1
|
Miteva D, Vasilev GV, Velikova T. Role of Specific Autoantibodies in Neurodegenerative Diseases: Pathogenic Antibodies or Promising Biomarkers for Diagnosis. Antibodies (Basel) 2023; 12:81. [PMID: 38131803 PMCID: PMC10740538 DOI: 10.3390/antib12040081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Neurodegenerative diseases (NDDs) affect millions of people worldwide. They develop due to the pathological accumulation and aggregation of various misfolded proteins, axonal and synaptic loss and dysfunction, inflammation, cytoskeletal abnormalities, defects in DNA and RNA, and neuronal death. This leads to the activation of immune responses and the release of the antibodies against them. Recently, it has become clear that autoantibodies (Aabs) can contribute to demyelination, axonal loss, and brain and cognitive dysfunction. This has significantly changed the understanding of the participation of humoral autoimmunity in neurodegenerative disorders. It is crucial to understand how neuroinflammation is involved in neurodegeneration, to aid in improving the diagnostic and therapeutic value of Aabs in the future. This review aims to provide data on the immune system's role in NDDs, the pathogenic role of some specific Aabs against molecules associated with the most common NDDs, and their potential role as biomarkers for monitoring and diagnosing NDDs. It is suggested that the autoimmune aspects of NDDs will facilitate early diagnosis and help to elucidate previously unknown aspects of the pathobiology of these diseases.
Collapse
Affiliation(s)
- Dimitrina Miteva
- Department of Genetics, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Str., 1164 Sofia, Bulgaria
- Medical Faculty, Sofia University St. Kliment Ohridski, 1 Kozyak str, 1407 Sofia, Bulgaria; (G.V.V.); (T.V.)
| | - Georgi V. Vasilev
- Medical Faculty, Sofia University St. Kliment Ohridski, 1 Kozyak str, 1407 Sofia, Bulgaria; (G.V.V.); (T.V.)
- Clinic of Neurology, Department of Emergency Medicine UMHAT “Sv. Georgi”, 4000 Plovdiv, Bulgaria
| | - Tsvetelina Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, 1 Kozyak str, 1407 Sofia, Bulgaria; (G.V.V.); (T.V.)
| |
Collapse
|
2
|
Kocurova G, Ricny J, Ovsepian SV. Autoantibodies targeting neuronal proteins as biomarkers for neurodegenerative diseases. Theranostics 2022; 12:3045-3056. [PMID: 35547759 PMCID: PMC9065204 DOI: 10.7150/thno.72126] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/09/2022] [Indexed: 01/08/2023] Open
Abstract
Neurodegenerative diseases (NDDs) are associated with the accumulation of a range of misfolded proteins across the central nervous system and related autoimmune responses, including the generation of antibodies and the activation of immune cells. Both innate and adaptive immunity become mobilized, leading to cellular and humoral effects. The role of humoral immunity in disease onset and progression remains to be elucidated with rising evidence suggestive of positive (protection, repair) and negative (injury, toxicity) outcomes. In this study, we review advances in research of neuron-targeting autoantibodies in the most prevalent NDDs. We discuss their biological origin, molecular diversity and changes in the course of diseases, consider their relevance to the initiation and progression of pathology as well as diagnostic and prognostic significance. It is suggested that the emerging autoimmune aspects of NDDs not only could facilitate the early detection but also might help to elucidate previously unknown facets of pathobiology with relevance to the development of precision medicine.
