternal Autoantibodies in Autism Spectrum Disorder. Front Immunol 2019; 10:1474. [PMID: 31379804 PMCID: PMC6659315 DOI: 10.3389/fimmu.2019.01474] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/13/2019] [Indexed: 12/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder whose behavioral symptoms become apparent in early childhood. The underlying pathophysiological mechanisms are only partially understood and the clinical manifestations are heterogeneous in nature, which poses a major challenge for diagnosis, prognosis and intervention. In the last years, an important role of a dysregulated immune system in ASD has emerged, but the mechanisms connecting this to a disruption of brain development are still largely unknown. Although ASD is not considered as a typical autoimmune disease, self-reactive antibodies or autoantibodies against a wide variety of targets have been found in a subset of ASD patients. In addition, autoantibodies reactive to fetal brain proteins have also been described in the prenatal stage of neurodevelopment, where they can be transferred from the mother to the fetus by transplacental transport. In this review, we give an extensive overview of the antibodies described in ASD according to their target antigens, their different origins, and timing of exposure during neurodevelopment.
Collapse
Affiliation(s)
| | | | - Veerle Somers
- Biomedical Research Institute, Faculty of Medicine and Life Science, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
9
|
Basal E, Zalewski N, Kryzer TJ, Hinson SR, Guo Y, Dubey D, Benarroch EE, Lucchinetti CF, Pittock SJ, Lennon VA, McKeon A. Paraneoplastic neuronal intermediate filament autoimmunity. Neurology 2018; 91:e1677-e1689. [PMID: 30282771 PMCID: PMC6207411 DOI: 10.1212/wnl.0000000000006435] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/23/2018] [Indexed: 12/13/2022] Open
Abstract
Objective To describe paraneoplastic neuronal intermediate filament (NIF) autoimmunity. Methods Archived patient and control serum and CSF specimens were evaluated by tissue-based indirect immunofluorescence assay (IFA). Autoantigens were identified by Western blot and mass spectrometry. NIF specificity was confirmed by dual tissue section staining and 5 recombinant NIF-specific HEK293 cell-based assays (CBAs, for α-internexin, neurofilament light [NfL], neurofilament medium, or neurofilament heavy chain, and peripherin). NIF–immunoglobulin Gs (IgGs) were correlated with neurologic syndromes and cancers. Results Among 65 patients, NIF-IgG-positive by IFA and CBAs, 33 were female (51%). Median symptom onset age was 62 years (range 18–88). Patients fell into 2 groups, defined by the presence of NfL-IgG (21 patients, who mostly had ≥4 NIF-IgGs detected) or its absence (44 patients, who mostly had ≤2 NIF-IgGs detected). Among NfL-IgG-positive patients, 19/21 had ≥1 subacute onset CNS disorders: cerebellar ataxia (11), encephalopathy (11), or myelopathy (2). Cancers were detected in 16 of 21 patients (77%): carcinomas of neuroendocrine lineage (10) being most common (small cell [5], Merkel cell [3], other neuroendocrine [2]). Two of 257 controls (0.8%, both with small cell carcinoma) were positive by both IFA and CBA. Five of 7 patients with immunotherapy data improved. By comparison, the 44 NfL-IgG-negative patients had findings of unclear significance: diverse nervous system disorders (p = 0.006), as well as limited (p = 0.003) and more diverse (p < 0.0001) cancer accompaniments. Conclusions NIF-IgG detection by IFA, with confirmatory CBA testing that yields a profile including NfL-IgG, defines a paraneoplastic CNS disorder (usually ataxia or encephalopathy) accompanying neuroendocrine lineage neoplasia.
