1
|
Murray TE, Richards CM, Robert-Gostlin VN, Bernath AK, Lindhout IA, Klegeris A. Potential neurotoxic activity of diverse molecules released by astrocytes. Brain Res Bull 2022; 189:80-101. [PMID: 35988785 DOI: 10.1016/j.brainresbull.2022.08.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/04/2022] [Accepted: 08/14/2022] [Indexed: 11/02/2022]
Abstract
Astrocytes are the main support cells of the central nervous system. They also participate in neuroimmune reactions. In response to pathological and immune stimuli, astrocytes transform to reactive states characterized by increased release of inflammatory mediators. Some of these molecules are neuroprotective and inflammation resolving while others, including reactive oxygen species (ROS), nitric oxide (NO), matrix metalloproteinase (MMP)- 9, L-glutamate, and tumor necrosis factor α (TNF), are well-established toxins known to cause damage to surrounding cells and tissues. We hypothesized that similar to microglia, the brain immune cells, reactive astrocytes can release a broader set of diverse molecules that are potentially neurotoxic. A literature search was conducted to identify such molecules using the following two criteria: 1) evidence of their expression and secretion by astrocytes and 2) direct neurotoxic action. This review describes 14 structurally diverse molecules as less-established astrocyte neurotoxins, including C-X-C motif chemokine ligand (CXCL)10, CXCL12/CXCL12(5-67), FS-7-associated surface antigen ligand (FasL), macrophage inflammatory protein (MIP)- 2α, TNF-related apoptosis inducing ligand (TRAIL), pro-nerve growth factor (proNGF), pro-brain-derived neurotrophic factor (proBDNF), chondroitin sulfate proteoglycans (CSPGs), cathepsin (Cat)B, group IIA secretory phospholipase A2 (sPLA2-IIA), amyloid beta peptides (Aβ), high mobility group box (HMGB)1, ceramides, and lipocalin (LCN)2. For some of these molecules, further studies are required to establish either their direct neurotoxic effects or the full spectrum of stimuli that induce their release by astrocytes. Only limited studies with human-derived astrocytes and neurons are available for most of these potential neurotoxins, which is a knowledge gap that should be addressed in the future. We also summarize available evidence of the role these molecules play in select neuropathologies where reactive astrocytes are a key feature. A comprehensive understanding of the full spectrum of neurotoxins released by reactive astrocytes is key to understanding neuroinflammatory diseases characterized by the adverse activation of these cells and may guide the development of novel treatment strategies.
Collapse
Affiliation(s)
- Taryn E Murray
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Christy M Richards
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Victoria N Robert-Gostlin
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Anna K Bernath
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Ivan A Lindhout
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Andis Klegeris
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada.
| |
Collapse
|
2
|
Xu Y, Li H, Xu D, Li J, Yu F, Wang M, Wang Q, Wu Y, Zhang Q, Tang Y, Yu J. Identification, expression and enzyme activity of the group III sPLA 2 s in Cyprinus carpio L. JOURNAL OF FISH BIOLOGY 2021; 99:25-36. [PMID: 33534139 DOI: 10.1111/jfb.14694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Five group III secreted phospholipase (pla2g3s) homologous genes located on different linkage groups were identified from common carp (Cyprinus carpio), which we named Ccpla2g3a1, Ccpla2g3a2, Ccpla2g3b, Ccpla2g3c1 and Ccpla2g3c2. The five genes encode 530, 525, 461, 752 and 753 amino acids, respectively. Sequence analysis showed that the Ccpla2g3as contain seven exons and the others contain four exons. Synteny analysis of fish pla2g3s indicated that pla2g3a and pla2g3b were from the same ancestor gene, and Ccpla2g3a1, Ccpla2g3a2, Ccpla2g3c1 and Ccpla2g3c2 were from the specific genome duplication of common carp. Due to the significant variation of the pla2g3bs from common carp and zebrafish (Danio rerio), they formed a separate group in the phylogenetic tree. The tissue distributions of Ccpla2g3s coincided with their expression profiles during the embryo stages. The expression levels of Ccpla2g3as and Ccpla2g3cs were low at the embryo stages, and they were abundant in the liver and brain, respectively, whereas the expression of Ccpla2g3b was high at 0.5 h after fertilization and in the ovary. We obtained three soluble recombinant proteins of the bee venom-like PLA2 (BVLP) from Ccpla2g3 and evaluated their PLA2 enzyme properties. The optimum pHs of MBP-a1-BVLP, MBP-b-BVLP and MBP-c1-BVLP were 7.5, 7.0 and 8.0, respectively, and specific activities were 7.68 ± 0.66, 4.155 ± 0.158 and 1.93 ± 0.05 U μmol-1 , respectively. The Kd for Ca2+ of MBP-b-BVLP was the lowest (2.6 μM), whereas the values for both MBP-a1-BVLP and MBP-c1-BVLP were about 15 μM. The Km values of three proteins ranged from 31.9 to 41.91 μM.
Collapse
Affiliation(s)
- Yuxin Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Hongxia Li
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Dihui Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Jianlin Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Fan Yu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Meiyao Wang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Qin Wang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Yunsheng Wu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Qiyuan Zhang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Yongkai Tang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Juhua Yu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| |
Collapse
|
3
|
Trotter A, Anstadt E, Clark RB, Nichols F, Dwivedi A, Aung K, Cervantes JL. The role of phospholipase A2 in multiple Sclerosis: A systematic review and meta-analysis. Mult Scler Relat Disord 2018; 27:206-213. [PMID: 30412818 DOI: 10.1016/j.msard.2018.10.115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/21/2018] [Accepted: 10/29/2018] [Indexed: 01/25/2023]
Abstract
Phospholipases A2 (PLA2) are a diverse group of enzymes that cleave the fatty acids of membrane phospholipids. They play critical roles in pathogenesis of neurodegenerative diseases such as multiple sclerosis by enhancing oxidative stress and initiating inflammation. The levels of PLA2 activity in MS patients compared to controls and role of inhibiting PLA2 activity on severity scores in different experimental models are not comprehensively assessed in the light of varying evidence from published studies. The objective of this systematic review is to determine the association between PLA2 activity and multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). We performed a systematic review of six studies that assessed PLA2 activity in MS patients compared to controls and nine studies that assessed PLA2 activity in EAE. sPLA2 nor Lp-PLA2 activity were not increased in MS compared to controls in five of those six studies. A difference in sPLA2 activity was only found in a study that measured the enzyme activity in urine. However, inhibiting cPLA2 or sPLA2 led to lower clinical severity or no signs of EAE in mice, and a lower incidence of EAE lesions compared to animals without cPLA2 inhibition. These findings indicate that PLA2 appears to play a role in the pathogenesis of EAE.
Collapse
Affiliation(s)
- Austin Trotter
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Emily Anstadt
- Department of Immunology, and Department of Medicine, Farmington, CT, USA
| | - Robert B Clark
- Department of Immunology, and Department of Medicine, Farmington, CT, USA; University of Connecticut School of Medicine, Farmington, CT, USA
| | - Frank Nichols
- Department of Oral Health and Diagnostic Sciences, University of Connecticut School of Dental Medicine, Farmington, CT, USA
| | - Alok Dwivedi
- Department of Biomedical Sciences, Division of Biostatistics and Epidemiology, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Koko Aung
- Department of Internal Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Jorge L Cervantes
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA; Department of Medical Education, Texas Tech University Health Sciences Center, El Paso, TX, USA.
| |
Collapse
|