1
|
Ning L, Li X, Xu Y, Si Y, Zhao H, Ren Q. Immunogenic cell death genes in single-cell and transcriptome analyses perspectives from a prognostic model of cervical cancer. Front Genet 2025; 16:1532523. [PMID: 40259929 PMCID: PMC12009919 DOI: 10.3389/fgene.2025.1532523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/25/2025] [Indexed: 04/23/2025] Open
Abstract
Background The role of immunogenic cell death (ICD) in cervical cancer (CESC) is not well understood. This study sought to investigate the significance of ICD in CESC and to establish an ICDRs prognostic model to improve immunotherapy efficacy for patients with cervical cancer. Methods ICD-associated genes were screened at the single-cell and transcriptome levels based on AddModuleScore, single-sample gene set enrichment analysis (ssGSEA) and weighted gene co-expression network (WGCNA) analysis. Immunogenic cell death-related features (ICDRs) were constructed using multiple machine algorithms, and ICDRs were evaluated in training and validation sets to provide quantitative tools for predicting prognosis in clinical practice. Predictive models were used to risk subgroups for response to immunotherapy, as well as drug sensitivity. Finally, the expression of ICD-related genes was verified by RT-qPCR. Results Through an integrated analysis of single-cell data, transcriptomic profiling, and computational modeling, seven ICD-related genes were identified as highly prognostic for CESC patients. Multivariate analysis demonstrated that low-risk patients had significantly better overall survival compared to high-risk patients, confirming the model as an independent prognostic tool. Assessments of the tumor microenvironment (TME), mutation characteristics, and drug sensitivity within ICDRs risk subgroups indicated a stronger immunotherapy response in the low-risk group.
Collapse
Affiliation(s)
- Li Ning
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The Chinese Clinical Medicine Innovation Center of Obstetrics, Gynecology, and Reproduction in Jiangsu Province, Nanjing, Jiangsu, China
| | - Xiu Li
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The Chinese Clinical Medicine Innovation Center of Obstetrics, Gynecology, and Reproduction in Jiangsu Province, Nanjing, Jiangsu, China
| | - Yating Xu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The Chinese Clinical Medicine Innovation Center of Obstetrics, Gynecology, and Reproduction in Jiangsu Province, Nanjing, Jiangsu, China
| | - Yu Si
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The Chinese Clinical Medicine Innovation Center of Obstetrics, Gynecology, and Reproduction in Jiangsu Province, Nanjing, Jiangsu, China
| | - Hongting Zhao
- The Chinese Clinical Medicine Innovation Center of Obstetrics, Gynecology, and Reproduction in Jiangsu Province, Nanjing, Jiangsu, China
| | - Qinling Ren
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The Chinese Clinical Medicine Innovation Center of Obstetrics, Gynecology, and Reproduction in Jiangsu Province, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Li Q, Liu H. Identification of Prognostic Genes Related to Cell Senescence and Lipid Metabolism in Glioblastoma Based on Transcriptome and Single-Cell RNA-Seq Data. Int J Mol Sci 2025; 26:1875. [PMID: 40076502 PMCID: PMC11899969 DOI: 10.3390/ijms26051875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary brain cancer, with poor prognosis due to its aggressive behavior and high heterogeneity. This study aimed to identify cellular senescence (CS) and lipid metabolism (LM)-related prognostic genes to improve GBM prognosis and treatment. Transcriptome and scRNA-seq data, CS-associated genes (CSAGs), and LM-related genes (LMRGs) were acquired from public databases. Prognostic genes were identified by intersecting CSAGs, LMRGs, and differentially expressed genes (DEGs), followed by WGCNA and univariate Cox regression. A risk model and nomogram were constructed. Analyses covered clinicopathological features, immune microenvironment, somatic mutations, and drug sensitivity. GBM scRNA-seq data identified key cells and prognostic gene expression. SOCS1 and PHB2 were identified as prognostic markers, contributing to the construction of a robust risk model with excellent predictive ability. High-risk group (HRG) patients had poorer survival, higher immune and stromal scores, and distinct somatic mutation profiles. Drug sensitivity analysis revealed significant differences in IC50 values. In microglia differentiation, SOCS1 and PHB2 showed dynamic expression patterns. These findings provide new strategies for GBM prognosis and treatment.