Collapse
Affiliation(s)
- Eati Basal
- From the Departments of Laboratory Medicine and Pathology (E.B., T.J.K., S.R.H., S.J.P., V.A.L., A.M.), Neurology (N.Z., Y.G., D.D., E.E.B., C.F.L., S.J.P., V.A.L., A.M.), and Immunology (V.A.L.), Mayo Clinic, Rochester, MN
| | - Nicholas Zalewski
- From the Departments of Laboratory Medicine and Pathology (E.B., T.J.K., S.R.H., S.J.P., V.A.L., A.M.), Neurology (N.Z., Y.G., D.D., E.E.B., C.F.L., S.J.P., V.A.L., A.M.), and Immunology (V.A.L.), Mayo Clinic, Rochester, MN
| | - Thomas J Kryzer
- From the Departments of Laboratory Medicine and Pathology (E.B., T.J.K., S.R.H., S.J.P., V.A.L., A.M.), Neurology (N.Z., Y.G., D.D., E.E.B., C.F.L., S.J.P., V.A.L., A.M.), and Immunology (V.A.L.), Mayo Clinic, Rochester, MN
| | - Shannon R Hinson
- From the Departments of Laboratory Medicine and Pathology (E.B., T.J.K., S.R.H., S.J.P., V.A.L., A.M.), Neurology (N.Z., Y.G., D.D., E.E.B., C.F.L., S.J.P., V.A.L., A.M.), and Immunology (V.A.L.), Mayo Clinic, Rochester, MN
| | - Yong Guo
- From the Departments of Laboratory Medicine and Pathology (E.B., T.J.K., S.R.H., S.J.P., V.A.L., A.M.), Neurology (N.Z., Y.G., D.D., E.E.B., C.F.L., S.J.P., V.A.L., A.M.), and Immunology (V.A.L.), Mayo Clinic, Rochester, MN
| | - Divyanshu Dubey
- From the Departments of Laboratory Medicine and Pathology (E.B., T.J.K., S.R.H., S.J.P., V.A.L., A.M.), Neurology (N.Z., Y.G., D.D., E.E.B., C.F.L., S.J.P., V.A.L., A.M.), and Immunology (V.A.L.), Mayo Clinic, Rochester, MN
| | - Eduardo E Benarroch
- From the Departments of Laboratory Medicine and Pathology (E.B., T.J.K., S.R.H., S.J.P., V.A.L., A.M.), Neurology (N.Z., Y.G., D.D., E.E.B., C.F.L., S.J.P., V.A.L., A.M.), and Immunology (V.A.L.), Mayo Clinic, Rochester, MN
| | - Claudia F Lucchinetti
- From the Departments of Laboratory Medicine and Pathology (E.B., T.J.K., S.R.H., S.J.P., V.A.L., A.M.), Neurology (N.Z., Y.G., D.D., E.E.B., C.F.L., S.J.P., V.A.L., A.M.), and Immunology (V.A.L.), Mayo Clinic, Rochester, MN
| | - Sean J Pittock
- From the Departments of Laboratory Medicine and Pathology (E.B., T.J.K., S.R.H., S.J.P., V.A.L., A.M.), Neurology (N.Z., Y.G., D.D., E.E.B., C.F.L., S.J.P., V.A.L., A.M.), and Immunology (V.A.L.), Mayo Clinic, Rochester, MN
| | - Vanda A Lennon
- From the Departments of Laboratory Medicine and Pathology (E.B., T.J.K., S.R.H., S.J.P., V.A.L., A.M.), Neurology (N.Z., Y.G., D.D., E.E.B., C.F.L., S.J.P., V.A.L., A.M.), and Immunology (V.A.L.), Mayo Clinic, Rochester, MN
| | - Andrew McKeon
- From the Departments of Laboratory Medicine and Pathology (E.B., T.J.K., S.R.H., S.J.P., V.A.L., A.M.), Neurology (N.Z., Y.G., D.D., E.E.B., C.F.L., S.J.P., V.A.L., A.M.), and Immunology (V.A.L.), Mayo Clinic, Rochester, MN.
