1
|
Dabrowska S, Andrzejewska A, Kozlowska H, Strzemecki D, Janowski M, Lukomska B. Neuroinflammation evoked by brain injury in a rat model of lacunar infarct. Exp Neurol 2020; 336:113531. [PMID: 33221395 DOI: 10.1016/j.expneurol.2020.113531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/27/2020] [Accepted: 11/13/2020] [Indexed: 12/24/2022]
Abstract
Stroke is the leading cause of long-term, severe disability worldwide. Immediately after the stroke, endogenous inflammatory processes are upregulated, leading to the local neuroinflammation and the potentiation of brain tissue destruction. The innate immune response is triggered as early as 24 h post-brain ischemia, followed by adaptive immunity activation. Together these immune cells produce many inflammatory mediators, i.e., cytokines, growth factors, and chemokines. Our study examines the immune response components in the early stage of deep brain lacunar infarct in the rat brain, highly relevant to the clinical scenario. The lesion was induced by stereotactic injection of ouabain into the adult rat striatum. Ouabain is a Na/K ATPase pump inhibitor that causes excitotoxicity and brings metabolic and structural changes in the cells leading to focal brain injury. We have shown a surge of neurodegenerative changes in the peri-infarct area in the first days after brain injury. Immunohistochemical analysis revealed early microglial activation and the gradual infiltration of immune cells with a significant increase of CD4+ and CD8+ T lymphocytes in the ipsilateral hemisphere. In our studies, we identified the higher level of pro-inflammatory cytokines, i.e., interleukin-1α, interleukin-1β, tumor necrosis factor-α, and interferon-γ, but a lower level of anti-inflammatory cytokines, i.e., interleukin-10 and transforming growth factor-β2 in the injured brain than in normal rats. Concomitantly focal brain injury showed a significant increase in the level of chemokines, i.e., monocyte chemoattractant protein-1 and CC motif chemokine ligand 5 compared to control. Our findings provide new insights into an early inflammatory reaction in our model of the deep-brain lacunar infarct. The results of this study may highlight future stroke immunotherapies for targeting the acute immune response accompanied by the insult.
Collapse
Affiliation(s)
- Sylwia Dabrowska
- NeuroRepair Department, Mossakowski Medical Research Centre, PAS, 5 Pawinskiego Street, 02-106, Warsaw, Poland
| | - Anna Andrzejewska
- NeuroRepair Department, Mossakowski Medical Research Centre, PAS, 5 Pawinskiego Street, 02-106, Warsaw, Poland
| | - Hanna Kozlowska
- Laboratory of Advanced Microscopy Techniques, Mossakowski Medical Research Centre PAS, 5 Pawinskiego Street, 02-106, Warsaw, Poland
| | - Damian Strzemecki
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Miroslaw Janowski
- NeuroRepair Department, Mossakowski Medical Research Centre, PAS, 5 Pawinskiego Street, 02-106, Warsaw, Poland; Center for Advanced Imaging Research, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore. MD 21201, USA
| | - Barbara Lukomska
- NeuroRepair Department, Mossakowski Medical Research Centre, PAS, 5 Pawinskiego Street, 02-106, Warsaw, Poland.
