1
|
Nieto CT, Manchado A, Belda L, Diez D, Garrido NM. 2-Phenethylamines in Medicinal Chemistry: A Review. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020855. [PMID: 36677913 PMCID: PMC9864394 DOI: 10.3390/molecules28020855] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
A concise review covering updated presence and role of 2-phenethylamines in medicinal chemistry is presented. Open-chain, flexible alicyclic amine derivatives of this motif are enumerated in key therapeutic targets, listing medicinal chemistry hits and appealing screening compounds. Latest reports in discovering new bioactive 2-phenethylamines by research groups are covered too.
Collapse
|
2
|
Du T, Yang CL, Ge MR, Liu Y, Zhang P, Li H, Li XL, Li T, Liu YD, Dou YC, Yang B, Duan RS. M1 Macrophage Derived Exosomes Aggravate Experimental Autoimmune Neuritis via Modulating Th1 Response. Front Immunol 2020; 11:1603. [PMID: 32793234 PMCID: PMC7390899 DOI: 10.3389/fimmu.2020.01603] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 06/16/2020] [Indexed: 12/29/2022] Open
Abstract
Guillain–Barré syndrome (GBS), an immune-mediated disorder affecting the peripheral nervous system, is the most common and severe acute paralytic neuropathy. GBS remains to be potentially life-threatening and disabling despite the increasing availability of current standard therapeutic regimens. Therefore, more targeted therapeutics are in urgent need. Macrophages have been implicated in both initiation and resolution of experimental autoimmune neuritis (EAN), the animal model of GBS, but the exact mechanisms remain to be elucidated. It has been increasingly appreciated that exosomes, a type of extracellular vesicles (EVs), are of importance for functions of macrophages. Nevertheless, the roles of macrophage derived exosomes in EAN/GBS remain unclear. Here we determined the effects of macrophage derived exosomes on the development of EAN in Lewis rats. M1 macrophage derived exosomes (M1 exosomes) were found to aggravate EAN via boosting Th1 and Th17 response, while M2 macrophage derived exosomes (M2 exosomes) showed potentials to mitigate disease severity via a mechanism bypassing Th1 and Th17 response. Besides, both M1 and M2 exosomes increased germinal center reactions in EAN. Further in vitro studies confirmed that M1 exosomes could directly promote IFN-γ production in T cells and M2 exosomes were not capable of inhibiting IFN-γ expression. Thus, our data identify a previously undescribed means that M1 macrophages amplify Th1 response via exosomes and provide novel insights into the crosstalk between macrophages and T cells as well.
Collapse
Affiliation(s)
- Tong Du
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Chun-Lin Yang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Meng-Ru Ge
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Ying Liu
- Department of Neuronal Electrophysiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Peng Zhang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Heng Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Xiao-Li Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Tao Li
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Yu-Dong Liu
- Department of Neuronal Electrophysiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Ying-Chun Dou
- College of Basic Medical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bing Yang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Rui-Sheng Duan
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.,Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| |
Collapse
|
3
|
Adenosine binds predominantly to adenosine receptor A1 subtype in astrocytes and mediates an immunosuppressive effect. Brain Res 2018; 1700:47-55. [PMID: 29935155 DOI: 10.1016/j.brainres.2018.06.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 06/11/2018] [Accepted: 06/16/2018] [Indexed: 01/21/2023]
Abstract
The four kinds of adenosine receptor subtypes (ARs), named as ARA1, ARA2A, ARA2B and ARA3, have multiple biological functions. ARs are differently distributed across the body and have distinguished ability of binding adenosine. We try to figure out how these ARs were expressed in astrocytes and which one has the first priority of utilizing adenosine. Firstly, mRNA expressions and membrane localization of all ARs were evaluated by qPCR and western blot. After the membrane localization of all ARs in astrocytes was being confirmed their individual adenosine binding ability was determined by radio-active ligand binding assay respectively. It was revealed that ARA1 had much superior adenosine binding ability than other AR subtypes. Functional study demonstrated that ARA1 potentially mediated an immune suppressive effect in astrocytes. The activation of ARA1 signaling lead to decreased IL-12 and IL-23 production, and decreased chemokine production, including CCL2, CXCL8 and IP-10. When interacted with CD4 cells ARA1 agonist pre-treated astrocytes showed hindered ability of stimulating CD4 cells to secret IL-17 and IFN-γ and inducing CD4 cells' chemo taxi. Finally, in vivo experiment confirmed that local administration of ARA1agonist ameliorated EAE in wild type B6 recipients, but not Ara1-/- recipients. As a conclusion, this paper suggested that adenosine receptor A1 subtype predominantly binds adenosine in astrocytes and mediates an immunosuppressive effect.
