1
|
Huang YM, Hong XZ, Shen J, Geng LJ, Pan YH, Ling W, Zhao HL. Amyloids in Site-Specific Autoimmune Reactions and Inflammatory Responses. Front Immunol 2020; 10:2980. [PMID: 31993048 PMCID: PMC6964640 DOI: 10.3389/fimmu.2019.02980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 12/04/2019] [Indexed: 12/15/2022] Open
Abstract
Amyloid deposition is a histological hallmark of common human disorders including Alzheimer's disease (AD) and type 2 diabetes. Although some reports highlight that amyloid fibrils might activate the innate immunity system via pattern recognition receptors, here, we provide multiple lines of evidence for the protection by site-specific amyloid protein analogs and fibrils against autoimmune attacks: (1) strategies targeting clearance of the AD-related brain amyloid plaque induce high risk of deadly autoimmune destructions in subjects with cognitive dysfunction; (2) administration of amyloidogenic peptides with either full length or core hexapeptide structure consistently ameliorates signs of experimental autoimmune encephalomyelitis; (3) experimental autoimmune encephalomyelitis is exacerbated following genetic deletion of amyloid precursor proteins; (4) absence of islet amyloid coexists with T-cell-mediated insulitis in autoimmune diabetes and autoimmune polyendocrine syndrome; (5) use of islet amyloid polypeptide agonists rather than antagonists improves diabetes care; and (6) common suppressive signaling pathways by regulatory T cells are activated in both local and systemic amyloidosis. These findings indicate dual modulation activity mediated by amyloid protein monomers, oligomers, and fibrils to maintain immune homeostasis. The protection from autoimmune destruction by amyloid proteins offers a novel therapeutic approach to regenerative medicine for common degenerative diseases.
Collapse
Affiliation(s)
- Yan-Mei Huang
- Department of Immunology, Guangxi Area of Excellence, Guilin Medical University, Guilin, China.,Center for Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin, China
| | - Xue-Zhi Hong
- Department of Immunology, Guangxi Area of Excellence, Guilin Medical University, Guilin, China.,Department of Rheumatology and Immunology, The First Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Jian Shen
- Department of Immunology, Guangxi Area of Excellence, Guilin Medical University, Guilin, China.,Department of Pathology, The First Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Li-Jun Geng
- Department of Immunology, Guangxi Area of Excellence, Guilin Medical University, Guilin, China.,Center for Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin, China
| | - Yan-Hong Pan
- Department of Immunology, Guangxi Area of Excellence, Guilin Medical University, Guilin, China.,Center for Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin, China
| | - Wei Ling
- Department of Immunology, Guangxi Area of Excellence, Guilin Medical University, Guilin, China.,Department of Endocrinology, Xiangya Medical School, Central South University, Changsha, China
| | - Hai-Lu Zhao
- Department of Immunology, Guangxi Area of Excellence, Guilin Medical University, Guilin, China.,Center for Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin, China.,Institute of Basic Medical Sciences, Faculty of Basic Medicine, Guilin Medical University, Guilin, China
| |
Collapse
|
2
|
Plucińska K, Crouch B, Yeap JM, Stoppelkamp S, Riedel G, Platt B. Histological and Behavioral Phenotypes of a Novel Mutated APP Knock-In Mouse. J Alzheimers Dis 2019; 65:165-180. [PMID: 30040726 DOI: 10.3233/jad-180336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Gene mutations within amyloid precursor protein (APP or AβPP) and/or presenilin 1 (PS1) genes are determinants of familial Alzheimer's disease (fAD) and remain fundamental for experimental models. Here, we generated a neuronal knock-in mouse (PLB2APP) with mutated human APPSwe/Lon and investigated histopathology and behavioral phenotypes. Additionally, PLB2APP mice were cross-bred with a presenilin (PS1A246E) line to assess the impact of this gene combination. Immunohistochemistry determined amyloid-β (Aβ) pathology, astrogliosis (via GFAP labelling), and neuronal densities in hippocampal and cortical brain regions. One-year old PLB2APP mice showed higher levels of intracellular Aβ in CA1, dentate gyrus, and cortical regions compared to PLBWT controls. Co-expression of PS1 reduced hippocampal but elevated cortical Aβ build-up. Amyloid plaques were sparse in aged PLB2APP mice, and co-expression of PS1 promoted plaque formation. Heightened GFAP expression followed the region-specific pattern of Aβ in PLB2APP and PLB2APP/PS1 mice. Behaviorally, habituation to a novel environment was delayed in 6-month-old PLB2APP mice, and overall home-cage activity was reduced in both lines at 6 and 12 months, particularly during the dark phase. Spatial learning in the water maze was impaired in PLB2APP mice independent of PS1 expression and associated with reduced spatial navigation strategies. Memory retrieval was compromised in PLB2APP mice only. Our data demonstrate that low expression of APP is sufficient to drive histopathological and cognitive changes in mice without overexpression or excessive plaque deposition. AD-like phenotypes were altered by co-expression of PS1, including a shift from hippocampal to cortical Aβ pathology, alongside reduced deficits in spatial learning.