Collapse
Affiliation(s)
- Gabriela Kocurova
- Experimental Neurobiology Program, National Institute of Mental Health, Klecany, Czech Republic
| | - Jan Ricny
- Experimental Neurobiology Program, National Institute of Mental Health, Klecany, Czech Republic
| | - Saak V. Ovsepian
- Faculty of Science and Engineering, University of Greenwich London, Chatham Maritime, Kent, ME4 4TB, United Kingdom
| |
Collapse
|
3
|
Wang L, Mao X. Role of Retinal Amyloid-β in Neurodegenerative Diseases: Overlapping Mechanisms and Emerging Clinical Applications. Int J Mol Sci 2021; 22:2360. [PMID: 33653000 PMCID: PMC7956232 DOI: 10.3390/ijms22052360] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 02/03/2023] Open
Abstract
Amyloid-β (Aβ) accumulations have been identified in the retina for neurodegeneration-associated disorders like Alzheimer's disease (AD), glaucoma, and age-related macular degeneration (AMD). Elevated retinal Aβ levels were associated with progressive retinal neurodegeneration, elevated cerebral Aβ accumulation, and increased disease severity with a decline in cognition and vision. Retinal Aβ accumulation and its pathological effects were demonstrated to occur prior to irreversible neurodegeneration, which highlights its potential in early disease detection and intervention. Using the retina as a model of the brain, recent studies have focused on characterizing retinal Aβ to determine its applicability for population-based screening of AD, which warrants a further understanding of how Aβ manifests between these disorders. While current treatments directly targeting Aβ accumulations have had limited results, continued exploration of Aβ-associated pathological pathways may yield new therapeutic targets for preserving cognition and vision. Here, we provide a review on the role of retinal Aβ manifestations in these distinct neurodegeneration-associated disorders. We also discuss the recent applications of retinal Aβ for AD screening and current clinical trial outcomes for Aβ-associated treatment approaches. Lastly, we explore potential future therapeutic targets based on overlapping mechanisms of pathophysiology in AD, glaucoma, and AMD.
Collapse
Affiliation(s)
- Liang Wang
- Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Xiaobo Mao
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
4
|
Reyneveld GIJ, Savelkoul HFJ, Parmentier HK. Current Understanding of Natural Antibodies and Exploring the Possibilities of Modulation Using Veterinary Models. A Review. Front Immunol 2020; 11:2139. [PMID: 33013904 PMCID: PMC7511776 DOI: 10.3389/fimmu.2020.02139] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/06/2020] [Indexed: 12/20/2022] Open
Abstract
Natural antibodies (NAb) are defined as germline encoded immunoglobulins found in individuals without (known) prior antigenic experience. NAb bind exogenous (e.g., bacterial) and self-components and have been found in every vertebrate species tested. NAb likely act as a first-line immune defense against infections. A large part of NAb, so called natural autoantibodies (NAAb) bind to and clear (self) neo-epitopes, apoptotic, and necrotic cells. Such self-binding antibodies cannot, however, be considered as pathogenic autoantibodies in the classical sense. IgM and IgG NAb and NAAb and their implications in health and disease are relatively well-described in humans and mice. NAb are present in veterinary (and wildlife) species, but their relation with diseases and disorders in veterinary species are much less known. Also, there is little known of IgA NAb. IgA is the most abundant immunoglobulin with essential pro-inflammatory and homeostatic properties urging for more research on the importance of IgA NAb. Since NAb in humans were indicated to fulfill important functions in health and disease, their role in health of veterinary species should be investigated more often. Furthermore, it is unknown whether levels of NAb-isotypes and/or idiotypes can and should be modulated. Veterinary species as models of choice fill in a niche between mice and (non-human) primates, and the study of NAb in veterinary species may provide valuable new insights that will likely improve health management. Below, examples of the involvement of NAb in several diseases in mostly humans are shown. Possibilities of intravenous immunoglobulin administration, targeted immunotherapy, immunization, diet, and genetic modulation are discussed, all of which could be well-studied using animal models. Arguments are given why veterinary immunology should obtain inspiration from human studies and why human immunology would benefit from veterinary models. Within the One Health concept, findings from veterinary (and wildlife) studies can be related to human studies and vice versa so that both fields will mutually benefit. This will lead to a better understanding of NAb: their origin, activation mechanisms, and their implications in health and disease, and will lead to novel health management strategies for both human and veterinary species.
