1
|
Chowa SS, Bhuiyan MRI, Tahosin MS, Karim A, Montaha S, Hassan MM, Shah MA, Azam S. An automated privacy-preserving self-supervised classification of COVID-19 from lung CT scan images minimizing the requirements of large data annotation. Sci Rep 2025; 15:226. [PMID: 39747232 PMCID: PMC11696874 DOI: 10.1038/s41598-024-83972-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025] Open
Abstract
This study presents a novel privacy-preserving self-supervised (SSL) framework for COVID-19 classification from lung CT scans, utilizing federated learning (FL) enhanced with Paillier homomorphic encryption (PHE) to prevent third-party attacks during training. The FL-SSL based framework employs two publicly available lung CT scan datasets which are considered as labeled and an unlabeled dataset. The unlabeled dataset is split into three subsets which are assumed to be collected from three hospitals. Training is done using the Bootstrap Your Own Latent (BYOL) contrastive learning SSL framework with a VGG19 encoder followed by attention CNN blocks (VGG19 + attention CNN). The input datasets are processed by selecting the largest lung portion of each lung CT scan using an automated selection approach and a 64 × 64 input size is utilized to reduce computational complexity. Healthcare privacy issues are addressed by collaborative training across decentralized datasets and secure aggregation with PHE, underscoring the effectiveness of this approach. Three subsets of the dataset are used to train the local BYOL model, which together optimizes the central encoder. The labeled dataset is employed to train the central encoder (updated VGG19 + attention CNN), resulting in an accuracy of 97.19%, a precision of 97.43%, and a recall of 98.18%. The reliability of the framework's performance is demonstrated through statistical analysis and five-fold cross-validation. The efficacy of the proposed framework is further showcased by showing its performance on three distinct modality datasets: skin cancer, breast cancer, and chest X-rays. In conclusion, this study offers a promising solution for accurate diagnosis of chest X-rays, preserving privacy and overcoming the challenges of dataset scarcity and computational complexity.
Collapse
Affiliation(s)
- Sadia Sultana Chowa
- Faculty of Science and Technology, Charles Darwin University, Casuarina, NT, 0909, Australia
- Health Informatics Research Laboratory (HIRL), Department of Computer Science and Engineering, Daffodil International University, Dhaka, 1341, Bangladesh
| | - Md Rahad Islam Bhuiyan
- Faculty of Science and Technology, Charles Darwin University, Casuarina, NT, 0909, Australia
- Health Informatics Research Laboratory (HIRL), Department of Computer Science and Engineering, Daffodil International University, Dhaka, 1341, Bangladesh
| | - Mst Sazia Tahosin
- Health Informatics Research Laboratory (HIRL), Department of Computer Science and Engineering, Daffodil International University, Dhaka, 1341, Bangladesh
| | - Asif Karim
- Faculty of Science and Technology, Charles Darwin University, Casuarina, NT, 0909, Australia
| | - Sidratul Montaha
- Department of Computer Science, University of Calgary, Calgary, Canada
| | - Md Mehedi Hassan
- Computer Science and Engineering Discipline, Khulna University, Khulna, 9208, Bangladesh
| | - Mohd Asif Shah
- Department of Economics, Bakhtar University, Kart-e-Char, Kabul, 1001, Afghanistan.
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India.
- Chitkara Centre for Research and Development, Chitkara University, Baddi, Himachal Pradesh, 174103, India.
- Division of Research and Development, Lovely Professional University, Phagwara, Punjab, 144001, India.
