1
|
Dalod M, Scheu S. Dendritic cell functions in vivo: a user's guide to current and next generation mutant mouse models. Eur J Immunol 2022; 52:1712-1749. [PMID: 35099816 DOI: 10.1002/eji.202149513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/14/2022] [Indexed: 11/11/2022]
Abstract
Dendritic cells (DCs) do not just excel in antigen presentation. They orchestrate information transfer from innate to adaptive immunity, by sensing and integrating a variety of danger signals, and translating them to naïve T cells, to mount specifically tailored immune responses. This is accomplished by distinct DC types specialized in different functions and because each DC is functionally plastic, assuming different activation states depending on the input signals received. Mouse models hold the key to untangle this complexity and determine which DC types and activation states contribute to which functions. Here, we aim to provide comprehensive information for selecting the most appropriate mutant mouse strains to address specific research questions on DCs, considering three in vivo experimental approaches: (i) interrogating the roles of DC types through their depletion; (ii) determining the underlying mechanisms by specific genetic manipulations; (iii) deciphering the spatiotemporal dynamics of DC responses. We summarize the advantages, caveats, suggested use and perspectives for a variety of mutant mouse strains, discussing in more detail the most widely used or accurate models. Finally, we discuss innovative strategies to improve targeting specificity, for the next generation mutant mouse models, and briefly address how humanized mouse models can accelerate translation into the clinic. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Marc Dalod
- CNRS, Inserm, Aix Marseille Univ, Centre d'Immunologie de Marseille-Luminy (CIML), Turing Center for Living Systems, Marseille, France
| | - Stefanie Scheu
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
2
|
Optineurin modulates the maturation of dendritic cells to regulate autoimmunity through JAK2-STAT3 signaling. Nat Commun 2021; 12:6198. [PMID: 34707127 PMCID: PMC8551263 DOI: 10.1038/s41467-021-26477-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 09/30/2021] [Indexed: 02/01/2023] Open
Abstract
Optineurin (OPTN) has important functions in diverse biological processes and diseases, but its effect on dendritic cell (DC) differentiation and functionality remains elusive. Here we show that OPTN is upregulated in human and mouse DC maturation, and that deletion of Optn in mice via CD11c-Cre attenuates DC maturation and impairs the priming of CD4+ T cells, thus ameliorating autoimmune symptoms such as experimental autoimmune encephalomyelitis (EAE). Mechanistically, OPTN binds to the JH1 domain of JAK2 and inhibits JAK2 dimerization and phosphorylation, thereby preventing JAK2-STAT3 interaction and inhibiting STAT3 phosphorylation to suppress downstream transcription of IL-10. Without such a negative regulation, Optn-deficient DCs eventually induce an IL-10/JAK2/STAT3/IL-10 positive feedback loop to suppress DC maturation. Finally, the natural product, Saikosaponin D, is identified as an OPTN inhibitor, effectively inhibiting the immune-stimulatory function of DCs and the disease progression of EAE in mice. Our findings thus highlight a pivotal function of OPTN for the regulation of DC functions and autoimmune disorders.
Collapse
|
3
|
Manouchehri N, Hussain RZ, Cravens PD, Esaulova E, Artyomov MN, Edelson BT, Wu GF, Cross AH, Doelger R, Loof N, Eagar TN, Forsthuber TG, Calvier L, Herz J, Stüve O. CD11c +CD88 +CD317 + myeloid cells are critical mediators of persistent CNS autoimmunity. Proc Natl Acad Sci U S A 2021; 118:e2014492118. [PMID: 33785592 PMCID: PMC8040603 DOI: 10.1073/pnas.2014492118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Natalizumab, a humanized monoclonal antibody (mAb) against α4-integrin, reduces the number of dendritic cells (DC) in cerebral perivascular spaces in multiple sclerosis (MS). Selective deletion of α4-integrin in CD11c+ cells should curtail their migration to the central nervous system (CNS) and ameliorate experimental autoimmune encephalomyelitis (EAE). We generated CD11c.Cre+/-ITGA4fl/fl C57BL/6 mice to selectively delete α4-integrin in CD11c+ cells. Active immunization and adoptive transfer EAE models were employed and compared with WT controls. Multiparameter flow cytometry was utilized to immunophenotype leukocyte subsets. Single-cell RNA sequencing was used to profile individual cells. α4-Integrin expression by CD11c+ cells was significantly reduced in primary and secondary lymphoid organs in CD11c.Cre+/-ITGA4fl/fl mice. In active EAE, a delayed disease onset was observed in CD11c.Cre+/-ITGA4fl/fl mice, during which CD11c+CD88+ cells were sequestered in the blood. Upon clinical EAE onset, CD11c+CD88+ cells appeared in the CNS and expressed CD317+ In adoptive transfer experiments, CD11c.Cre+/-ITGA4fl/fl mice had ameliorated clinical disease phenotype associated with significantly diminished numbers of CNS CD11c+CD88+CD317+ cells. In human cerebrospinal fluid from subjects with neuroinflammation, microglia-like cells display coincident expression of ITGAX (CD11c), C5AR1 (CD88), and BST2 (CD317). In mice, we show that only activated, but not naïve microglia expressed CD11c, CD88, and CD317. Finally, anti-CD317 treatment prior to clinical EAE substantially enhanced recovery in mice.
Collapse
Affiliation(s)
- Navid Manouchehri
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Rehana Z Hussain
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Petra D Cravens
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Ekaterina Esaulova
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Maxim N Artyomov
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Brian T Edelson
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Gregory F Wu
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Anne H Cross
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Richard Doelger
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Nicolas Loof
- The Moody Foundation Flow Cytometry Facility, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Todd N Eagar
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030
| | - Thomas G Forsthuber
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249
| | - Laurent Calvier
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Joachim Herz
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Center for Neuroscience, Department of Neuroanatomy, Albert-Ludwigs University, 79085 Freiburg, Germany
| | - Olaf Stüve
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390;
- Neurology Section, VA North Texas Health Care System, Dallas, TX 75216
| |
Collapse
|