Collapse
|
4
|
Akbari A, Khalili-Fomeshi M, Ashrafpour M, Moghadamnia AA, Ghasemi-Kasman M. Adenosine A 2A receptor blockade attenuates spatial memory deficit and extent of demyelination areas in lyolecithin-induced demyelination model. Life Sci 2018; 205:63-72. [PMID: 29730168 DOI: 10.1016/j.lfs.2018.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/21/2018] [Accepted: 05/03/2018] [Indexed: 12/16/2022]
Abstract
In recent years, inactivation of A2A adenosine receptors has been emerged as a novel strategy for treatment of several neurodegenerative diseases. Although numerous studies have shown the beneficial effects of A2A receptors blockade on spatial memory, the impacts of selective adenosine A2A receptors on memory performance has not yet been examined in the context of demyelination. In the present study, we evaluated the effect of A2A receptor antagonist SCH58261 on spatial memory and myelination in an experimental model of focal demyelination in rat fimbria. Demyelination was induced by local injection of lysolecithin (LPC) 1% (2 μl) into the hippocampus fimbria. SCH58261 (20 μg/0.5 μl or 40 μg/0.5 μl) was daily injected intracerebroventricularly (i.c.v.) for 10 days post LPC injection. The Morris water maze test was used to assess the spatial learning and memory on day 6 post lesion. Myelin staining and immunostaining against astrocytes/microglia were carried out 10 days post LPC injection. The administration of adenosine A2A receptor antagonist prevented the spatial memory impairment in LPC receiving animals. Myelin staining revealed that application of SCH58261 reduces the extent of demyelination areas in the fimbria. Furthermore, the level of astrocytes and microglia activation was attenuated following administration of A2A receptor antagonist. Collectively, the results of this study suggest that A2A receptor blockade can improve the spatial memory and protect myelin sheath, which might be considered as a novel therapeutic approach for multiple sclerosis disease.
Collapse
Affiliation(s)
- Atefeh Akbari
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | | | - Manouchehr Ashrafpour
- Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Physiology, Faculty of Medical Sciences, Babol University of Medical Sciences, Babol, Iran
| | - Ali Akbar Moghadamnia
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Pharmacology, Faculty of Medical Sciences, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
5
|
Alencar AK, Carvalho FI, Silva AM, Martinez ST, Calasans-Maia JA, Fraga CM, Barreiro EJ, Zapata-Sudo G, Sudo RT. Synergistic interaction between a PDE5 inhibitor (sildenafil) and a new adenosine A2A receptor agonist (LASSBio-1359) improves pulmonary hypertension in rats. PLoS One 2018; 13:e0195047. [PMID: 29677206 PMCID: PMC5909907 DOI: 10.1371/journal.pone.0195047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/15/2018] [Indexed: 01/08/2023] Open
Abstract
Introduction Pulmonary hypertension (PH) is characterized by enhanced pulmonary vascular resistance, which causes right ventricle (RV) pressure overload and results in right sided heart failure and death. This work investigated the effectiveness of a combined therapy with PDE5 inhibitor (PDE5i) and a new adenosine A2A receptor (A2AR) agonist in mitigating monocrotaline (MCT) induced PH in rats. Methods An in vitro isobolographic analysis was performed to identify possible synergistic relaxation effect between sildenafil and LASSBio 1359 in rat pulmonary arteries (PAs). In the in vivo experiments, PH was induced in male Wistar rats by a single intraperitoneal injection of 60 mg/kg MCT. Rats were divided into the following groups: control (saline injection only), MCT + vehicle, MCT + sildenafil, MCT + LASSBio 1359 and MCT + combination of sildenafil and LASSBio 1359. Fourteen days after the MCT injection, rats were treated daily with oral administration of the regimen therapies or vehicle for 14 days. Cardiopulmonary system function and structure were evaluated by echocardiography. RV systolic pressure and PA endothelial function were measured. Results Isobolographic analysis showed a synergistic interaction between sildenafil and LASSBio 1359 in rat PAs. Combined therapy with sildenafil and LASSBio 1359 but not monotreatment with low dosages of either sildenafil or LASSBio 1359 ameliorated all of PH related abnormalities in cardiopulmonary function and structure in MCT challenged rats. Conclusions The combination of sildenafil and LASSBio 1359 has a synergistic interaction, suggesting that combined use of these pharmacological targets may be an alternative to improve quality of life and outcomes for PH patients.