| | - Sami Azam
- Faculty of Science and Technology, Charles Darwin University, Casuarina, NT, 0909, Australia
| |
Collapse
|
2
|
Shafi SM, Chinnappan SK. Hybrid transformer-CNN and LSTM model for lung disease segmentation and classification. PeerJ Comput Sci 2024; 10:e2444. [PMID: 39896390 PMCID: PMC11784776 DOI: 10.7717/peerj-cs.2444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/01/2024] [Indexed: 02/04/2025]
Abstract
According to the World Health Organization (WHO) report, lung disorders are the third leading cause of mortality worldwide. Approximately three million individuals are affected with various types of lung disorders annually. This issue alarms us to take control measures related to early diagnostics, accurate treatment procedures, etc. The precise identification through the assessment of medical images is crucial for pulmonary disease diagnosis. Also, it remains a formidable challenge due to the diverse and unpredictable nature of pathological lung appearances and shapes. Therefore, the efficient lung disease segmentation and classification model is essential. By taking this initiative, a novel lung disease segmentation with a hybrid LinkNet-Modified LSTM (L-MLSTM) model is proposed in this research article. The proposed model utilizes four essential and fundamental steps for its implementation. The first step is pre-processing, where the input lung images are pre-processed using median filtering. Consequently, an improved Transformer-based convolutional neural network (CNN) model (ITCNN) is proposed to segment the affected region in the segmentation process. After segmentation, essential features such as texture, shape, color, and deep features are retrieved. Specifically, texture features are extracted using modified Local Gradient Increasing Pattern (LGIP) and Multi-texton analysis. Then, the classification step utilizes a hybrid model, the L-MLSTM model. This work leverages two datasets such as the COVID-19 normal pneumonia-CT images dataset (Dataset 1) and the Chest CT scan images dataset (Dataset 2). The dataset is crucial for training and evaluating the model, providing a comprehensive basis for robust and generalizable results. The L-MLSTM model outperforms several existing models, including HDE-NN, DBN, LSTM, LINKNET, SVM, Bi-GRU, RNN, CNN, and VGG19 + CNN, with accuracies of 89% and 95% at learning percentages of 70 and 90, respectively, for datasets 1 and 2. The improved accuracy achieved by the L-MLSTM model highlights its capability to better handle the complexity and variability in lung images. This hybrid approach enhances the model's ability to distinguish between different types of lung diseases and reduces diagnostic errors compared to existing methods.
Collapse
|
3
|
Hossen MJ, Ramanathan TT, Al Mamun A. An Ensemble Feature Selection Approach-Based Machine Learning Classifiers for Prediction of COVID-19 Disease. Int J Telemed Appl 2024; 2024:8188904. [PMID: 38660584 PMCID: PMC11042903 DOI: 10.1155/2024/8188904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/24/2023] [Accepted: 03/08/2024] [Indexed: 04/26/2024] Open
Abstract
The respiratory disease of coronavirus disease 2019 (COVID-19) has wreaked havoc on the economy of every nation by infecting and killing millions of people. This deadly disease has taken a toll on the life of the entire human race, and an exact cure for it is still not developed. Thus, the control and cure of this disease mainly depend on restricting its transmission rate through early detection. The detection of coronavirus infection facilitates the isolation and exclusive care of infected patients. This research paper proposes a novel data mining system that combines the ensemble feature selection method and machine learning classifier for the effective identification of COVID-19 infection. Different feature selection approaches including chi-square test, recursive feature elimination (RFE), genetic algorithm (GA), particle swarm optimization (PSO), and random forest are evaluated for their effectiveness in enhancing the classification accuracy of the machine learning classifiers. The classifiers that are considered in this research work are decision tree, naïve Bayes, K-nearest neighbor (KNN), multilayer perceptron (MLP), and support vector machine (SVM). Two COVID-19 datasets were used for testing from which the best features supporting the dataset were extracted by the proposed system. The performance of the machine learning classifiers based on the ensemble feature selection methods is analyzed.
Collapse
Affiliation(s)
- Md. Jakir Hossen
- Faculty of Engineering and Technology, Multimedia University, Melaka, Malaysia
| | | | - Abdullah Al Mamun
- School of Information and Communication, Griffith University, Nathan, Australia
| |
Collapse
|
4
|
Antar S, Abd El-Sattar HKH, Abdel-Rahman MH, F M Ghaleb F. COVID-19 infection segmentation using hybrid deep learning and image processing techniques. Sci Rep 2023; 13:22737. [PMID: 38123587 PMCID: PMC10733411 DOI: 10.1038/s41598-023-49337-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) epidemic has become a worldwide problem that continues to affect people's lives daily, and the early diagnosis of COVID-19 has a critical importance on the treatment of infected patients for medical and healthcare organizations. To detect COVID-19 infections, medical imaging techniques, including computed tomography (CT) scan images and X-ray images, are considered some of the helpful medical tests that healthcare providers carry out. However, in addition to the difficulty of segmenting contaminated areas from CT scan images, these approaches also offer limited accuracy for identifying the virus. Accordingly, this paper addresses the effectiveness of using deep learning (DL) and image processing techniques, which serve to expand the dataset without the need for any augmentation strategies, and it also presents a novel approach for detecting COVID-19 virus infections in lung images, particularly the infection prediction issue. In our proposed method, to reveal the infection, the input images are first preprocessed using a threshold then resized to 128 × 128. After that, a density heat map tool is used for coloring the resized lung images. The three channels (red, green, and blue) are then separated from the colored image and are further preprocessed through image inverse and histogram equalization, and are subsequently fed, in independent directions, into three separate U-Nets with the same architecture for segmentation. Finally, the segmentation results are combined and run through a convolution layer one by one to get the detection. Several evaluation metrics using the CT scan dataset were used to measure the performance of the proposed approach in comparison with other state-of-the-art techniques in terms of accuracy, sensitivity, precision, and the dice coefficient. The experimental results of the proposed approach reached 99.71%, 0.83, 0.87, and 0.85, respectively. These results show that coloring the CT scan images dataset and then dividing each image into its RGB image channels can enhance the COVID-19 detection, and it also increases the U-Net power in the segmentation when merging the channel segmentation results. In comparison to other existing segmentation techniques employing bigger 512 × 512 images, this study is one of the few that can rapidly and correctly detect the COVID-19 virus with high accuracy on smaller 128 × 128 images using the metrics of accuracy, sensitivity, precision, and dice coefficient.