Collapse
Affiliation(s)
- G. IJsbrand Reyneveld
- Faculty of Science, VU University, Amsterdam, Netherlands
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, Wageningen, Netherlands
| | - Huub F. J. Savelkoul
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, Wageningen, Netherlands
| | - Henk K. Parmentier
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
5
|
Kile S, Au W, Parise C, Sohi J, Yarbrough T, Czeszynski A, Johnson K, Redline D, Donnel T, Hankins A, Rose K. Reduction of Amyloid in the Brain and Retina After Treatment With IVIG for Mild Cognitive Impairment. Am J Alzheimers Dis Other Demen 2020; 35:1533317519899800. [PMID: 32048858 PMCID: PMC10624008 DOI: 10.1177/1533317519899800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To assess whether intravenous immunoglobulin (IVIG) in subjects with mild cognitive impairment (MCI) results in a reduction in amyloid in the central nervous system (CNS). METHODS Five subjects with MCI underwent baseline Florbetapir positron emission tomography and retinal autofluorescent imaging. All were administered IVIG (Octagam 10%) at 0.4 g/kg every 14 days for a total of 5 infusions. After 3 months, standard uptake value ratio (SUVR) and amyloid retinal deposits were reassessed. RESULTS Three subjects had a reduction in amyloid SUVR and all 5 subjects had a reduction in amyloid retinal deposits in at least 1 eye. CONCLUSIONS A short course of IVIG over 2 months removes a measurable amount of amyloid from the CNS in persons with MCI.
Collapse
Affiliation(s)
- Shawn Kile
- Sutter Neuroscience Institute, Sacramento, CA, USA
| | - William Au
- Sutter Neuroscience Institute, Sacramento, CA, USA
| | - Carol Parise
- Sutter Institute for Medical Research (SIMR), Sacramento, CA, USA
| | - Jaideep Sohi
- Northern California PET Imaging Center, Sacramento, CA, USA
| | | | | | | | | | - Tammy Donnel
- Sutter Institute for Medical Research (SIMR), Sacramento, CA, USA
| | - Andrea Hankins
- Sutter Institute for Medical Research (SIMR), Sacramento, CA, USA
| | | |
Collapse
|
6
|
Tau-Reactive Endogenous Antibodies: Origin, Functionality, and Implications for the Pathophysiology of Alzheimer's Disease. J Immunol Res 2019; 2019:7406810. [PMID: 31687413 PMCID: PMC6811779 DOI: 10.1155/2019/7406810] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/19/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022] Open
Abstract
In Alzheimer's disease (AD), tau pathology manifested by the accumulation of intraneuronal tangles and soluble toxic oligomers emerges as a promising therapeutic target. Multiple anti-tau antibodies inhibiting the formation and propagation of cytotoxic tau or promoting its clearance and degradation have been tested in clinical trials, albeit with the inconclusive outcome. Antibodies against tau protein have been documented both in the brain circulatory system and at the periphery, but their origin and role under normal conditions and in AD remain unclear. While it is tempting to assign them a protective role in regulating tau level and removal of toxic variants, the supportive evidence remains sporadic, requiring systematic analysis and critical evaluation. Herein, we review recent data showing the occurrence of tau-reactive antibodies in the brain and peripheral circulation and discuss their origin and significance in tau clearance. Based on the emerging evidence, we cautiously propose that impairments of tau clearance at the periphery by humoral immunity might aggravate the tau pathology in the central nervous system, with implication for the neurodegenerative process of AD.
