1
|
Shiraishi W, Yamasaki R, Hashimoto Y, Ko S, Kobayakawa Y, Isobe N, Matsushita T, Kira JI. Clearance of peripheral nerve misfolded mutant protein by infiltrated macrophages correlates with motor neuron disease progression. Sci Rep 2021; 11:16438. [PMID: 34385589 PMCID: PMC8360983 DOI: 10.1038/s41598-021-96064-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023] Open
Abstract
Macrophages expressing C-C chemokine receptor type 2 (CCR2) infiltrate the central and peripheral neural tissues of amyotrophic lateral sclerosis (ALS) patients. To identify the functional role of CCR2+ macrophages in the pathomechanisms of ALS, we used an ALS animal model, mutant Cu/Zn superoxide dismutase 1G93A (mSOD1)-transgenic (Tg) mice. To clarify the CCR2 function in the model, we generated SOD1G93A/CCR2Red fluorescence protein (RFP)/Wild type (WT)/CX3CR1Green fluorescence protein (GFP)/WT-Tg mice, which heterozygously express CCR2-RFP and CX3CR1-GFP, and SOD1G93A/CCR2RFP/RFP-Tg mice, which lack CCR2 protein expression and present with a CCR2-deficient phenotype. In mSOD1-Tg mice, mSOD1 accumulated in the sciatic nerve earlier than in the spinal cord. Furthermore, spinal cords of SOD1G93A/CCR2RFP/WT/CX3CR1GFP/WT mice showed peripheral macrophage infiltration that emerged at the end-stage, whereas in peripheral nerves, macrophage infiltration started from the pre-symptomatic stage. Before disease onset, CCR2+ macrophages harboring mSOD1 infiltrated sciatic nerves earlier than the lumbar cord. CCR2-deficient mSOD1-Tg mice showed an earlier onset and axonal derangement in the sciatic nerve than CCR2-positive mSOD1-Tg mice. CCR2-deficient mSOD1-Tg mice showed an increase in deposited mSOD1 in the sciatic nerve compared with CCR2-positive mice. These findings suggest that CCR2+ and CX3CR1+ macrophages exert neuroprotective functions in mSOD1 ALS via mSOD1 clearance from the peripheral nerves.
Collapse
Affiliation(s)
- Wataru Shiraishi
- grid.177174.30000 0001 2242 4849Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan ,grid.415432.50000 0004 0377 9814Department of Neurology, Kokura Memorial Hospital, Fukuoka, 802-8555 Japan
| | - Ryo Yamasaki
- grid.177174.30000 0001 2242 4849Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Yu Hashimoto
- grid.177174.30000 0001 2242 4849Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Senri Ko
- grid.177174.30000 0001 2242 4849Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Yuko Kobayakawa
- grid.177174.30000 0001 2242 4849Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Noriko Isobe
- grid.177174.30000 0001 2242 4849Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Takuya Matsushita
- grid.177174.30000 0001 2242 4849Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Jun-ichi Kira
- grid.177174.30000 0001 2242 4849Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan ,grid.411731.10000 0004 0531 3030Translational Neuroscience Center, Graduate School of Medicine, and School of Pharmacy At Fukuoka, International University of Health and Welfare, 137-1 Enokizu, Ookawa, Fukuoka 831-8501 Japan ,grid.411731.10000 0004 0531 3030Department of Neurology, Brain and Nerve Center, Fukuoka Central Hospital, International University of Health and Welfare, 2-6-11 Yakuin, Chuo-ku, Fukuoka, 810-0022 Japan
| |
Collapse
|
2
|
Amyotrophic Lateral Sclerosis (ALS) prediction model derived from plasma and CSF biomarkers. PLoS One 2021; 16:e0247025. [PMID: 33606761 PMCID: PMC7894922 DOI: 10.1371/journal.pone.0247025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/29/2021] [Indexed: 11/19/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a degenerative disorder of motor neurons which leads to complete loss of movement in patients. The only FDA approved drug Riluzole provides only symptomatic relief to patients. Early Diagnosis of the disease warrants the importance of diagnostic and prognostic models for predicting disease and disease progression respectively. In the present study we represent the predictive statistical model for ALS using plasma and CSF biomarkers. Forward stepwise (Binary likelihood) Logistic regression model is developed for prediction of ALS. The model has been shown to have excellent validity (94%) with good sensitivity (98%) and specificity (93%). The area under the ROC curve is 99.3%. Along with age and BMI, VEGF (Vascular Endothelial Growth Factor), VEGFR2 (Vascular Endothelial Growth Factor Receptor 2) and TDP43 (TAR DNA Binding Protein 43) in CSF and VEGFR2 and OPTN (Optineurin) in plasma are good predictors of ALS.