Collapse
Affiliation(s)
- Samar Antar
- Computer Science Division, Department of Mathematics, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | | | - Mohammad H Abdel-Rahman
- Computer Science Division, Department of Mathematics, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Fayed F M Ghaleb
- Computer Science Division, Department of Mathematics, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| |
Collapse
|
5
|
COVINet: A hybrid model for classification of COVID and Non-COVID pneumonia in CT and X-Ray imagery. INTERNATIONAL JOURNAL OF COGNITIVE COMPUTING IN ENGINEERING 2023; 4:149-159. [PMCID: PMC10017176 DOI: 10.1016/j.ijcce.2023.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 01/05/2024]
Abstract
The COVID-19 pandemic has resulted in a significant increase in the number of pneumonia cases, including those caused by the Coronavirus. To detect COVID pneumonia, RT-PCR is used as the primary detection tool for COVID-19 pneumonia but chest imaging, including CT scans and X-Ray imagery, can also be used as a secondary important tool for the diagnosis of pneumonia, including COVID pneumonia. However, the interpretation of chest imaging in COVID-19 pneumonia can be challenging, as the signs of the disease on imaging may be subtle and may overlap with normal pneumonia. In this paper, we propose a hybrid model with the name COVINet which uses ResNet-101 as the feature extractor and classical K-Nearest Neighbors as the classifier that led us to give automated results for detecting COVID pneumonia in X-Rays and CT imagery. The proposed hybrid model achieved a classification accuracy of 98.6%. The model's precision, recall, and F1-Score values were also impressive, ranging from 98-99%. To back and support the proposed model, several CNN-based feature extractors and classical machine learning classifiers have been exploited. The outcome with exploited combinations suggests that our model can significantly enhance the accuracy and precision of detecting COVID-19 pneumonia on chest imaging, and this holds the potential of being a valuable resource for early identification and diagnosis of the illness by radiologists and medical practitioners.
Collapse
|
6
|
Krinski BA, Ruiz DV, Laroca R, Todt E. DACov: a deeper analysis of data augmentation on the computed tomography segmentation problem. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING: IMAGING & VISUALIZATION 2023. [DOI: 10.1080/21681163.2023.2183807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Affiliation(s)
- Bruno A. Krinski
- Department of Informatics, Federal University of Paraná, Curitiba, Brazil
| | - Daniel V. Ruiz
- Department of Informatics, Federal University of Paraná, Curitiba, Brazil
| | - Rayson Laroca
- Department of Informatics, Federal University of Paraná, Curitiba, Brazil
| | - Eduardo Todt
- Department of Informatics, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
7
|
Preliminary Stages for COVID-19 Detection Using Image Processing. Diagnostics (Basel) 2022; 12:diagnostics12123171. [PMID: 36553177 PMCID: PMC9777505 DOI: 10.3390/diagnostics12123171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
COVID-19 was first discovered in December 2019 in Wuhan. There have been reports of thousands of illnesses and hundreds of deaths in almost every region of the world. Medical images, when combined with cutting-edge technology such as artificial intelligence, have the potential to improve the efficiency of the public health system and deliver faster and more reliable findings in the detection of COVID-19. The process of developing the COVID-19 diagnostic system begins with image accusation and proceeds via preprocessing, feature extraction, and classification. According to literature review, several attempts to develop taxonomies for COVID-19 detection using image processing methods have been introduced. However, most of these adhere to a standard category that exclusively considers classification methods. Therefore, in this study a new taxonomy for the early stages of COVID-19 detection is proposed. It attempts to offer a full grasp of image processing in COVID-19 while considering all phases required prior to classification. The survey concludes with a discussion of outstanding concerns and future directions.
Collapse
|