| |
Collapse
|
2
|
Andrzejewska A, Dabrowska S, Nowak B, Walczak P, Lukomska B, Janowski M. Mesenchymal stem cells injected into carotid artery to target focal brain injury home to perivascular space. Am J Cancer Res 2020; 10:6615-6628. [PMID: 32550893 PMCID: PMC7295043 DOI: 10.7150/thno.43169] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/18/2020] [Indexed: 12/16/2022] Open
Abstract
Rationale: The groundbreaking discovery of mesenchymal stem cells (MSCs) with their multifaceted benefits led to their widespread application in experimental medicine, including neurology. Efficient delivery of MSCs to damaged regions of the central nervous system may be a critical factor in determining outcome. Integrin VLA-4 (α4β1) coded by ITGA4 and ITGB1 genes is an adhesion molecule expressed by leukocytes, which is responsible for initiation of their diapedesis through cell docking to the inflamed vessel wall expressing VCAM1 receptor. This function of VLA-4 has been recapitulated in neural stem cells and glial progenitors. Thus, it was prudent to investigate this tool as a vehicle driving extravasation of MSCs. Since MSCs naturally express ITGB1 subunit, we decided to supplement them with ITGA4 only. The purpose of our current study is to investigate the eventual fate of IA delivered ITGA4 engineered and naive MSCs. Methods: mRNA-ITGA4 transfected and naive MSCs were injected to right internal carotid artery of rats with focal brain injury. Through next three days MSC presence in animals' brain was navigated by magnetic resonance imaging. Transplanted cell location relative to the brain blood vessels and host immunological reaction were analyzed post-mortem by immunohistochemistry. The chemotaxis of modified and naive MSCs was additionally examined in in vitro transwell migration assay. Results: Both naïve and ITGA4-overexpressing cells remained inside the vascular lumen over the first two days after IA infusion. On the third day, 39% of mRNA-ITGA4 modified and 51% naïve MSCs homed to perivascular space in the injury region (p=NS). The gradual decrease of both naive and mRNA-ITGA4 transfected hBM-MSCs in the rat brain was observed. mRNA-ITGA4 transfected MSCs appeared to be more vulnerable to phagocytosis than naïve cells. Moreover, in vitro study revealed that homogenate from the injured brain repels migration of MSCs, corroborating the incomplete extravasation observed in vivo. Conclusions: In summary, IA transplanted MSCs are capable of homing to the perivascular space, an integral part of neurovascular unit, which might contribute to the replacement of injured pericytes, a critical element facilitating restoration of CNS function. The mRNA-ITGA4 transfection improves cell docking to vessel but this net benefit vanishes over the next two days due to fast clearance from cerebral vessels of the majority of transplanted cells, regardless of their engineering status. The drawbacks of mRNA-ITGA4 transfection become apparent on day 3 post transplantation due to the lower survival and higher vulnerability to host immune attack.
Collapse
|
3
|
Dabrowska S, Andrzejewska A, Strzemecki D, Muraca M, Janowski M, Lukomska B. Human bone marrow mesenchymal stem cell-derived extracellular vesicles attenuate neuroinflammation evoked by focal brain injury in rats. J Neuroinflammation 2019; 16:216. [PMID: 31722731 PMCID: PMC6852925 DOI: 10.1186/s12974-019-1602-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/25/2019] [Indexed: 12/16/2022] Open
Abstract
Background Ischemic stroke is the major cause of long-term severe disability and death in aged population. Cell death in the infarcted region of the brain induces immune reaction leading to further progression of tissue damage. Immunomodulatory function of mesenchymal stem cells (MSCs) has been shown in multiple preclinical studies; however, it has not been successfully translated to a routine clinical practice due to logistical, economical, regulatory, and intellectual property obstacles. It has been recently demonstrated that therapeutic effect of intravenously administered MSCs can be recapitulated by extracellular vesicles (EVs) derived from them. However, in contrast to MSCs, EVs were not capable to decrease stroke-induced neuroinflammation. Therefore, the aim of the study was to investigate if intra-arterial delivery of MSC-derived EVs will have stronger impact on focal brain injury-induced neuroinflammation, which mimics ischemic stroke, and how it compares to MSCs. Methods The studies were performed in adult male Wistar rats with focal brain injury induced by injection of 1 μl of 50 nmol ouabain into the right hemisphere. Two days after brain insult, 5 × 105 human bone marrow MSCs (hBM-MSCs) labeled with Molday ION or 1.3 × 109 EVs stained with PKH26 were intra-arterially injected into the right hemisphere under real-time MRI guidance. At days 1, 3, and 7 post-transplantation, the rats were decapitated, the brains were removed, and the presence of donor cells or EVs was analyzed. The cellular immune response in host brain was evaluated immunohistochemically, and humoral factors were measured by multiplex immunoassay. Results hBM-MSCs and EVs transplanted intra-arterially were observed in the rat ipsilateral hemisphere, near the ischemic region. Immunohistochemical analysis of brain tissue showed that injection of hBM-MSCs or EVs leads to the decrease of cell activation by ischemic injury, i.e., astrocytes, microglia, and infiltrating leucocytes, including T cytotoxic cells. Furthermore, we observed significant decrease of pro-inflammatory cytokines and chemokines after hBM-MSC or EV infusion comparing with non-treated rats with focal brain injury. Conclusions Intra-arterially injected EVs attenuated neuroinflammation evoked by focal brain injury, which mimics ischemic stroke, and this effect was comparable to intra-arterial hBM-MSC transplantation. Thus, intra-arterial injection of EVs might be an attractive therapeutic approach, which obviates MSC-related obstacles.