Collapse
|
7
|
Chantran Y, Capron J, Alamowitch S, Aucouturier P. Anti-Aβ Antibodies and Cerebral Amyloid Angiopathy Complications. Front Immunol 2019; 10:1534. [PMID: 31333665 PMCID: PMC6620823 DOI: 10.3389/fimmu.2019.01534] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/19/2019] [Indexed: 11/13/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA) corresponds to the deposition of amyloid material in the cerebral vasculature, leading to structural modifications of blood vessel walls. The most frequent form of sporadic CAA involves fibrillar β-amyloid peptide (Aβ) deposits, mainly the 40 amino acid form (Aβ1-40), which are commonly found in the elderly with or without Alzheimer's disease. Sporadic CAA usually remains clinically silent. However, in some cases, acute complications either hemorrhagic or inflammatory can occur. Similar complications occurred after active or passive immunization against Aβ in experimental animal models exhibiting CAA, and in subjects with Alzheimer's disease during clinical trials. The triggering of these adverse events by active immunization and monoclonal antibody administration in CAA-bearing individuals suggests that analogous mechanisms could be involved during spontaneous CAA complications, drawing particular attention to the role of anti-Aβ antibodies. However, antibodies that react with several monomeric and aggregated forms of Aβ spontaneously occur in virtually all human individuals, hence being part of the "natural antibody" repertoire. Natural antibodies are usually described as having low-affinity and high cross-reactivity toward microbial components and autoantigens. Although frequently of the IgM class, they also belong to IgG and IgA isotypes. They likely display homeostatic functions and protective roles in aging. Until recently, the peculiar properties of these natural antibodies have hindered proper analysis of the Aβ-reactive antibody repertoire and the study of their implication in CAA complications. Herein, we review and comment the evidences of an auto-immune nature of spontaneous CAA complications, and discuss implications for forthcoming research and clinical practice.
Collapse
Affiliation(s)
- Yannick Chantran
- Sorbonne Université, Inserm, UMRS 938, Hôpital St-Antoine, AP-HP, Paris, France.,Département d'Immunologie Biologique, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Jean Capron
- Sorbonne Université, Inserm, UMRS 938, Hôpital St-Antoine, AP-HP, Paris, France.,Département de Neurologie, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Sonia Alamowitch
- Sorbonne Université, Inserm, UMRS 938, Hôpital St-Antoine, AP-HP, Paris, France.,Département de Neurologie, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Pierre Aucouturier
- Sorbonne Université, Inserm, UMRS 938, Hôpital St-Antoine, AP-HP, Paris, France.,Département d'Immunologie Biologique, Hôpital Saint-Antoine, AP-HP, Paris, France
| |
Collapse
|
8
|
Manolopoulos A, Andreadis P, Malandris K, Avgerinos I, Karagiannis T, Kapogiannis D, Tsolaki M, Tsapas A, Bekiari E. Intravenous Immunoglobulin for Patients With Alzheimer's Disease: A Systematic Review and Meta-Analysis. Am J Alzheimers Dis Other Demen 2019; 34:281-289. [PMID: 30987435 DOI: 10.1177/1533317519843720] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AIM To assess the efficacy and safety of intravenous immunoglobulin (IVIg) for patients with Alzheimer's disease (AD). MATERIALS AND METHODS We searched electronic databases and other sources for randomized controlled trials comparing IVIg with placebo or other treatment for adults with AD. Primary outcome was change from baseline in Alzheimer's Disease Assessment Scale-Cognitive subscale (ADAS-Cog). RESULTS Five placebo-controlled trials were included in the meta-analysis. Compared to placebo, IVIg 0.2 and 0.4 g/kg once every two weeks did not change ADAS-Cog score (weighted mean difference: 0.37, 95% confidence interval: -1.46 to 2.20 and 0.77, -1.34 to 2.88, respectively). Furthermore, except for an increase in the incidence of rash, IVIg did not affect the incidence of other adverse events. CONCLUSION IVIg, albeit safe, is inefficacious for treatment of patients with AD. Future trials targeting earlier stages of disease or applying different dosing regimens may be warranted to clarify its therapeutic potential.
