1
|
Provenzano F, Torazza C, Bonifacino T, Bonanno G, Milanese M. The Key Role of Astrocytes in Amyotrophic Lateral Sclerosis and Their Commitment to Glutamate Excitotoxicity. Int J Mol Sci 2023; 24:15430. [PMID: 37895110 PMCID: PMC10607805 DOI: 10.3390/ijms242015430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
In the last two decades, there has been increasing evidence supporting non-neuronal cells as active contributors to neurodegenerative disorders. Among glial cells, astrocytes play a pivotal role in driving amyotrophic lateral sclerosis (ALS) progression, leading the scientific community to focus on the "astrocytic signature" in ALS. Here, we summarized the main pathological mechanisms characterizing astrocyte contribution to MN damage and ALS progression, such as neuroinflammation, mitochondrial dysfunction, oxidative stress, energy metabolism impairment, miRNAs and extracellular vesicles contribution, autophagy dysfunction, protein misfolding, and altered neurotrophic factor release. Since glutamate excitotoxicity is one of the most relevant ALS features, we focused on the specific contribution of ALS astrocytes in this aspect, highlighting the known or potential molecular mechanisms by which astrocytes participate in increasing the extracellular glutamate level in ALS and, conversely, undergo the toxic effect of the excessive glutamate. In this scenario, astrocytes can behave as "producers" and "targets" of the high extracellular glutamate levels, going through changes that can affect themselves and, in turn, the neuronal and non-neuronal surrounding cells, thus actively impacting the ALS course. Moreover, this review aims to point out knowledge gaps that deserve further investigation.
Collapse
Affiliation(s)
- Francesca Provenzano
- Department of Pharmacy (DIFAR), University of Genoa, 16148 Genova, Italy; (F.P.); (C.T.); (G.B.); (M.M.)
| | - Carola Torazza
- Department of Pharmacy (DIFAR), University of Genoa, 16148 Genova, Italy; (F.P.); (C.T.); (G.B.); (M.M.)
| | - Tiziana Bonifacino
- Department of Pharmacy (DIFAR), University of Genoa, 16148 Genova, Italy; (F.P.); (C.T.); (G.B.); (M.M.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| | - Giambattista Bonanno
- Department of Pharmacy (DIFAR), University of Genoa, 16148 Genova, Italy; (F.P.); (C.T.); (G.B.); (M.M.)
| | - Marco Milanese
- Department of Pharmacy (DIFAR), University of Genoa, 16148 Genova, Italy; (F.P.); (C.T.); (G.B.); (M.M.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
2
|
Mizoguchi H, Watanabe C, Hayashi T, Iwata Y, Watanabe H, Katsuyama S, Hamamura K, Sakurada T, Ohtsu H, Yanai K, Sakurada S. The involvement of spinal release of histamine on nociceptive behaviors induced by intrathecally administered spermine. Eur J Pharmacol 2017; 800:9-15. [PMID: 28131781 DOI: 10.1016/j.ejphar.2017.01.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 01/06/2017] [Accepted: 01/24/2017] [Indexed: 11/26/2022]
Abstract
The involvement of spinal release of histamine on nociceptive behaviors induced by spermine was examined in mice. Intrathecal spermine produced dose-dependent nociceptive behaviors, consisting of scratching, biting and licking. The nociceptive behaviors induced by spermine at 0.02 amol and 10 pmol were markedly suppressed by i.t. pretreatment with antiserum against histamine and were abolished in histidine decarboxylase-deficient mice. In histamine H1 receptor-deficient mice, the nociceptive behaviors induced by spermine were completely abolished after treatment with 0.02 amol of spermine and significantly suppressed after treatment with 10 pmol of spermine. The i.t. pretreatment with takykinin NK1 receptor antagonists eliminated the nociceptive behaviors induced by 0.02 amol of spermine, but did not affect the nociceptive behaviors induced by 10 pmol of spermine. On the other hand, the nociceptive behaviors induced by spermine at both 0.02 amol and 10 pmol were suppressed by i.t. pretreatment with antagonists for the NMDA receptor polyamine-binding site. The present results suggest that the nociceptive behaviors induced by i.t. administration of spermine are mediated through the spinal release of histamine and are elicited via activation of NMDA receptors.
