1
|
Richardson ME, Holdren M, Brannan T, de la Hoya M, Spurdle AB, Tavtigian SV, Young CC, Zec L, Hiraki S, Anderson MJ, Walker LC, McNulty S, Turnbull C, Tischkowitz M, Schon K, Slavin T, Foulkes WD, Cline M, Monteiro AN, Pesaran T, Couch FJ. Specifications of the ACMG/AMP variant curation guidelines for the analysis of germline ATM sequence variants. Am J Hum Genet 2024; 111:2411-2426. [PMID: 39317201 PMCID: PMC11568761 DOI: 10.1016/j.ajhg.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/26/2024] Open
Abstract
The ClinGen Hereditary Breast, Ovarian, and Pancreatic Cancer (HBOP) Variant Curation Expert Panel (VCEP) is composed of internationally recognized experts in clinical genetics, molecular biology, and variant interpretation. This VCEP made specifications for the American College of Medical Genetics and Association for Molecular Pathology (ACMG/AMP) guidelines for the ataxia telangiectasia mutated (ATM) gene according to the ClinGen protocol. These gene-specific rules for ATM were modified from the ACMG/AMP guidelines and were tested against 33 ATM variants of various types and classifications in a pilot curation phase. The pilot revealed a majority agreement between the HBOP VCEP classifications and the ClinVar-deposited classifications. Six pilot variants had conflicting interpretations in ClinVar, and re-evaluation with the VCEP's ATM-specific rules resulted in four that were classified as benign, one as likely pathogenic, and one as a variant of uncertain significance (VUS) by the VCEP, improving the certainty of interpretations in the public domain. Overall, 28 of the 33 pilot variants were not VUS, leading to an 85% classification rate. The ClinGen-approved, modified rules demonstrated value for improved interpretation of variants in ATM.
Collapse
Affiliation(s)
| | - Megan Holdren
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Miguel de la Hoya
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain
| | - Amanda B Spurdle
- Population Health, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Sean V Tavtigian
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | | | | | | | | | - Logan C Walker
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Shannon McNulty
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Clare Turnbull
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Marc Tischkowitz
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Katherine Schon
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Thomas Slavin
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - William D Foulkes
- Departments of Human Genetics, McGill University, Montreal, QC, Canada
| | - Melissa Cline
- UC Santa Cruz Genomics Institute, Mail Stop: Genomics, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Alvaro N Monteiro
- Department of Cancer Epidemiology, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | | | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
2
|
Richardson ME, Holdren M, Brannan T, de la Hoya M, Spurdle AB, Tavtigian SV, Young CC, Zec L, Hiraki S, Anderson MJ, Walker LC, McNulty S, Turnbull C, Tischkowitz M, Schon K, Slavin T, Foulkes WD, Cline M, Monteiro AN, Pesaran T, Couch FJ. Specifications of the ACMG/AMP variant curation guidelines for the analysis of germline ATM sequence variants. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.28.24307502. [PMID: 38854136 PMCID: PMC11160822 DOI: 10.1101/2024.05.28.24307502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The ClinGen Hereditary Breast, Ovarian and Pancreatic Cancer (HBOP) Variant Curation Expert Panel (VCEP) is composed of internationally recognized experts in clinical genetics, molecular biology and variant interpretation. This VCEP made specifications for ACMG/AMP guidelines for the ataxia telangiectasia mutated (ATM) gene according to the Food and Drug Administration (FDA)-approved ClinGen protocol. These gene-specific rules for ATM were modified from the American College of Medical Genetics and Association for Molecular Pathology (ACMG/AMP) guidelines and were tested against 33 ATM variants of various types and classifications in a pilot curation phase. The pilot revealed a majority agreement between the HBOP VCEP classifications and the ClinVar-deposited classifications. Six pilot variants had conflicting interpretations in ClinVar and reevaluation with the VCEP's ATM-specific rules resulted in four that were classified as benign, one as likely pathogenic and one as a variant of uncertain significance (VUS) by the VCEP, improving the certainty of interpretations in the public domain. Overall, 28 the 33 pilot variants were not VUS leading to an 85% classification rate. The ClinGen-approved, modified rules demonstrated value for improved interpretation of variants in ATM.