Collapse
Affiliation(s)
| | - Hongde Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China;
| |
Collapse
|
3
|
Tan JK, Awuah WA, Ahluwalia A, Sanker V, Ben-Jaafar A, Tenkorang PO, Aderinto N, Mehta A, Darko K, Shah MH, Roy S, Abdul-Rahman T, Atallah O. Genes to therapy: a comprehensive literature review of whole-exome sequencing in neurology and neurosurgery. Eur J Med Res 2024; 29:538. [PMID: 39523358 PMCID: PMC11552425 DOI: 10.1186/s40001-024-02063-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/12/2024] [Indexed: 11/16/2024] Open
Abstract
Whole-exome sequencing (WES), a ground-breaking technology, has emerged as a linchpin in neurology and neurosurgery, offering a comprehensive elucidation of the genetic landscape of various neurological disorders. This transformative methodology concentrates on the exonic portions of DNA, which constitute approximately 1% of the human genome, thus facilitating an expedited and efficient sequencing process. WES has been instrumental in advancing our understanding of neurodegenerative diseases, neuro-oncology, cerebrovascular disorders, and epilepsy by revealing rare variants and novel mutations and providing intricate insights into their genetic complexities. This has been achieved while maintaining a substantial diagnostic yield, thereby offering novel perspectives on the pathophysiology and personalized management of these conditions. The utilization of WES boasts several advantages over alternative genetic sequencing methodologies, including cost-effectiveness, reduced incidental findings, simplified analysis and interpretation process, and reduced computational demands. However, despite its benefits, there are challenges, such as the interpretation of variants of unknown significance, cost considerations, and limited accessibility in resource-constrained settings. Additionally, ethical, legal, and social concerns are raised, particularly in the context of incidental findings and patient consent. As we look to the future, the integration of WES with other omics-based approaches could help revolutionize the field of personalized medicine through its implications in predictive models and the development of targeted therapeutic strategies, marking a significant stride toward more effective and clinically oriented solutions.
Collapse
Affiliation(s)
- Joecelyn Kirani Tan
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.
| | | | | | - Vivek Sanker
- Department of Neurosurgery, Trivandrum Medical College, Thiruvananthapuram, India
| | - Adam Ben-Jaafar
- University College Dublin, School of Medicine, Belfield, Dublin 4, Ireland
| | | | - Nicholas Aderinto
- Internal Medicine Department, LAUTECH Teaching Hospital, Ogbomoso, Nigeria
| | - Aashna Mehta
- University of Debrecen-Faculty of Medicine, Debrecen, Hungary
| | - Kwadwo Darko
- Department of Neurosurgery, Korle Bu Teaching Hospital, Accra, Ghana
| | | | - Sakshi Roy
- School of Medicine, Queen's University Belfast, Belfast, UK
| | | | - Oday Atallah
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| |
Collapse
|
4
|
Du L, Zhang Q, Li Y, Li T, Deng Q, Jia Y, Lei K, Kan D, Xie F, Huang S. Research progress on the role of PTEN deletion or mutation in the immune microenvironment of glioblastoma. Front Oncol 2024; 14:1409519. [PMID: 39206155 PMCID: PMC11349564 DOI: 10.3389/fonc.2024.1409519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Recent advances in immunotherapy represent a breakthrough in solid tumor treatment but the existing data indicate that immunotherapy is not effective in improving the survival time of patients with glioblastoma. The tumor microenvironment (TME) exerts a series of inhibitory effects on immune effector cells, which limits the clinical application of immunotherapy. Growing evidence shows that phosphate and tension homology deleted on chromosome ten (PTEN) plays an essential role in TME immunosuppression of glioblastoma. Emerging evidence also indicates that targeting PTEN can improve the anti-tumor immunity in TME and enhance the immunotherapy effect, highlighting the potential of PTEN as a promising therapeutic target. This review summarizes the function and specific upstream and downstream targets of PTEN-associated immune cells in glioblastoma TME, providing potential drug targets and therapeutic options for glioblastoma.