| |
Collapse
|
10
|
Cai L, Huang J. Neurofilament light chain as a biological marker for multiple sclerosis: a meta-analysis study. Neuropsychiatr Dis Treat 2018; 14:2241-2254. [PMID: 30214214 PMCID: PMC6126505 DOI: 10.2147/ndt.s173280] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PURPOSE There is a need for biomarkers in multiple sclerosis (MS) to make an early diagnosis and monitor its progression. This study was designed to evaluate the value of neurofilament light (NFL) chain levels as cerebrospinal fluid (CSF) or blood biomarker in patients with MS by using a quantitative meta-analysis. METHODS The PubMed, Embase, and Web of Science databases were systematically searched for relevant studies. Articles in English that evaluated the utility of NFL in CSF and blood in the diagnosis of MS were included. Data were extracted by two independent researchers. Mean (± SD) NFL concentration for MS patients and control subjects were extracted. Review Manager version 5.3 software with a continuous-variable random-effects model was used to summarize the diagnostic indexes from eligible studies. The Newcastle-Ottawa Scale was used for assessing the quality and risk of bias of included studies. In addition, subgroup analysis and meta-regression were performed to assess potential heterogeneity sources. RESULTS The meta-analysis included 13 articles containing results from 15 studies. A total of 10 studies measured NFL levels in CSF and five studies measured NFL levels in blood. Data were available on 795 participants in CSF and 1,856 participants in blood. Moreover, CSF NFL in MS patients was higher than that in healthy control groups (pooled standard mean difference [Std.MD]=0.88, 95% CI [0.50, 1.26], P<0.00001) and serum NFL in MS patients was higher than that in control subjects (pooled Std.MD=0.47, 95% CI [0.24, 0.71], P<0.0001). CONCLUSION NFL chain has significantly increased in MS patients, which substantially strengthens the clinical evidence of the NFL in MS. The NFL may be used as a prognostic biomarker to monitor disease progression, disease activity, and treatment efficacy in the future.
Collapse
Affiliation(s)
- Laisheng Cai
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Jiangxi, People's Republic of China,
| | - Jingwei Huang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Jiangxi, People's Republic of China,
| |
Collapse
|
11
|
Krestova M, Ricny J, Bartos A. Changes in concentrations of tau-reactive antibodies are dependent on sex in Alzheimer's disease patients. J Neuroimmunol 2018; 322:1-8. [PMID: 29789140 DOI: 10.1016/j.jneuroim.2018.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 05/11/2018] [Accepted: 05/11/2018] [Indexed: 12/13/2022]
Abstract
The presence of pre-existing natural antibodies against Alzheimer's disease (AD) pathological proteins might interfere with immune responses to therapeutic vaccination with these proteins. We aimed to compare levels of antibodies in CSF and serum: We observed higher reactivity of natural tau-reactive antibodies towards phosphorylated bovine tau protein than to human recombinant (non-phosphorylated) tau protein. Males with MCI-AD had higher amounts of these antibodies than corresponding controls. Concentrations of antibodies were lower in females with the MCI-AD than in control females. These findings may have implications for tau vaccination trials.
Collapse
Affiliation(s)
| | - Jan Ricny
- National Institute of Mental Health, Klecany, Czech Republic
| | - Ales Bartos
- National Institute of Mental Health, Klecany, Czech Republic; Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
12
|
Abstract
Multiple sclerosis (MS) is a chronic disease of the central nervous system (CNS) characterized by loss of motor and sensory function that results from immune-mediated inflammation, demyelination, and subsequent axonal damage. Clinically, most MS patients experience recurrent episodes (relapses) of neurological impairment, but in most cases (60–80%) the course of the disease eventually becomes chronic and progressive, leading to cumulative motor, sensory, and visual disability, and cognitive deficits. The course of the disease is largely unpredictable and its clinical presentation is variable, but its predilection for certain parts of the CNS, which includes the optic nerves, the brain stem, cerebellum, and cervical spinal cord, provides a characteristic constellation of signs and symptoms. Several variants of MS have been nowadays defined with variable immunopathogenesis, course and prognosis. Many new treatments targeting the immune system have shown efficacy in preventing the relapses of MS and have been introduced to its management during the last decade.