Collapse
Affiliation(s)
- Allan K. Alencar
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fábio I. Carvalho
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ananssa M. Silva
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sabrina T. Martinez
- Instituto de Química, Universidade Federal Fluminense, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jorge A. Calasans-Maia
- Serviço de Anestesiologia, Hospital Universitário, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos M. Fraga
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eliezer J. Barreiro
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gisele Zapata-Sudo
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Roberto T. Sudo
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
6
|
Toll-like receptors, NF-κB, and IL-27 mediate adenosine A2A receptor signaling in BTBR T + Itpr3 tf/J mice. Prog Neuropsychopharmacol Biol Psychiatry 2017; 79:184-191. [PMID: 28668513 DOI: 10.1016/j.pnpbp.2017.06.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/28/2017] [Accepted: 06/28/2017] [Indexed: 12/18/2022]
Abstract
Autism is a predominant neurodevelopmental disorder characterized by impaired communication, social deficits, and repetitive behaviors. Recent research has proposed that the impairment of innate immunity may play an important role in autism. Toll-like receptors (TLRs) are potential therapeutic targets against neuroinflammation. The BTBR T+ Itpr3tf/J (BTBR) mouse is a well-known model of autism, showing repetitive behaviors such as cognitive inflexibility and increased grooming as compared to C57BL/6 (B6) mice. Adenosine A2A receptor (A2AR) signaling is involved in inflammation, brain injury, and lymphocyte infiltration into the CNS, but the role of A2AR in autism remains unknown. We investigated the effect of A2AR antagonist SCH 5826 (SCH) and agonist CGS 21680 (CGS) on the expression levels of TLRs, IL-27, NF-κB p65, and IκBα in BTBR mice. Treatment of BTBR mice with SCH increased the percentage of splenic CD14+TLR2+ cells, CD14+TLR3+ cells, CD14+TLR4+ cells, and decreased the percentage of CD14+IL-27+ cells, as compared to the untreated BTBR mice. Our results reveal that BTBR mice treated with CGS had reversal of SCH-induced immunological responses. Moreover, mRNA and protein expression analyses confirmed increased expression of TLR2, TLR3, TLR4, and NF-κB p65 in brain tissue, and decreased IL-27 and IκBα expression following SCH treatment, as compared to the untreated-BTBR and CGS-treated BTBR mice. Together, these results suggest that the A2AR agonist corrects neuroimmune dysfunction observed in BTBR mice, and thus has the potential as a therapeutic approach in autism.