Collapse
Affiliation(s)
- Leiya Du
- Department of Oncology, The Second People’s Hospital of Yibin, Yibin, Sichuan, China
| | - Qian Zhang
- Department of Oncology, The Second People’s Hospital of Yibin, Yibin, Sichuan, China
| | - Yi Li
- Department of Oncology, The Second People’s Hospital of Yibin, Yibin, Sichuan, China
| | - Ting Li
- Department of Oncology, The Second People’s Hospital of Yibin, Yibin, Sichuan, China
| | - Qingshan Deng
- Department of Neurosurgery, The Second People’s Hospital of Yibin, Yibin, Sichuan, China
| | - Yuming Jia
- Department of Oncology, The Second People’s Hospital of Yibin, Yibin, Sichuan, China
| | - Kaijian Lei
- Department of Oncology, The Second People’s Hospital of Yibin, Yibin, Sichuan, China
| | - Daohong Kan
- Department of Burn and Plastic Surgery, The Second People’s Hospital of Yibin, Yibin, Sichuan, China
| | - Fang Xie
- Department of Oncology, The Second People’s Hospital of Yibin, Yibin, Sichuan, China
| | - Shenglan Huang
- Department of Oncology, The Second People’s Hospital of Yibin, Yibin, Sichuan, China
| |
Collapse
|
5
|
Tataranu LG, Turliuc S, Rizea RE, Dricu A, Alexandru O, Staicu GA, Kamel A. A Synopsis of Biomarkers in Glioblastoma: Past and Present. Curr Issues Mol Biol 2024; 46:6903-6939. [PMID: 39057054 PMCID: PMC11275428 DOI: 10.3390/cimb46070412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Accounting for 48% of malignant brain tumors in adults, glioblastoma has been of great interest in the last decades, especially in the biomolecular and neurosurgical fields, due to its incurable nature and notable neurological morbidity. The major advancements in neurosurgical technologies have positively influenced the extent of safe tumoral resection, while the latest progress in the biomolecular field of GBM has uncovered new potential therapeutical targets. Although GBM currently has no curative therapy, recent progress has been made in the management of this disease, both from surgical and molecular perspectives. The main current therapeutic approach is multimodal and consists of neurosurgical intervention, radiotherapy, and chemotherapy, mostly with temozolomide. Although most patients will develop treatment resistance and tumor recurrence after surgical removal, biomolecular advancements regarding GBM have contributed to a better understanding of this pathology and its therapeutic management. Over the past few decades, specific biomarkers have been discovered that have helped predict prognosis and treatment responses and contributed to improvements in survival rates.
Collapse
Affiliation(s)
- Ligia Gabriela Tataranu
- Neurosurgical Department, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania;
- Neurosurgical Department, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
| | - Serban Turliuc
- Medical Department, University of Medicine and Pharmacy “G. T. Popa”, 700115 Iasi, Romania;
| | - Radu Eugen Rizea
- Neurosurgical Department, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania;
- Neurosurgical Department, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
| | - Anica Dricu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy, 200349 Craiova, Romania (O.A.); (G.-A.S.)
| | - Oana Alexandru
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy, 200349 Craiova, Romania (O.A.); (G.-A.S.)
| | - Georgiana-Adeline Staicu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy, 200349 Craiova, Romania (O.A.); (G.-A.S.)
| | - Amira Kamel
- Neurosurgical Department, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
| |
Collapse
|
6
|
Frosina G. Advancements in Image-Based Models for High-Grade Gliomas Might Be Accelerated. Cancers (Basel) 2024; 16:1566. [PMID: 38672647 PMCID: PMC11048778 DOI: 10.3390/cancers16081566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
The first half of 2022 saw the publication of several major research advances in image-based models and artificial intelligence applications to optimize treatment strategies for high-grade gliomas, the deadliest brain tumors. We review them and discuss the barriers that delay their entry into clinical practice; particularly, the small sample size and the heterogeneity of the study designs and methodologies used. We will also write about the poor and late palliation that patients suffering from high-grade glioma can count on at the end of life, as well as the current legislative instruments, with particular reference to Italy. We suggest measures to accelerate the gradual progress in image-based models and end of life care for patients with high-grade glioma.