Collapse
Affiliation(s)
- Apostolos Manolopoulos
- 1 Clinical Research and Evidence-Based Medicine Unit, Second Medical Department, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki, Greece
| | - Panagiotis Andreadis
- 1 Clinical Research and Evidence-Based Medicine Unit, Second Medical Department, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki, Greece
| | - Konstantinos Malandris
- 1 Clinical Research and Evidence-Based Medicine Unit, Second Medical Department, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki, Greece
| | - Ioannis Avgerinos
- 1 Clinical Research and Evidence-Based Medicine Unit, Second Medical Department, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki, Greece
| | - Thomas Karagiannis
- 1 Clinical Research and Evidence-Based Medicine Unit, Second Medical Department, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki, Greece
| | - Dimitrios Kapogiannis
- 2 Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, Bethesda, MD, USA
| | - Magda Tsolaki
- 3 First Department of Neurology, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Apostolos Tsapas
- 1 Clinical Research and Evidence-Based Medicine Unit, Second Medical Department, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki, Greece.,4 Harris Manchester College, University of Oxford, Oxford, United Kingdom
| | - Eleni Bekiari
- 1 Clinical Research and Evidence-Based Medicine Unit, Second Medical Department, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki, Greece
| |
Collapse
|
9
|
Krestova M, Ricny J, Bartos A. Changes in concentrations of tau-reactive antibodies are dependent on sex in Alzheimer's disease patients. J Neuroimmunol 2018; 322:1-8. [PMID: 29789140 DOI: 10.1016/j.jneuroim.2018.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 05/11/2018] [Accepted: 05/11/2018] [Indexed: 12/13/2022]
Abstract
The presence of pre-existing natural antibodies against Alzheimer's disease (AD) pathological proteins might interfere with immune responses to therapeutic vaccination with these proteins. We aimed to compare levels of antibodies in CSF and serum: We observed higher reactivity of natural tau-reactive antibodies towards phosphorylated bovine tau protein than to human recombinant (non-phosphorylated) tau protein. Males with MCI-AD had higher amounts of these antibodies than corresponding controls. Concentrations of antibodies were lower in females with the MCI-AD than in control females. These findings may have implications for tau vaccination trials.
Collapse
Affiliation(s)
| | - Jan Ricny
- National Institute of Mental Health, Klecany, Czech Republic
| | - Ales Bartos
- National Institute of Mental Health, Klecany, Czech Republic; Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
10
|
Krestova M, Hromadkova L, Ricny J. Purification of Natural Antibodies Against Tau Protein by Affinity Chromatography. Methods Mol Biol 2018; 1643:33-44. [PMID: 28667528 DOI: 10.1007/978-1-4939-7180-0_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Natural antibodies are now widely studied for their therapeutical potential. Therefore, their isolation and subsequent characterization is desired. Here, we describe an isolation method for natural anti-tau antibodies from human plasma by utilization of affinity chromatography with epoxy-activated copolymer resin. The evalution of isolation efficiency and avidity of isolated antibodies is decribed by modified indirect ELISA assay.
Collapse
Affiliation(s)
- Michala Krestova
- National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic.
| | - Lenka Hromadkova
- National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic
| | - Jan Ricny
- National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic
| |
Collapse
|
11
|
Hromadkova L, Kupcik R, Vajrychova M, Prikryl P, Charvatova A, Jankovicova B, Ripova D, Bilkova Z, Slovakova M. Kinase-loaded magnetic beads for sequentialin vitrophosphorylation of peptides and proteins. Analyst 2018; 143:466-474. [DOI: 10.1039/c7an01508a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Kinases ERK2 and GSK-3β loaded magnetic beads for sequentialin vitrophosphorylation of peptides and proteins.