Collapse
|
13
|
Rossor AM, Lu CH, Petzold A, Malaspina A, Laura M, Greensmith L, Reilly MM. Plasma neurofilament heavy chain is not a useful biomarker in Charcot-Marie-Tooth disease. Muscle Nerve 2016; 53:972-5. [PMID: 27015106 DOI: 10.1002/mus.25124] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2016] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The negative results in trials of vitamin C in Charcot-Marie-Tooth disease (CMT) type 1A have highlighted the lack of sensitive outcome measures. Neurofilaments are abundant neuronal cytoskeletal proteins, and their concentration in blood is likely to reflect axonal breakdown. We therefore examined plasma neurofilament heavy-chain (NfH) concentration as a potential biomarker in CMT. METHODS Blood samples were collected from healthy controls and patients with CMT over a 2-year period. Disease severity was measured using the CMT Examination Score. An in-house enzyme-linked immunoabsorbent assay was used to measure plasma NfH levels. RESULTS There was no significant difference in plasma NfH concentrations between CMT patients and controls (P = 0.449). There was also no significant difference in plasma NfH levels in the CMT group over 1 year (mean difference = -0.02, SEM = 4.44, P = 0.98). CONCLUSIONS Plasma NfH levels are not altered in patients with CMT and are not a suitable biomarker of disease activity. Muscle Nerve 53: 972-975, 2016.
Collapse
Affiliation(s)
- Alexander M Rossor
- Medical Research Council Centre for Neuromuscular Diseases, University College London Institute of Neurology and National Hospital for Neurology and Neurosurgery, 811 Queen Square, London, WC1N 3BG, UK
| | - Ching-Hua Lu
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London Institute of Neurology, London, UK.,Centre for Neuroscience and Trauma, Blizard Institute, Barts and The School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Axel Petzold
- Department of Neurology, VU Medical Centre, Amsterdam, The Netherlands
| | - Andreas Malaspina
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and The School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Matilde Laura
- Medical Research Council Centre for Neuromuscular Diseases, University College London Institute of Neurology and National Hospital for Neurology and Neurosurgery, 811 Queen Square, London, WC1N 3BG, UK
| | - Linda Greensmith
- Medical Research Council Centre for Neuromuscular Diseases, University College London Institute of Neurology and National Hospital for Neurology and Neurosurgery, 811 Queen Square, London, WC1N 3BG, UK
| | - Mary M Reilly
- Medical Research Council Centre for Neuromuscular Diseases, University College London Institute of Neurology and National Hospital for Neurology and Neurosurgery, 811 Queen Square, London, WC1N 3BG, UK
| |
Collapse
|
14
|
Ligocki AJ, Rivas JR, Rounds WH, Guzman AA, Li M, Spadaro M, Lahey L, Chen D, Henson PM, Graves D, Greenberg BM, Frohman EM, Ward ES, Robinson W, Meinl E, White CL, Stowe AM, Monson NL. A Distinct Class of Antibodies May Be an Indicator of Gray Matter Autoimmunity in Early and Established Relapsing Remitting Multiple Sclerosis Patients. ASN Neuro 2015; 7:7/5/1759091415609613. [PMID: 26489686 PMCID: PMC4710131 DOI: 10.1177/1759091415609613] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
*These authors contributed equally to the work in this manuscript.We have previously identified a distinct class of antibodies expressed by B cells in the cerebrospinal fluid (CSF) of early and established relapsing remitting multiple sclerosis (RRMS) patients that is not observed in healthy donors. These antibodies contain a unique pattern of mutations in six codons along VH4 antibody genes that we termed the antibody gene signature (AGS). In fact, patients who have such B cells in their CSF are identified as either having RRMS or developing RRMS in the future. As mutations in antibody genes increase antibody affinity for particular antigens, the goal for this study was to investigate whether AGS(+) antibodies bind to brain tissue antigens. Single B cells were isolated from the CSF of 10 patients with early or established RRMS. We chose 32 of these B cells that expressed antibodies enriched for the AGS for further study. We generated monoclonal full-length recombinant human antibodies (rhAbs) and used both immunological assays and immunohistochemistry to investigate the capacity of these AGS(+) rhAbs to bind brain tissue antigens. AGS(+) rhAbs did not recognize myelin tracts in the corpus callosum. Instead, AGS(+) rhAbs recognized neuronal nuclei and/or astrocytes, which are prevalent in the cortical gray matter. This pattern was unique to the AGS(+) antibodies from early and established RRMS patients, as AGS(+) antibodies from an early neuromyelitis optica patient did not display the same reactivity. Prevalence of CSF-derived B cells expressing AGS(+) antibodies that bind to these cell types may be an indicator of gray matter-directed autoimmunity in early and established RRMS patients.