Collapse
|
3
|
Hu Y, Cao C, Qin XY, Yu Y, Yuan J, Zhao Y, Cheng Y. Increased peripheral blood inflammatory cytokine levels in amyotrophic lateral sclerosis: a meta-analysis study. Sci Rep 2017; 7:9094. [PMID: 28831083 PMCID: PMC5567306 DOI: 10.1038/s41598-017-09097-1] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/20/2017] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with poorly understood etiology. Increasing evidence suggest that inflammation may play a critical role in the pathogenesis of ALS. Several studies have demonstrated altered levels of blood cytokines in ALS, but results were inconsistent. Therefore, we did a systematic review of studies comparing blood inflammatory cytokines between ALS patients and control subjects, and quantitatively combined the clinical data with a meta-analysis. The systematic review of Pubmed and Web of Science identified 25 studies encompassing 812 ALS patients and 639 control subjects. Random-effects meta-analysis demonstrated that blood tumor necrosis factor-α (TNF; Hedges' g = 0.655; p = 0.001), TNF receptor 1 (Hedges' g = 0.741; p < 0.001), interleukin 6 (IL-6; Hedges' g = 0.25; p = 0.005), IL-1β (Hedges' g = 0.296; p = 0.038), IL-8 (Hedges' g = 0.449; p < 0.001) and vascular endothelial growth factor (Hedges' g = 0.891; p = 0.003) levels were significantly elevated in patients with ALS compared with control subjects. These results substantially enhance our knowledge of the inflammatory response in ALS, and peripheral blood inflammatory cytokines may be used as diagnostic biomarkers for ALS in the future.
Collapse
Affiliation(s)
- Yang Hu
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Chang Cao
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Xiao-Yan Qin
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yun Yu
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Jing Yuan
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yu Zhao
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yong Cheng
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
4
|
Schuster C, Hardiman O, Bede P. Development of an Automated MRI-Based Diagnostic Protocol for Amyotrophic Lateral Sclerosis Using Disease-Specific Pathognomonic Features: A Quantitative Disease-State Classification Study. PLoS One 2016; 11:e0167331. [PMID: 27907080 PMCID: PMC5132189 DOI: 10.1371/journal.pone.0167331] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/12/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Despite significant advances in quantitative neuroimaging, the diagnosis of ALS remains clinical and MRI-based biomarkers are not currently used to aid the diagnosis. The objective of this study is to develop a robust, disease-specific, multimodal classification protocol and validate its diagnostic accuracy in independent, early-stage and follow-up data sets. METHODS 147 participants (81 ALS patients and 66 healthy controls) were divided into a training sample and a validation sample. Patients in the validation sample underwent follow-up imaging longitudinally. After removing age-related variability, indices of grey and white matter integrity in ALS-specific pathognomonic brain regions were included in a cross-validated binary logistic regression model to determine the probability of individual scans indicating ALS. The following anatomical regions were assessed for diagnostic classification: average grey matter density of the left and right precentral gyrus, the average fractional anisotropy and radial diffusivity of the left and right superior corona radiata, inferior corona radiata, internal capsule, mesencephalic crus of the cerebral peduncles, pontine segment of the corticospinal tract, and the average diffusivity values of the genu, corpus and splenium of the corpus callosum. RESULTS Using a 50% probability cut-off value of suffering from ALS, the model was able to discriminate ALS patients and HC with good sensitivity (80.0%) and moderate accuracy (70.0%) in the training sample and superior sensitivity (85.7%) and accuracy (78.4%) in the independent validation sample. CONCLUSIONS This diagnostic classification study endeavours to advance ALS biomarker research towards pragmatic clinical applications by providing an approach of automated individual-data interpretation based on group-level observations.