Collapse
Affiliation(s)
- Hirokazu Mizoguchi
- Department of Physiology and Anatomy, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Chizuko Watanabe
- Department of Physiology and Anatomy, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Takafumi Hayashi
- Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Yoko Iwata
- Department of Physiology and Anatomy, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Hiroyuki Watanabe
- Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, Uppsala University, Husargatan 3, Uppsala 751 24, Sweden
| | - Soh Katsuyama
- Center for Experiential Pharmacy Practice, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Kengo Hamamura
- First Department of Pharmacology, Daiichi College of Pharmaceutical Sciences, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan
| | - Tsukasa Sakurada
- First Department of Pharmacology, Daiichi College of Pharmaceutical Sciences, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan
| | - Hiroshi Ohtsu
- Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University, 6-6-01-2 Aobayama, Aoba-ku, Sendai, 980-8579, Japan
| | - Kazuhiko Yanai
- Department of Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Shinobu Sakurada
- Department of Physiology and Anatomy, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan.
| |
Collapse
|
3
|
Patin F, Corcia P, Vourc’h P, Nadal-Desbarats L, Baranek T, Goossens JF, Marouillat S, Dessein AF, Descat A, Madji Hounoum B, Bruno C, Leman S, Andres CR, Blasco H. Omics to Explore Amyotrophic Lateral Sclerosis Evolution: the Central Role of Arginine and Proline Metabolism. Mol Neurobiol 2016; 54:5361-5374. [DOI: 10.1007/s12035-016-0078-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/23/2016] [Indexed: 12/13/2022]
|
4
|
Spalloni A, Nutini M, Longone P. Role of the N-methyl-d-aspartate receptors complex in amyotrophic lateral sclerosis. Biochim Biophys Acta Mol Basis Dis 2012. [PMID: 23200922 DOI: 10.1016/j.bbadis.2012.11.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult onset neurodegenerative disease pathologically characterized by the massive loss of motor neurons in the spinal cord, brain stem and cerebral cortex. There is a consensus in the field that ALS is a multifactorial pathology and a number of possible mechanisms have been suggested. Among the proposed hypothesis, glutamate toxicity has been one of the most investigated. Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor mediated cell death and impairment of the glutamate-transport system have been suggested to play a central role in the glutamate-mediated motor neuron degeneration. In this context, the role played by the N-methyl-d-aspartate (NMDA) receptor has received considerable less attention notwithstanding its high Ca(2+) permeability, expression in motor neurons and its importance in excitotoxicity. This review overviews the critical role of NMDA-mediated toxicity in ALS, with a particular emphasis on the endogenous modulators of the NMDAR.
Collapse
Affiliation(s)
- Alida Spalloni
- Molecular Neurobiology Unit, Experimental Neurology, Fondazione Santa Lucia, Rome Italy
| | | | | |
Collapse
|
5
|
Singh R, Fouladi-Nashta AA, Li D, Halliday N, Barrett DA, Sinclair KD. Methotrexate induced differentiation in colon cancer cells is primarily due to purine deprivation. J Cell Biochem 2006; 99:146-55. [PMID: 16598758 DOI: 10.1002/jcb.20908] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The folate antagonist methotrexate (MTX) inhibits synthesis of tetrahydrofolate (THF), pyrimidines and purines, and induces differentiation in several cell types. At 1 microM, MTX reduced proliferation and induced differentiation in HT29 colon cancer cells; the latter effect was augmented (P < 0.001) by thymidine (100 microM) but was reversed (P < 0.001) by the purines, hypoxanthine (Hx; 100 microM) and adenosine (100 microM). In contrast 5-fluoro-uracil (5-FU), a specific thymidylate synthase (TS) inhibitor, had no effect on differentiation, suggesting that MTX-induced differentiation is not due to a reduction in thymidine but to the inhibition of purine biosynthesis. Inhibition of cyclic AMP (cAMP) by RpcAMP (25 microM) further enhanced (P < 0.001) MTX induced differentiation, whereas the cAMP activator forskolin (10 microM) reversed (P < 0.001) MTX induced differentiation. These observations implicate a central role of adenosine and cAMP in MTX induced differentiation. By combining Western blot analysis with liquid chromatography-mass spectrometry (LC-MS)and HPLC analyses we also reveal both the expression and activity of key enzymes (i.e. methionine synthase (MS), s-adenosylhomocysteinase, cystathionine beta-synthase and ornithine decarboxylase) regulating methyl cycle, transsulfuration and polyamine pathways in HT29 colon cancer cells. At 1 microM, MTX induced differentiation was associated with a marked reduction in the intracellular concentrations of adenosine and, consequently, S-adenosylmethionine (SAM), S-adenosylhomocysteine, polyamines and glutathione (GSH). Importantly, the marked reduction in methionine that accompanied MS inhibition following MTX treatment was non-limiting with respect to SAM synthesis. Collectively, these findings indicate that the effects of MTX on cellular differentiation and single carbon metabolism are primarily due to the intracellular depletion of purines.