Collapse
Affiliation(s)
- Sylwia Dabrowska
- NeuroRepair Department, Mossakowski Medical Research Centre, PAS, 5 Pawinskiego Street, 02-106, Warsaw, Poland
| | - Anna Andrzejewska
- NeuroRepair Department, Mossakowski Medical Research Centre, PAS, 5 Pawinskiego Street, 02-106, Warsaw, Poland
| | - Damian Strzemecki
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, PAS, 5 Pawinskiego Street, 02-106, Warsaw, Poland
| | - Maurizio Muraca
- Department of Women's and Children's Health, University of Padua, Via Giustiniani 3, 35128, Padua, Italy
| | - Miroslaw Janowski
- NeuroRepair Department, Mossakowski Medical Research Centre, PAS, 5 Pawinskiego Street, 02-106, Warsaw, Poland
| | - Barbara Lukomska
- NeuroRepair Department, Mossakowski Medical Research Centre, PAS, 5 Pawinskiego Street, 02-106, Warsaw, Poland.
| |
Collapse
|
4
|
Gornicka-Pawlak E, Janowski M, Habich A, Jablonska A, Sypecka J, Lukomska B. Intra-arterial Administration of Human Umbilical Cord Blood Derived Cells Inversed Learning Asymmetry Resulting From Focal Brain Injury in Rat. Front Neurol 2019; 10:786. [PMID: 31456728 PMCID: PMC6700231 DOI: 10.3389/fneur.2019.00786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/08/2019] [Indexed: 12/25/2022] Open
Abstract
Background: Focal brain injury is a leading cause of serious disability significantly worsening patients' quality of life. Such damage disrupts the existing circuits, leads to motor, and cognitive impairments as well as results in a functional asymmetry. To date, there is still no therapy to effectively restore the lost functions. We examined the effectiveness of human umbilical cord blood (HUCB)-derived cells after their intra-arterial infusion following focal stroke-like brain damage. Methods: The model of stroke was performed using ouabain stereotactic injection into the right dorsolateral striatum in rats. Two days following the brain injury 107 cells were infused into the right carotid artery. The experimental animals were placed into enriched environment housing conditions to enhance the recovery process. Behavioral testing was performed using a battery of tasks visualizing motor as well as cognitive deficits for 30 days following brain injury. We assessed animal asymmetry while they were moving forward at time of testing in different tasks. Results: We found that intra-arterial infusion of HUCB-derived cells inversed lateralized performance resulting from the focal brain injury at the early stage of T-maze habit learning task training. The inversion was independent from the level of neural commitment of infused cells. The learning asymmetry inversion was observed only under specific circumstances created by the applied task design. We did not found such inversion in walking beam task, vibrissae elicited forelimb placing, the first exploration of open field, T-maze switching task as well as apomorphine induced rotations. Both the asymmetry induced by the focal brain injury and its inversion resulting from cell infusion decreased along the training. The inversion of learning asymmetry was also independent on the range of the brain damage. Conclusions: Intra-arterial infusion of HUCB-derived cells inversed lateralized performance of learning task resulting from focal brain damage. The inversion was not visible in any other of the used motor as well as cognitive tests. The observed behavioral effect of cell infusion was also not related to the range of the brain damage. Our findings contribute to describing the effects of systemic treatment with the HUCB-derived cells on functional recovery following focal brain injury.