Collapse
Affiliation(s)
- Ann J Ligocki
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jacqueline R Rivas
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - William H Rounds
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alyssa A Guzman
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Min Li
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Melania Spadaro
- Institute of Clinical Neuroimmunology, Ludwig-Maximilian-University, Munich, Germany
| | - Lauren Lahey
- Department of Immunology and Rheumatology, Stanford University, CA, USA
| | - Ding Chen
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Paul M Henson
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Donna Graves
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Benjamin M Greenberg
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Elliot M Frohman
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - E Sally Ward
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - William Robinson
- Department of Immunology and Rheumatology, Stanford University, CA, USA
| | - Edgar Meinl
- Institute of Clinical Neuroimmunology, Ludwig-Maximilian-University, Munich, Germany
| | - Charles L White
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ann M Stowe
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nancy L Monson
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
15
|
Teunissen CE, Malekzadeh A, Leurs C, Bridel C, Killestein J. Body fluid biomarkers for multiple sclerosis--the long road to clinical application. Nat Rev Neurol 2015; 11:585-96. [PMID: 26392381 DOI: 10.1038/nrneurol.2015.173] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is a strong unmet clinical need for objective body fluid biomarkers to assist early diagnosis and estimate long-term prognosis, monitor treatment response and predict potential adverse effects in multiple sclerosis (MS). Here, we review recent studies (focusing on 2012 to early 2015) on body fluid markers in MS from the perspective of their clinical utility. Because the first step towards clinical implementation of a newly discovered biomarker is independent replication, we focus on biomarkers that have been validated in at least two independent cohorts. We also discuss recent data challenging earlier findings, and biomarkers for which new clinical uses are suggested. For early MS diagnosis and prediction of conversion from clinically isolated syndrome to MS, several new B-cell-associated candidate blood biomarkers have emerged. For prognosis, several novel axonal damage markers should be adopted to biomarker panels. The number of disease-modifying treatments for MS has increased sharply, but biomarkers for treatment response monitoring and adverse effect prediction are scarce, and markers for subtyping and staging of MS are still lacking. In view of the availability and implementation of several standardized protocols to optimize biomarker studies, we expect biomarker development for MS to be improved and accelerated, with clinical implementation in the near future.