Collapse
Affiliation(s)
- R Singh
- School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, United Kingdom
| | | | | | | | | | | |
Collapse
|
6
|
Virgili M, Crochemore C, Peña-Altamira E, Contestabile A. Regional and temporal alterations of ODC/polyamine system during ALS-like neurodegenerative motor syndrome in G93A transgenic mice. Neurochem Int 2005; 48:201-7. [PMID: 16290266 DOI: 10.1016/j.neuint.2005.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Accepted: 10/05/2005] [Indexed: 11/22/2022]
Abstract
Natural polyamines (putrescine, spermidine and spermine) are ubiquitous molecules known to regulate a number of physiological processes and suspected to play a role also in various pathological conditions. Changes in polyamine levels and in their biosynthetic enzymes have been described for some neurodegenerative diseases but the available data are incomplete and somewhat contradictory. We report here alterations of the key enzyme of the polyamine pathway, ornithine decarboxylase (ODC) catalytic activity and polyamine levels in different CNS areas from SOD1 G39A transgenic mice, an animal model for amyotrophic lateral sclerosis (ALS). ODC catalytic activity, was found significantly increased both in the cervical and lumbar spinal cord and, to a lesser extent in the brain stem of transgenic mice at a symptomatic stage of the disease (125-day-old mice), while no differences were present at a pre-symptomatic stage (55-day-old mice). In parallel with the increase of ODC activity putrescine levels were several times increased in both cervical and lumbar spinal cord and in the brain stem of 125-day-old SOD1 G39A mice. Higher order polyamines were not increased except for a significant increase of spermidine in the cervical spinal cord. The present data demonstrate considerable alterations of the ODC/polyamine system in a reliable animal model of ASL, consistent with their role in neurodegeneration and in particular in motor neuron diseases.
Collapse
Affiliation(s)
- Marco Virgili
- Department of Biology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | | | | | | |
Collapse
|
7
|
Ekegren T, Gomes-Trolin C. Determination of polyamines in human tissues by precolumn derivatization with 9-fluorenylmethyl chloroformate and high-performance liquid chromatography. Anal Biochem 2005; 338:179-85. [PMID: 15745737 DOI: 10.1016/j.ab.2004.11.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Indexed: 11/20/2022]
Abstract
A high-performance liquid chromatography (HPLC) assay with fluorescence detection was developed for the determination of the polyamines putrescine, spermidine, spermine in samples of human spinal cord, cerebellum, cerebrospinal fluid (CSF), skeletal muscle, and muscle microdialysates without an extensive sample preparation. The precolumn derivatization was performed with 9-fluorenylmethyl chloroformate (FMOC), and the derivatizated polyamines were stable for at least 14 h at 4 degrees C. All polyamines were separated within 35 min. The method was checked for linearity, and mean correlation coefficient values of 0.995, 0.999, and 0.991 were achieved for putrescine, spermidine, and spermine, respectively. The within- and between-assay coefficient of variation percentages evaluated in standard solutions varied between 1.0 and 4.9% and between 1.3 and 6.9%, respectively. The corresponding values obtained in samples of human spinal cord were between 1.0 and 5.0% and between 0.6 and 5.8%. The values of the recovery, evaluated in spinal cord tissue, varied between 83.7 and 93.5%.
Collapse
Affiliation(s)
- Titti Ekegren
- Department of Neuroscience, Neurology, University Hospital, SE-751 85 Uppsala, Sweden.
| | | |
Collapse
|
8
|
HPLC of Biogenic Amines as 6-Aminoquinolyl-N-hydroxysuccinimidyl Derivatives. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s0301-4770(05)80020-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|