Collapse
Affiliation(s)
- Elzbieta Gornicka-Pawlak
- NeuroRepair Department, Mossakowski Medical Research Center, Polish Academy of Sciences, Warsaw, Poland
| | - Miroslaw Janowski
- NeuroRepair Department, Mossakowski Medical Research Center, Polish Academy of Sciences, Warsaw, Poland
| | - Aleksandra Habich
- NeuroRepair Department, Mossakowski Medical Research Center, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Jablonska
- NeuroRepair Department, Mossakowski Medical Research Center, Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Sypecka
- NeuroRepair Department, Mossakowski Medical Research Center, Polish Academy of Sciences, Warsaw, Poland
| | - Barbara Lukomska
- NeuroRepair Department, Mossakowski Medical Research Center, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
5
|
Cirillo C, Le Friec A, Frisach I, Darmana R, Robert L, Desmoulin F, Loubinoux I. Focal Malonate Injection Into the Internal Capsule of Rats as a Model of Lacunar Stroke. Front Neurol 2018; 9:1072. [PMID: 30619036 PMCID: PMC6297868 DOI: 10.3389/fneur.2018.01072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/23/2018] [Indexed: 01/14/2023] Open
Abstract
Background: Stroke is the first cause of disability in adults in western countries. Infarct of the internal capsule (IC) may be related to motor impairment and poor prognosis in stroke patients. Functional deficits due to medium-sized infarcts are difficult to predict, except if the specific site of the lesion is taken into account. None of the few pre-clinical models recapitulating this type of stroke has shown clear, reproducible, and long-lasting sensorimotor deficits. Here, we developed a rat model of lacunar infarction within the IC, key structure of the sensorimotor pathways, by precise injection of malonate. Methods: The mitochondrial toxin malonate was injected during stereotactic surgery into the IC of rat brains. Rats were divided in three groups: two groups received malonate solution at 1.5M (n = 12) or at 3M (n = 10) and a sham group (n = 5) received PBS. Three key motor functions usually evaluated following cerebral lesion in the clinic strength, target reaching, and fine dexterity were assessed in rats by a forelimb grip strength test, a skilled reaching task (staircase) for reaching and dexterity, and single pellet retrieval task. Sensorimotor functions were evaluated by a neurological scale. Live brain imaging, using magnetic resonance (MRI), and post-mortem immunohistochemistry in brain slices were performed to characterize the lesion site after malonate injection. Results: Intracerebral injection of malonate produced a 100% success rate in inducing a lesion in the IC. All rats receiving the toxin, regardless the dose injected, had similar deficits in strength and dexterity of the contralateral forepaw, and showed significant neurological impairment. Additionally, only partial recovery was observed with respect to strength, while no recovery was observed for dexterity and neurological deficit. MRI and immunostaining show volume size and precise location of the lesion in the IC, destruction of axonal structures and Wallerian degeneration of fibers in the area above the injection site. Conclusions: This pre-clinical model of lacunar stroke induces a lesion in the IC with measurable and reproducible sensorimotor deficits, and limited recovery with stabilization of performance 2 weeks post-injury. Future therapies in stroke may be successfully tested in this model.
Collapse
Affiliation(s)
- Carla Cirillo
- Toulouse NeuroImaging Center, Inserm, Université de Toulouse, UPS, Toulouse, France
| | - Alice Le Friec
- Toulouse NeuroImaging Center, Inserm, Université de Toulouse, UPS, Toulouse, France
| | - Isabelle Frisach
- Toulouse NeuroImaging Center, Inserm, Université de Toulouse, UPS, Toulouse, France
| | - Robert Darmana
- Toulouse NeuroImaging Center, Inserm, Université de Toulouse, UPS, Toulouse, France
| | - Lorenne Robert
- Toulouse NeuroImaging Center, Inserm, Université de Toulouse, UPS, Toulouse, France
| | - Franck Desmoulin
- Toulouse NeuroImaging Center, Inserm, Université de Toulouse, UPS, Toulouse, France
| | - Isabelle Loubinoux
- Toulouse NeuroImaging Center, Inserm, Université de Toulouse, UPS, Toulouse, France
| |
Collapse
|
6
|
Walczak P, Wojtkiewicz J, Nowakowski A, Habich A, Holak P, Xu J, Adamiak Z, Chehade M, Pearl MS, Gailloud P, Lukomska B, Maksymowicz W, Bulte JW, Janowski M. Real-time MRI for precise and predictable intra-arterial stem cell delivery to the central nervous system. J Cereb Blood Flow Metab 2017; 37:2346-2358. [PMID: 27618834 PMCID: PMC5531335 DOI: 10.1177/0271678x16665853] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Stem cell therapy for neurological disorders reached a pivotal point when the efficacy of several cell types was demonstrated in small animal models. Translation of stem cell therapy is contingent upon overcoming the challenge of effective cell delivery to the human brain, which has a volume ∼1000 times larger than that of the mouse. Intra-arterial injection can achieve a broad, global, but also on-demand spatially targeted biodistribution; however, its utility has been limited by unpredictable cell destination and homing as dictated by the vascular territory, as well as by safety concerns. We show here that high-speed MRI can be used to visualize the intravascular distribution of a superparamagnetic iron oxide contrast agent and can thus be used to accurately predict the distribution of intra-arterial administered stem cells. Moreover, high-speed MRI enables the real-time visualization of cell homing, providing the opportunity for immediate intervention in the case of undesired biodistribution.