Collapse
Affiliation(s)
- Charlotte E Teunissen
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Neuroscience Campus Amsterdam, VU University Medical Centre, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
| | - Arjan Malekzadeh
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Neuroscience Campus Amsterdam, VU University Medical Centre, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
| | - Cyra Leurs
- Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
| | - Claire Bridel
- Department of Clinical Neurosciences, Division of Neurology, Unit of Neuroimmunology and Multiple Sclerosis, Geneva University Hospital, Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland
| | - Joep Killestein
- Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
| |
Collapse
|
16
|
Lu CH, Petzold A, Topping J, Allen K, Macdonald-Wallis C, Clarke J, Pearce N, Kuhle J, Giovannoni G, Fratta P, Sidle K, Fish M, Orrell R, Howard R, Greensmith L, Malaspina A. Plasma neurofilament heavy chain levels and disease progression in amyotrophic lateral sclerosis: insights from a longitudinal study. J Neurol Neurosurg Psychiatry 2015; 86:565-73. [PMID: 25009280 PMCID: PMC4413806 DOI: 10.1136/jnnp-2014-307672] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 06/16/2014] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To investigate the role of longitudinal plasma neurofilament heavy chain protein (NfH) levels as an indicator of clinical progression and survival in amyotrophic lateral sclerosis (ALS). METHODS A cross-sectional study involving 136 clinically heterogeneous patients with ALS and 104 healthy and neurological controls was extended to include a prospective analysis of 74 of these ALS cases, with samplings at approximately 3-month intervals in a follow-up period of up to 3 years. We analysed the correlation between longitudinal NfH-phosphoform levels and disease progression. Temporal patterns of NfH changes were evaluated using multilevel linear regression. RESULTS Baseline plasma NfH levels were higher than controls only in patients with ALS with short disease duration to baseline sampling. Compared with controls, fast-progressing patients with ALS, particularly those with a short diagnostic latency and disease duration, had higher plasma NfH levels at an early stage and lower levels closer to end-stage disease. Lower NfH levels between visits were associated with rapid functional deterioration. We also detected antibodies against NfH, NfH aggregates and NfH cleavage products. CONCLUSIONS Disease progression in ALS involves defined trajectories of plasma NfH levels, reflecting speed of neurological decline and survival. Intervisit plasma NfH changes are also indicative of disease progression. This study confirms that longitudinal measurements of NfH plasma levels are more informative than cross-sectional studies, where the time of sampling may represent a bias in the interpretation of the results. Autoantibodies against NfH aggregates and NfH cleavage products may explain the variable expression of plasma NfH with disease progression. TRAIL REGISTRATION NUMBER NIHRID6160.
Collapse
Affiliation(s)
- Ching-Hua Lu
- Centre for Neuroscience & Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, UK
| | - Axel Petzold
- Department of Neuroinflammation, UCL Institute of Neurology, London, UK
| | - Jo Topping
- Centre for Neuroscience & Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Kezia Allen
- Basildon and Thurrock University Hospitals NHS Foundation Trust, Essex, UK
| | | | - Jan Clarke
- National Hospital for Neurology and Neurosurgery, London, UK
| | - Neil Pearce
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| | - Jens Kuhle
- Centre for Neuroscience & Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Gavin Giovannoni
- Centre for Neuroscience & Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Pietro Fratta
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Katie Sidle
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Mark Fish
- Clinical Trial Unit, Musgrove Park Hospital, Taunton, UK
| | - Richard Orrell
- National Hospital for Neurology and Neurosurgery, London, UK Department of Clinical Neuroscience, UCL Institute of Neurology, London, UK
| | - Robin Howard
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Linda Greensmith
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, UK MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, UK
| | - Andrea Malaspina
- Centre for Neuroscience & Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK Basildon and Thurrock University Hospitals NHS Foundation Trust, Essex, UK North-East London and Essex MND Care and Research Centre, London, UK
| |
Collapse
|
17
|
Abstract
Multiple sclerosis (MS) is an autoimmune disease of unknown cause, in which chronic inflammation drives multifocal demyelination of axons in both white and gray matter in the CNS. The pathological course of the disease is heterogeneous and involves an early, predominantly inflammatory demyelinating disease phase of relapsing-remitting MS (RRMS), which, over a variable period of time, evolves into a progressively degenerative stage associated with axonal loss and scar formation, causing physical and cognitive disability. For patients with RRMS, there is a growing arsenal of disease-modifying agents (DMAs), with varying degrees of efficacy, as defined by reduced relapse rates, improved magnetic resonance imaging outcomes, and preservation of neurological function. Establishment of personalized treatment plans remains one of the biggest challenges in therapeutic decision-making in MS because the disease prognosis and individual therapeutic outcomes are extremely difficult to predict. Current research is aimed at discovery and validation of biomarkers that reliably measure disease progression and effective therapeutic intervention. Individual biomarker candidates with evident clinical utility are highlighted in this review and include neutralizing autoantibodies against DMAs, fetuin-A, osteopontin, isoprostanes, chemokine (C-X-C motif) ligand 13 (CXCL13), neurofilament light and heavy, and chitinase 3-like protein. In addition, application of more advanced screening technologies has opened up new categories of biomarkers that move beyond detection of individual soluble proteins, including gene expression and autoantibody arrays, microRNAs, and circulating microvesicles/exosomes. Development of clinically useful biomarkers in MS will not only shape the practice of personalized medicine but will also serve as surrogate markers to enable investigation of innovative treatments within clinical trials that are less costly, are of shorter duration, and have more certainty of outcomes.