Collapse
Affiliation(s)
- Christina Schuster
- Quantitative Neuroimaging Group, Academic Unit of Neurology, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Orla Hardiman
- Quantitative Neuroimaging Group, Academic Unit of Neurology, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Peter Bede
- Quantitative Neuroimaging Group, Academic Unit of Neurology, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| |
Collapse
|
5
|
Anand A, Sharma K, Sharma SK, Singh R, Sharma NK, Prasad K. AMD Genetics in India: The Missing Links. Front Aging Neurosci 2016; 8:115. [PMID: 27252648 PMCID: PMC4876307 DOI: 10.3389/fnagi.2016.00115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/29/2016] [Indexed: 01/28/2023] Open
Abstract
Age related macular degeneration is a disease which occurs in aged individuals. There are various changes that occur at the cellular, molecular and physiological level with advancing age (Samiec et al., 1988; Sharma K. et al., 2014). Drusen deposition between retinal pigment epithelium (RPE) and Bruch’s membrane (BM) is one of the key features in AMD patients (Mullins et al., 2000; Hageman et al., 2001) similar to Aβ/tau aggregates in Alzheimer’s disease (AD) patients. The primary goal of this review is to discuss whether the various candidate genes and associated biomarkers, that are known to play an independent role in progression of AMD, exert deleterious effect on phenotype, alone or in combination, in Indian AMD patients from the same ethnic group and the significance of such research. A statistical model for probable interaction between genes could be derived from such analysis. Therefore, one can use multiple modalities to identify and enrol AMD patients based on established clinical criteria and examine the risk factors to determine if these genes are associated with risk factors, biomarkers or disease by Mendelian randomization. Similarly, there are large numbers of single nucleotide polymorphisms (SNPs) identified in human population. Even non-synonymous SNPs (nsSNPs) are believed to induce deleterious effects on the functionality of various proteins. The study of such snSNPs could provide a better genetic insight for diverse phenotypes of AMD patients, predicting significant risk factors for the disease in Indian population. Therefore, the prediction of biological effect of nsSNPs in the candidate genes and the associated grant applications in the subject are highly solicited.Therefore, genotyping and levels of protein expression of various genes would provide wider canvas in genetic complexity of AMD pathology which should be evaluated by valid statistical and bioinformatics’ tools. Longitudinal follow up of Indian AMD patients to evaluate the temporal effect of SNPs and biomarkers on progression of disease would provide a unique strategy in the field.
Collapse
Affiliation(s)
- Akshay Anand
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research Chandigarh, India
| | - Kaushal Sharma
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research Chandigarh, India; Centre for Systems Biology and Bioinformatics, Panjab UniversityChandigarh, India
| | - Suresh K Sharma
- Centre for Systems Biology and Bioinformatics, Panjab UniversityChandigarh, India; Department of Statistics, Panjab UniversityChandigarh, India
| | - Ramandeep Singh
- Advanced Eye Centre, Post Graduate Institute of Medical Education and Research Chandigarh, India
| | - Neel K Sharma
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute Bethesda, MD, USA
| | - Keshava Prasad
- Institute of BioinformaticsBangalore, India; YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya UniversityMangalore, India; NIMHANS-IOB Proteomics and Bioinformatics Laboratory, Neurobiology Research Centre, National Institute of Mental Health and NeurosciencesBangalore, India
| |
Collapse
|
6
|
Blasco H, Nadal-Desbarats L, Pradat PF, Gordon PH, Madji Hounoum B, Patin F, Veyrat-Durebex C, Mavel S, Beltran S, Emond P, Andres CR, Corcia P. Biomarkers in amyotrophic lateral sclerosis: combining metabolomic and clinical parameters to define disease progression. Eur J Neurol 2015; 23:346-53. [DOI: 10.1111/ene.12851] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 08/03/2015] [Indexed: 12/30/2022]
Affiliation(s)
- H. Blasco
- Université François-Rabelais; Inserm U930; Tours France
- Laboratoire de Biochimie; CHRU de Tours; Tours France
| | | | - P.-F. Pradat
- Centre Référent Maladie Rare SLA; Hôpital de la Pitié-Salpétrière; Paris France
| | | | | | - F. Patin
- Université François-Rabelais; Inserm U930; Tours France
| | | | - S. Mavel
- Université François-Rabelais; Inserm U930; Tours France
| | | | - P. Emond
- Université François-Rabelais; Inserm U930; Tours France
| | - C. R. Andres
- Université François-Rabelais; Inserm U930; Tours France
- Laboratoire de Biochimie; CHRU de Tours; Tours France
| | - P. Corcia
- Université François-Rabelais; Inserm U930; Tours France
- Centre SLA; CHRU de Tours; Tours France
| |
Collapse
|
7
|
VEGF levels in CSF and serum in mild ALS patients. J Neurol Sci 2014; 346:216-20. [PMID: 25204587 DOI: 10.1016/j.jns.2014.08.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 08/19/2014] [Accepted: 08/20/2014] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disorder involving both upper and lower motor neurons in the cerebral cortex, brainstem and spinal cord. Vascular endothelial growth factor (VEGF) was originally described as a factor with a regulatory role in vascular growth and development, and now it also functions as a neurotrophic factor protecting motoneurons from insults such as oxidative stress, hypoxia and glutamate-excitotoxicity, but the role of VEGF in ALS is still unclear. The aim of this study is to measure cerebrospinal fluid (CSF) and serum VEGF levels in patients with ALS, and to investigate whether there are correlations between CSF and serum VEGF levels and clinical parameters of the disease and whether VEGF has a prognostic and evaluating potential for ALS. Results showed that VEGF levels were found to increase significantly in CSF and serum in ALS patients studied; they were positively and significantly correlated with the disease duration in ALS patients and inversely and significantly correlated with disease progression rate (DPR) of ALS patients. Moreover, CSF and serum from ALS patients with long duration and slow disease progression rate revealed higher VEGF levels as compared to ALS patients with short duration and rapid disease progression rate. In conclusion, VEGF upregulation may indicate an activation of compensatory responses in ALS which may reflect or in fact account for increased duration and slow disease progression rate. We propose that VEGF may be a useful biomarker having the prognostic and evaluating potential for ALS.