Collapse
Affiliation(s)
- Guido Frosina
- Mutagenesis & Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| |
Collapse
|
7
|
Dogan E, Yildirim Z, Akalin T, Ozgiray E, Akinturk N, Aktan C, Solmaz AE, Biceroglu H, Caliskan KE, Ertan Y, Yurtseven T, Kosova B, Bozok V. Investigating the effects of PTEN mutations on cGAS-STING pathway in glioblastoma tumours. J Neurooncol 2024; 166:283-292. [PMID: 38214828 PMCID: PMC10834568 DOI: 10.1007/s11060-023-04556-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/27/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND PTEN is a tumour suppressor gene and well-known for being frequently mutated in several cancer types. Loss of immunogenicity can also be attributed to PTEN loss, because of its role in establishing the tumour microenvironment. Therefore, this study aimed to represent the link between PTEN and cGAS-STING activity, a key mediator of inflammation, in tumour samples of glioblastoma patients. METHODS Tumour samples of 36 glioblastoma patients were collected. After DNA isolation, all coding regions of PTEN were sequenced and analysed. PTEN expression status was also evaluated by qRT-PCR, western blot, and immunohistochemical methods. Interferon-stimulated gene expressions, cGAMP activity, CD8 infiltration, and Granzyme B expression levels were determined especially for the evaluation of cGAS-STING activity and immunogenicity. RESULTS Mutant PTEN patients had significantly lower PTEN expression, both at mRNA and protein levels. Decreased STING, IRF3, NF-KB1, and RELA mRNA expressions were also found in patients with mutant PTEN. Immunohistochemistry staining of PTEN displayed expressional loss in 38.1% of the patients. Besides, patients with PTEN loss had considerably lower amounts of IFNB and IFIT2 mRNA expressions. Furthermore, CD8 infiltration, cGAMP, and Granzyme B levels were reduced in the PTEN loss group. CONCLUSION This study reveals the immunosuppressive effects of PTEN loss in glioblastoma tumours via the cGAS-STING pathway. Therefore, determining the PTEN status in tumours is of great importance, like in situations when considering the treatment of glioblastoma patients with immunotherapeutic agents.
Collapse
Affiliation(s)
- Eda Dogan
- Department of Medical Biology, Ege University Faculty of Medicine, Izmir, Türkiye
| | - Zafer Yildirim
- Department of Medical Biology, Ege University Faculty of Medicine, Izmir, Türkiye
| | - Taner Akalin
- Department of Pathology, Ege University Faculty of Medicine, Izmir, Türkiye
| | - Erkin Ozgiray
- Department of Neurosurgery, Ege University Faculty of Medicine, Izmir, Türkiye
| | - Nevhis Akinturk
- Department of Neurosurgery, Ege University Faculty of Medicine, Izmir, Türkiye
| | - Cagdas Aktan
- Department of Medical Biology, Beykent University School of Medicine, İstanbul, Türkiye
| | - Asli Ece Solmaz
- Department of Medical Genetics, Ege University Faculty of Medicine, Izmir, Türkiye
| | - Huseyin Biceroglu
- Department of Neurosurgery, Ege University Faculty of Medicine, Izmir, Türkiye
| | - Kadri Emre Caliskan
- Department of Neurosurgery, Ege University Faculty of Medicine, Izmir, Türkiye
| | - Yesim Ertan
- Department of Pathology, Ege University Faculty of Medicine, Izmir, Türkiye
| | - Taskin Yurtseven
- Department of Neurosurgery, Ege University Faculty of Medicine, Izmir, Türkiye
| | - Buket Kosova
- Department of Medical Biology, Ege University Faculty of Medicine, Izmir, Türkiye
| | - Vildan Bozok
- Department of Medical Biology, Ege University Faculty of Medicine, Izmir, Türkiye.
| |
Collapse
|