Collapse
Affiliation(s)
- Piotr Walczak
- 1 Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,2 Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,3 Department of Radiology, Faculty of Medical Sciences, University of Warmia and Mazury, Olsztyn, Poland
| | - Joanna Wojtkiewicz
- 4 Department of Pathophysiology, Faculty of Medical Sciences, University of Warmia and Mazury, Olsztyn, Poland
| | - Adam Nowakowski
- 5 NeuroRepair Dept, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Aleksandra Habich
- 4 Department of Pathophysiology, Faculty of Medical Sciences, University of Warmia and Mazury, Olsztyn, Poland
| | - Piotr Holak
- 6 Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Jiadi Xu
- 7 F.M. Kirby Research Centre, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Zbigniew Adamiak
- 6 Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Moussa Chehade
- 1 Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Monica S Pearl
- 8 Division of Interventional Neuroradiology, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Philippe Gailloud
- 8 Division of Interventional Neuroradiology, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Barbara Lukomska
- 5 NeuroRepair Dept, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Wojciech Maksymowicz
- 9 Department of Neurology and Neurosurgery, Faculty of Medical Sciences, University of Warmia and Mazury, Olsztyn, Poland
| | - Jeff Wm Bulte
- 1 Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,2 Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,10 Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,11 Department of Chemical & Biomolecular Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,12 Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Miroslaw Janowski
- 1 Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,2 Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,5 NeuroRepair Dept, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.,13 Department of Neurosurgery, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
7
|
Rehni AK, Liu A, Perez-Pinzon MA, Dave KR. Diabetic aggravation of stroke and animal models. Exp Neurol 2017; 292:63-79. [PMID: 28274862 PMCID: PMC5400679 DOI: 10.1016/j.expneurol.2017.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 02/03/2017] [Accepted: 03/03/2017] [Indexed: 12/16/2022]
Abstract
Cerebral ischemia in diabetics results in severe brain damage. Different animal models of cerebral ischemia have been used to study the aggravation of ischemic brain damage in the diabetic condition. Since different disease conditions such as diabetes differently affect outcome following cerebral ischemia, the Stroke Therapy Academic Industry Roundtable (STAIR) guidelines recommends use of diseased animals for evaluating neuroprotective therapies targeted to reduce cerebral ischemic damage. The goal of this review is to discuss the technicalities and pros/cons of various animal models of cerebral ischemia currently being employed to study diabetes-related ischemic brain damage. The rational use of such animal systems in studying the disease condition may better help evaluate novel therapeutic approaches for diabetes related exacerbation of ischemic brain damage.