Collapse
Affiliation(s)
- Kaja Plucińska
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Barry Crouch
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Jie M Yeap
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Sandra Stoppelkamp
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Gernot Riedel
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Bettina Platt
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
3
|
Didonna A, Cantó E, Shams H, Isobe N, Zhao C, Caillier SJ, Condello C, Yamate-Morgan H, Tiwari-Woodruff SK, Mofrad MRK, Hauser SL, Oksenberg JR. Sex-specific Tau methylation patterns and synaptic transcriptional alterations are associated with neural vulnerability during chronic neuroinflammation. J Autoimmun 2019; 101:56-69. [PMID: 31010726 PMCID: PMC6561733 DOI: 10.1016/j.jaut.2019.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 12/19/2022]
Abstract
The molecular events underlying the transition from initial inflammatory flares to the progressive phase of multiple sclerosis (MS) remain poorly understood. Here, we report that the microtubule-associated protein (MAP) Tau exerts a gender-specific protective function on disease progression in the MS model experimental autoimmune encephalomyelitis (EAE). A detailed investigation of the autoimmune response in Tau-deficient mice excluded a strong immunoregulatory role for Tau, suggesting that its beneficial effects are presumably exerted within the central nervous system (CNS). Spinal cord transcriptomic data show increased synaptic dysfunctions and alterations in the NF-kB activation pathway upon EAE in Tau-deficient mice as compared to wildtype animals. We also performed the first comprehensive characterization of Tau post-translational modifications (PTMs) in the nervous system upon EAE. We report that the methylation levels of the conserved lysine residue K306 are significantly decreased in the chronic phase of the disease. By combining biochemical assays and molecular dynamics (MD) simulations, we demonstrate that methylation at K306 decreases the affinity of Tau for the microtubule network. Thus, the down-regulation of this PTM might represent a homeostatic response to enhance axonal stability against an autoimmune CNS insult. The results, altogether, position Tau as key mediator between the inflammatory processes and neurodegeneration that seems to unify many CNS diseases.
Collapse
Affiliation(s)
- Alessandro Didonna
- Department of Neurology and Weill Institute for Neurosciences, University of California at San Francisco, San Francisco, CA, 94158, USA.
| | - Ester Cantó
- Department of Neurology and Weill Institute for Neurosciences, University of California at San Francisco, San Francisco, CA, 94158, USA
| | - Hengameh Shams
- Department of Neurology and Weill Institute for Neurosciences, University of California at San Francisco, San Francisco, CA, 94158, USA
| | - Noriko Isobe
- Department of Neurology and Weill Institute for Neurosciences, University of California at San Francisco, San Francisco, CA, 94158, USA
| | - Chao Zhao
- Department of Neurology and Weill Institute for Neurosciences, University of California at San Francisco, San Francisco, CA, 94158, USA
| | - Stacy J Caillier
- Department of Neurology and Weill Institute for Neurosciences, University of California at San Francisco, San Francisco, CA, 94158, USA
| | - Carlo Condello
- Department of Neurology and Weill Institute for Neurosciences, University of California at San Francisco, San Francisco, CA, 94158, USA; Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, 94158, USA
| | - Hana Yamate-Morgan
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, 92521, USA; Neuroscience Graduate Program, University of California Riverside, Riverside, CA, 92521, USA
| | - Seema K Tiwari-Woodruff
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, 92521, USA; Neuroscience Graduate Program, University of California Riverside, Riverside, CA, 92521, USA; Center for Glial-Neuronal Interactions, UCR School of Medicine, CA, 92506, USA
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA, 94720, USA; Physical Biosciences Division, Lawrence Berkeley National Lab, Berkeley, CA, 94720, USA
| | - Stephen L Hauser
- Department of Neurology and Weill Institute for Neurosciences, University of California at San Francisco, San Francisco, CA, 94158, USA
| | - Jorge R Oksenberg
- Department of Neurology and Weill Institute for Neurosciences, University of California at San Francisco, San Francisco, CA, 94158, USA
| |
Collapse
|