Collapse
Affiliation(s)
- Violaine K. Harris
- Tisch Multiple Sclerosis Research Center of New York, 521 West 57th Street, New York, NY 10019 USA
| | - Saud A. Sadiq
- Tisch Multiple Sclerosis Research Center of New York, 521 West 57th Street, New York, NY 10019 USA
| |
Collapse
|
18
|
Vorobyeva AA, Fominykh VV, Onufriev MV, Zakharova MN, Gulyaeva NV. Phosphorylated neurofilament heavy subunits as a marker of neurodegeneration in demyelinating diseases of the CNS. NEUROCHEM J+ 2014. [DOI: 10.1134/s1819712414030143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Karussis D. The diagnosis of multiple sclerosis and the various related demyelinating syndromes: a critical review. J Autoimmun 2014; 48-49:134-42. [PMID: 24524923 DOI: 10.1016/j.jaut.2014.01.022] [Citation(s) in RCA: 219] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 11/13/2013] [Indexed: 01/05/2023]
Abstract
Multiple sclerosis (MS), is a chronic disease of the central nervous system (CNS) characterized by loss of motor and sensory function, that results from immune-mediated inflammation, demyelination and subsequent axonal damage. MS is one of the most common causes of neurological disability in young adults. Several variants of MS (and CNS demyelinating syndromes in general) have been nowadays defined in an effort to increase the diagnostic accuracy, to identify the unique immunopathogenic profile and to tailor treatment in each individual patient. These include the initial events of demyelination defined as clinically or radiologically isolated syndromes (CIS and RIS respectively), acute disseminated encephalomyelitis (ADEM) and its variants (acute hemorrhagic leukoencephalitis-AHL, Marburg variant, and Balo's concentric sclerosis), Schilder's sclerosis, transverse myelitis, neuromyelitis optica (NMO and NMO spectrum of diseases), recurrent isolated optic neuritis and tumefactive demyelination. The differentiation between them is not only a terminological matter but has important implications on their management. For instance, certain patients with MS and prominent immunopathogenetic involvement of B cells and autoantibodies, or with the neuromyelitic variants of demyelination, may not only not respond well but even deteriorate under some of the first-line treatments for MS. The unique clinical and neuroradiological features, along with the immunological biomarkers help to distinguish these cases from classical MS. The use of such immunological and imaging biomarkers, will not only improve the accuracy of diagnosis but also contribute to the identification of the patients with CIS or RIS who, are at greater risk for disability progression (worse prognosis) or, on the contrary, will have a more benign course. This review summarizes in a critical way, the diagnostic criteria (historical and updated) and the definitions/characteristics of MS of the various variants/subtypes of CNS demyelinating syndromes.
Collapse
Affiliation(s)
- Dimitrios Karussis
- Department of Neurology, Multiple Sclerosis Center and Laboratory of Neuroimmunology, The Agnes-Ginges Center for Neurogenetics, Hadassah University Hospital, Jerusalem, Ein-Kerem, Israel.
| |
Collapse
|
20
|
Serum and cerebrospinal fluid light neurofilaments and antibodies against them in clinically isolated syndrome and multiple sclerosis. J Neuroimmunol 2013; 262:113-20. [DOI: 10.1016/j.jneuroim.2013.06.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 05/29/2013] [Accepted: 06/19/2013] [Indexed: 12/13/2022]
|