Collapse
Affiliation(s)
- Ashish K Rehni
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Allen Liu
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Miguel A Perez-Pinzon
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Kunjan R Dave
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
8
|
Experimental model of small subcortical infarcts in mice with long-lasting functional disabilities. Brain Res 2015; 1629:318-28. [DOI: 10.1016/j.brainres.2015.10.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/11/2015] [Accepted: 10/22/2015] [Indexed: 01/04/2023]
|
9
|
Jablonska A, Drela K, Wojcik-Stanaszek L, Janowski M, Zalewska T, Lukomska B. Short-Lived Human Umbilical Cord-Blood-Derived Neural Stem Cells Influence the Endogenous Secretome and Increase the Number of Endogenous Neural Progenitors in a Rat Model of Lacunar Stroke. Mol Neurobiol 2015; 53:6413-6425. [PMID: 26607630 PMCID: PMC5085993 DOI: 10.1007/s12035-015-9530-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 11/08/2015] [Indexed: 12/12/2022]
Abstract
Stroke is the leading cause of severe disability, and lacunar stroke is related to cognitive decline and hemiparesis. There is no effective treatment for the majority of patients with stroke. Thus, stem cell-based regenerative medicine has drawn a growing body of attention due to the capabilities for trophic factor expression and neurogenesis enhancement. Moreover, it was shown in an experimental autoimmune encephalomyelitis (EAE) model that even short-lived stem cells can be therapeutic, and we have previously observed that phenomenon indirectly. Here, in a rat model of lacunar stroke, we investigated the molecular mechanisms underlying the positive therapeutic effects of short-lived human umbilical cord-blood-derived neural stem cells (HUCB-NSCs) through the distinct measurement of exogenous human and endogenous rat trophic factors. We have also evaluated neurogenesis and metalloproteinase activity as cellular components of therapeutic activity. As expected, we observed an increased proliferation and migration of progenitors, as well as metalloproteinase activity up to 14 days post transplantation. These changes were most prominent at the 7-day time point when we observed 30 % increases in the number of bromodeoxyuridine (BrdU)-positive cells in HUCB-NSC transplanted animals. The expression of human trophic factors was present until 7 days post transplantation, which correlated well with the survival of the human graft. For these 7 days, the level of messenger RNA (mRNA) in the analyzed trophic factors was from 300-fold for CNTF to 10,000-fold for IGF, much higher compared to constitutive expression in HUCB-NSCs in vitro. What is interesting is that there was no increase in the expression of rat trophic factors during the human graft survival, compared to that in non-transplanted animals. However, there was a prolongation of a period of increased trophic expression until 14 days post transplantation, while, in non-transplanted animals, there was a significant drop in rat trophic expression at that time point. We conclude that the positive therapeutic effect of short-lived stem cells may be related to the net increase in the amount of trophic factors (rat + human) until graft death and to the prolonged increase in rat trophic factor expression subsequently.
Collapse
Affiliation(s)
- Anna Jablonska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Drela
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Luiza Wojcik-Stanaszek
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Miroslaw Janowski
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.,Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.,Cellular Imaging Section, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Teresa Zalewska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Barbara Lukomska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
10
|
Complex assessment of distinct cognitive impairments following ouabain injection into the rat dorsoloateral striatum. Behav Brain Res 2015; 289:133-40. [PMID: 25845737 DOI: 10.1016/j.bbr.2015.03.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 03/25/2015] [Accepted: 03/29/2015] [Indexed: 11/22/2022]
Abstract
A stroke in humans may induce focal injury to the brain tissue resulting in various disabilities. Although motor deficits are the most discernible, cognitive impairments seem to be crucial for patients mental well-being. The current lack of effective treatments encourages scientists and clinicians to develop novel approaches. Before applying them in clinic, testing for safety and effectiveness in non-human models is necessary. Such animal model should include significant cognitive impairments resulting from brain lesion. We used ouabain stereotactic injection into the right dorsolateral striatum of male Wistar rats, and enriched environment housing. To confirm the brain injury before cognitive testing, rats were given a beam-walking task to evaluate the level of sensorimotor deficits. To determine the cognitive impairment after focal brain damage, rats underwent a set of selected tasks over an observation period of 30 days. Brain injury induced by ouabain significantly impaired the acquisition of the T-maze habit learning task, where 'win-stay' strategy rules were applied. The injured rats also showed significant deficits in the performance of the T-maze switching task, which involved shifting from multiple clues previously relevant to the only one important clue. Focal brain injury also significantly changed 'what--where' memory, tested in the object exploration task, in which a novel object consecutively appeared in the same place while the location of a familiar item was continuously changed. In conclusion, we developed an animal model of distinct cognitive impairments after focal brain injury that provides a convenient method to test the effectiveness of restorative therapies.