Collapse
Affiliation(s)
- Lenka Hromadkova
- Department of Biological and Biochemical Sciences
- Faculty of Chemical Technology
- University of Pardubice
- Pardubice 532 10
- Czech Republic
| | - Rudolf Kupcik
- Department of Biological and Biochemical Sciences
- Faculty of Chemical Technology
- University of Pardubice
- Pardubice 532 10
- Czech Republic
| | - Marie Vajrychova
- Biomedical Research Center
- University Hospital Hradec Kralove
- Hradec Kralove 500 05
- Czech Republic
- Department of Molecular Pathology and Biology
| | - Petr Prikryl
- Institute of Pathological Physiology
- First Faculty of Medicine
- Charles University in Prague
- Prague 128 53
- Czech Republic
| | - Andrea Charvatova
- Department of Biological and Biochemical Sciences
- Faculty of Chemical Technology
- University of Pardubice
- Pardubice 532 10
- Czech Republic
| | - Barbora Jankovicova
- Department of Biological and Biochemical Sciences
- Faculty of Chemical Technology
- University of Pardubice
- Pardubice 532 10
- Czech Republic
| | - Daniela Ripova
- National Institute of Mental Health
- Klecany 250 67
- Czech Republic
| | - Zuzana Bilkova
- Department of Biological and Biochemical Sciences
- Faculty of Chemical Technology
- University of Pardubice
- Pardubice 532 10
- Czech Republic
| | - Marcela Slovakova
- Department of Biological and Biochemical Sciences
- Faculty of Chemical Technology
- University of Pardubice
- Pardubice 532 10
- Czech Republic
| |
Collapse
|
12
|
Krestova M, Hromadkova L, Bilkova Z, Bartos A, Ricny J. Characterization of isolated tau-reactive antibodies from the IVIG product, plasma of patients with Alzheimer's disease and cognitively normal individuals. J Neuroimmunol 2017; 313:16-24. [DOI: 10.1016/j.jneuroim.2017.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/20/2017] [Accepted: 09/27/2017] [Indexed: 02/06/2023]
|
13
|
Tau-based therapies in neurodegeneration: opportunities and challenges. Nat Rev Drug Discov 2017; 16:863-883. [DOI: 10.1038/nrd.2017.155] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Immunological memory to hyperphosphorylated tau in asymptomatic individuals. Acta Neuropathol 2017; 133:767-783. [PMID: 28341999 PMCID: PMC5390017 DOI: 10.1007/s00401-017-1705-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/02/2017] [Accepted: 03/19/2017] [Indexed: 12/21/2022]
Abstract
Several reports have described the presence of antibodies against Alzheimer’s disease-associated hyperphosphorylated forms of tau in serum of healthy individuals. To characterize the specificities that can be found, we interrogated peripheral IgG+ memory B cells from asymptomatic blood donors for reactivity to a panel of phosphorylated tau peptides using a single-cell screening assay. Antibody sequences were recovered, cloned, and expressed as full-length IgGs. In total, 52 somatically mutated tau-binding antibodies were identified, corresponding to 35 unique clonal families. Forty-one of these antibodies recognize epitopes in the proline-rich and C-terminal domains, and binding of 26 of these antibodies is strictly phosphorylation dependent. Thirteen antibodies showed inhibitory activity in a P301S lysate seeded in vitro tau aggregation assay. Two such antibodies, CBTAU-7.1 and CBTAU-22.1, which bind to the proline-rich and C-terminal regions of tau, respectively, were characterized in more detail. CBTAU-7.1 recognizes an epitope that is similar to that of murine anti-PHF antibody AT8, but has different phospho requirements. Both CBTAU-7.1 and CBTAU-22.1 detect pathological tau deposits in post-mortem brain tissue. CBTAU-7.1 reveals a similar IHC distribution pattern as AT8, immunostaining (pre)tangles, threads, and neuritic plaques. CBTAU-22.1 shows selective detection of neurofibrillary changes by IHC. Taken together, these results suggest the presence of an ongoing antigen-driven immune response against tau in healthy individuals. The wide range of specificities to tau suggests that the human immune repertoire may contain antibodies that can serve as biomarkers or be exploited for therapy.
Collapse
|
15
|
Yin W, M. Stover C. The potential of circulating autoantibodies in the early diagnosis of Alzheimer’s disease. AIMS ALLERGY AND IMMUNOLOGY 2017. [DOI: 10.3934/allergy.2017.2.62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|