Collapse
|
7
|
Li H, Lu H, Tang W, Zuo J. Targeting methionine cycle as a potential therapeutic strategy for immune disorders. Expert Opin Ther Targets 2017; 21:1-17. [PMID: 28829212 DOI: 10.1080/14728222.2017.1370454] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Methionine cycle plays an essential role in regulating many cellular events, especially transmethylation reactions, incorporating the methyl donor S-adenosylmethionine (SAM). The transmethylations and substances involved in the cycle have shown complicated effects and mechanisms on immunocytes developments and activations, and exert crucial impacts on the pathological processes in immune disorders. Areas covered: Methionine cycle has been considered as an effective means of drug developments. This review discussed the role of methionine cycle in immune responses and summarized the potential therapeutic strategies based on the cycle, including SAM analogs, methyltransferase inhibitors, S-adenosylhomocysteine hydrolase (SAHH) inhibitors, adenosine receptors specific agonists or antagonists and homocysteine (Hcy)-lowering reagents, in treating human immunodeficiency virus (HIV) infections, systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), multiple sclerosis (MS), systemic sclerosis (SSc) and other immune disorders. Expert opinion: New targets and biomarkers grown out of methionine cycle have developed rapidly in the past decades. However, impacts of epigenetic regulations on immune disorders are unclear and whether the substances in methionine cycle can be clarified as biomarkers remains controversial. Therefore, further elucidation on the role of epigenetic regulations and substances in methionine cycle may contribute to exploring the cycle-derived biomarkers and drugs in immune disorders.
Collapse
Affiliation(s)
- Heng Li
- a Laboratory of Immunopharmacology, State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai , China
- b College of Pharmacy , University of Chinese Academy of Sciences , Beijing , China
| | - Huimin Lu
- a Laboratory of Immunopharmacology, State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai , China
- b College of Pharmacy , University of Chinese Academy of Sciences , Beijing , China
| | - Wei Tang
- a Laboratory of Immunopharmacology, State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai , China
- b College of Pharmacy , University of Chinese Academy of Sciences , Beijing , China
| | - Jianping Zuo
- a Laboratory of Immunopharmacology, State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai , China
- b College of Pharmacy , University of Chinese Academy of Sciences , Beijing , China
| |
Collapse
|
8
|
Borea PA, Gessi S, Merighi S, Vincenzi F, Varani K. Pathological overproduction: the bad side of adenosine. Br J Pharmacol 2017; 174:1945-1960. [PMID: 28252203 PMCID: PMC6398520 DOI: 10.1111/bph.13763] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 12/12/2022] Open
Abstract
Adenosine is an endogenous ubiquitous purine nucleoside, which is increased by hypoxia, ischaemia and tissue damage and mediates a number of physiopathological effects by interacting with four GPCRs, identified as A1 , A2A , A2B and A3 . Physiological and acutely increased adenosine is mostly associated with beneficial effects that include vasodilatation and a decrease in inflammation. In contrast, chronic overproduction of adenosine occurs in important pathological states, where long-lasting increases in the nucleoside levels are responsible for the bad side of adenosine associated with chronic inflammation, fibrosis and organ damage. In this review, we describe and critically discuss the pathological overproduction of adenosine and analyse when, where and how adenosine exerts its detrimental effects throughout the body.
Collapse
Affiliation(s)
- Pier Andrea Borea
- Department of Medical SciencesUniversity of FerraraFerrara44121Italy
| | - Stefania Gessi
- Department of Medical SciencesUniversity of FerraraFerrara44121Italy
| | - Stefania Merighi
- Department of Medical SciencesUniversity of FerraraFerrara44121Italy
| | - Fabrizio Vincenzi
- Department of Medical SciencesUniversity of FerraraFerrara44121Italy
| | - Katia Varani
- Department of Medical SciencesUniversity of FerraraFerrara44121Italy
| |
Collapse
|
9
|
Ansari MA, Attia SM, Nadeem A, Bakheet SA, Raish M, Khan TH, Al-Shabanah OA, Ahmad SF. Activation of adenosine A2A receptor signaling regulates the expression of cytokines associated with immunologic dysfunction in BTBR T + Itpr3 tf /J mice. Mol Cell Neurosci 2017; 82:76-87. [DOI: 10.1016/j.mcn.2017.04.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 04/16/2017] [Accepted: 04/28/2017] [Indexed: 01/24/2023] Open
|