Collapse
|
8
|
Anand A, Gupta PK, Prabhakar S, Sharma S, Thakur K. Analysis of smoking and LPO in ALS. Neurochem Int 2014; 71:47-55. [DOI: 10.1016/j.neuint.2014.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/26/2014] [Accepted: 04/03/2014] [Indexed: 12/11/2022]
|
9
|
ALS and oxidative stress: the neurovascular scenario. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:635831. [PMID: 24367722 PMCID: PMC3866720 DOI: 10.1155/2013/635831] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 10/07/2013] [Accepted: 10/17/2013] [Indexed: 12/11/2022]
Abstract
Oxidative stress and angiogenic factors have been placed as the prime focus of scientific investigations after an establishment of link between vascular endothelial growth factor promoter (VEGF), hypoxia, and amyotrophic lateral sclerosis (ALS) pathogenesis. Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter and mutant superoxide dismutase 1 (SOD1) which are characterised by atrophy and muscle weakness resulted in phenotype resembling human ALS in mice. This results in lower motor neurodegeneration thus establishing an important link between motor neuron degeneration, vasculature, and angiogenic molecules. In this review, we have presented human, animal, and in vitro studies which suggest that molecules like VEGF have a therapeutic, diagnostic, and prognostic potential in ALS. Involvement of vascular growth factors and hypoxia response elements also highlights the converging role of oxidative stress and neurovascular network for understanding and treatment of various neurodegenerative disorders like ALS.
Collapse
|
10
|
Kawaguchi-Niida M, Yamamoto T, Kato Y, Inose Y, Shibata N. MCP-1/CCR2 signaling-mediated astrocytosis is accelerated in a transgenic mouse model of SOD1-mutated familial ALS. Acta Neuropathol Commun 2013; 1:21. [PMID: 24252211 PMCID: PMC3893446 DOI: 10.1186/2051-5960-1-21] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 05/14/2013] [Indexed: 01/10/2023] Open
Abstract
Background Emerging evidence suggests that innate immunity and increased oxidative stress contribute to pathomechanisms in amyotrophic lateral sclerosis (ALS). The aim of the present study was to verify the involvement of monocyte chemoattractant protein-1 (MCP-1) and its specific CC chemokine receptor 2 (CCR2) in the disease progression of ALS. We here demonstrate the expression state of MCP-1 and CCR2 in lumbar spinal cords of mice overexpressing a transgene for G93A mutant human superoxide dismutase 1 (SOD1) (ALS mice) as a mouse model of ALS as well as the involvement of MCP-1/CCR2-mediated signaling in behavior of cultured astrocytes derived from those mice. Results Quantitative polymerase chain reaction analysis revealed that MCP-1 and CCR2 mRNA levels were significantly higher in ALS mice than those in nontransgenic littermates (control mice) at the presymptomatic stage. Immunoblot analysis disclosed a significantly higher CCR2/β-actin optical density ratio in the postsymptomatic ALS mouse group than those in the age-matched control mouse group. Immunohistochemically, MCP-1 determinants were mainly localized in motor neurons, while CCR2 determinants were exclusively localized in reactive astrocytes. Primary cultures of astrocytes derived from ALS mice showed a significant increase in proliferation activity under recombinant murine MCP-1 stimuli as compared to those from control mice. Conclusions Our results provide in vivo and in vitro evidence that MCP-1 stimulates astrocytes via CCR2 to induce astrocytosis in ALS with SOD1 gene mutation. Thus, it is likely that MCP-1/CCR2-mediated sigaling is involved in the disease progression of ALS.
Collapse
|