Collapse
|
11
|
Tan C, Shichinohe H, Abumiya T, Nakayama N, Kazumata K, Hokari M, Hamauchi S, Houkin K. Short-, middle- and long-term safety of superparamagnetic iron oxide-labeled allogeneic bone marrow stromal cell transplantation in rat model of lacunar infarction. Neuropathology 2014; 35:197-208. [PMID: 25376270 DOI: 10.1111/neup.12180] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/01/2014] [Accepted: 10/02/2014] [Indexed: 02/06/2023]
Abstract
Recently, both basic and clinical studies demonstrated that bone marrow stromal cell (BMSC) transplantation therapy can promote functional recovery of patients with CNS disorders. A non-invasive method for cell tracking using MRI and superparamagnetic iron oxide (SPIO)-based labeling agents has been applied to elucidate the behavior of transplanted cells. However, the long-term safety of SPIO-labeled BMSCs still remains unclear. The aim of this study was to investigate the short-, middle- and long-term safety of the SPIO-labeled allogeneic BMSC transplantation. For this purpose, BMSCs were isolated from transgenic rats expressing green fluorescent protein (GFP) and were labeled with SPIO. The Na/K ATPase pump inhibitor ouabain or vehicle was stereotactically injected into the right striatum of wild-type rats to induce a lacunar lesion (n = 22). Seven days after the insult, either BMSCs or SPIO solution were stereotactically injected into the left striatum. A 7.0-Tesla MRI was performed to serially monitor the behavior of BMSCs in the host brain. The animals were sacrificed after 7 days (n = 7), 6 weeks (n = 6) or 10 months (n = 9) after the transplantation. MRI demonstrated that BMSCs migrated to the damage area through the corpus callosum. Histological analysis showed that activated microglia were present around the bolus of donor cells 7 days after the allogeneic cell transplantation, although an immunosuppressive drug was administered. The SPIO-labeled BMSCs resided and started to proliferate around the route of the cell transplantation. Within 6 weeks, large numbers of SPIO-labeled BMSCs reached the lacunar infarction area from the transplantation region through the corpus callosum. Some SPIO nanoparticles were phagocytized by microglia. After 10 months, the number of SPIO-positive cells was lower compared with the 7-day and 6-week groups. There was no tumorigenesis or severe injury observed in any of the animals. These findings suggest that BMSCs are safe after cell transplantation for the treatment of stroke.
Collapse
Affiliation(s)
- Chengbo Tan
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hideo Shichinohe
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Takeo Abumiya
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Naoki Nakayama
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ken Kazumata
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masaaki Hokari
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shuji Hamauchi
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Kiyohiro Houkin
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
12
|
Janowski M, Walczak P, Date I. Intravenous Route of Cell Delivery for Treatment of Neurological Disorders: A Meta-Analysis of Preclinical Results. Stem Cells Dev 2010; 19:5-16. [DOI: 10.1089/scd.2009.0271] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Miroslaw Janowski
- Department of NeuroRepair, Medical Research Center, Polish Academy of Science, Warsaw, Poland
- Department of Neurosurgery, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Walczak
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Isao Date
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
13
|
Modo M. Long-term survival and serial assessment of stroke damage and recovery - practical and methodological considerations. ACTA ACUST UNITED AC 2009; 2:52-68. [PMID: 22389748 DOI: 10.6030/1939-067x-2.2.52] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Impairments caused by stroke remain the main cause for adult disability. Despite a vigorous research effort, only 1 thrombolytic treatment has been approved in acute stroke (<3h). The limitations of preclinical studies and how these can be overcome have been the subject of various guidelines. However, often these guidelines focus on the acute stroke setting and omit long-term outcome measures, such as behaviour and neuroimaging. The considerations and practicalities of including the serial assessment of these approaches and their significance to establish therapeutic efficacy are discussed here.
Collapse
Affiliation(s)
- Michel Modo
- King's College London, Institute of Psychiatry, Department of Neuroscience, London, UK
| |
Collapse
|