Collapse
Affiliation(s)
| | - Megan Holdren
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Miguel de la Hoya
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain
| | - Amanda B Spurdle
- Population Health, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Sean V Tavtigian
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | | | | | | | | | - Logan C Walker
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Shannon McNulty
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Clare Turnbull
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Marc Tischkowitz
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Katherine Schon
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Thomas Slavin
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - William D Foulkes
- Departments of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Melissa Cline
- UC Santa Cruz Genomics Institute, Mail Stop: Genomics, University of California, Santa Cruz, CA, USA
| | - Alvaro N Monteiro
- Department of Cancer Epidemiology, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | | | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
3
|
Chen S, Du J, Jiang H, Zhao W, Wang N, Ying A, Li J, Chen S, Shen B, Zhou Y. Ataxia with oculomotor apraxia type 2 caused by a novel homozygous mutation in SETX gene, and literature review. Front Mol Neurosci 2022; 15:1019974. [DOI: 10.3389/fnmol.2022.1019974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/26/2022] [Indexed: 11/11/2022] Open
Abstract
ObjectivesAutosomal recessive inherited ataxia with oculomotor apraxia type 2 (AOA2), caused by SETX gene mutations, is characterized by early-onset, progressive cerebellar ataxia, peripheral neuropathy, oculomotor apraxia and elevated serum α-fetoprotein (AFP). This study aimed to expand and summarize the clinical and genetic characteristics of SETX variants related to AOA2.MethodsThe biochemical parameters, electromyogram and radiological findings of the patient were evaluated. Whole-exome sequencing (WES) was performed on the patient using next-generation sequencing (NGS), the variants were confirmed by Sanger sequencing and the pathogenicity of the variants was classified according to the American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines. We reviewed 57 studies of AOA2 patients with SETX mutations and collected clinical and genetic information.ResultsThe patient was a 40-year-old Chinese woman who primarily presented with numbness and weakness of the lower limbs in her teenage years. She had elevated AFP, increased serum follicle-stimulating hormone (FSH) and luteinizing hormone (LH) and decreased anti-Müllerian hormone (AMH) levels. We identified a novel homozygous missense mutation of the SETX gene, c.7118 C>T (p. Thr2373Ile), in the patient via Whole-exome and Sanger sequencing. The variant was located in the DNA/RNA helicase domain and is highly conserved. The protein prediction analysis verified the SETX variant as a damaging alteration and ACMG/AMP guidelines classified it as likely pathogenic. Through a literature review, we identified 229 AOA2 cases with SETX variants, and among the variants, 156 SETX variants were exonic. We found that 107 (46.7%) patients were European, 50 (21.8%) were African and 48 (21.0%) were Asian. Among the Asian patients, five from two families were Mainland Chinese. The main clinical features were cerebellar ataxia (100%), peripheral neuropathy (94.6%), cerebellar atrophy (95.3%) and elevated AFP concentration (92.0%). Most reported SETX mutations in AOA2 patients were missense, frameshift and nonsense mutations.ConclusionWe discovered a novel homozygous variant of the SETX gene as a cause of AOA2 in the current patient and expanded the genotypic spectrum of AOA2. Moreover, the clinical features of AOA2 and genetic findings in SETX were assessed in reported cohorts and are summarized in the present study.
Collapse
|
4
|
Bueno‐Martínez E, Sanoguera‐Miralles L, Valenzuela‐Palomo A, Esteban‐Sánchez A, Lorca V, Llinares‐Burguet I, Allen J, García‐Álvarez A, Pérez‐Segura P, Durán M, Easton DF, Devilee P, Vreeswijk MPG, de la Hoya M, Velasco‐Sampedro EA. Minigene-based splicing analysis and ACMG/AMP-based tentative classification of 56 ATM variants. J Pathol 2022; 258:83-101. [PMID: 35716007 PMCID: PMC9541484 DOI: 10.1002/path.5979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/11/2022] [Accepted: 06/08/2022] [Indexed: 12/29/2022]
Abstract
The ataxia telangiectasia-mutated (ATM) protein is a major coordinator of the DNA damage response pathway. ATM loss-of-function variants are associated with 2-fold increased breast cancer risk. We aimed at identifying and classifying spliceogenic ATM variants detected in subjects of the large-scale sequencing project BRIDGES. A total of 381 variants at the intron-exon boundaries were identified, 128 of which were predicted to be spliceogenic. After further filtering, we ended up selecting 56 variants for splicing analysis. Four functional minigenes (mgATM) spanning exons 4-9, 11-17, 25-29, and 49-52 were constructed in the splicing plasmid pSAD. Selected variants were genetically engineered into the four constructs and assayed in MCF-7/HeLa cells. Forty-eight variants (85.7%) impaired splicing, 32 of which did not show any trace of the full-length (FL) transcript. A total of 43 transcripts were identified where the most prevalent event was exon/multi-exon skipping. Twenty-seven transcripts were predicted to truncate the ATM protein. A tentative ACMG/AMP (American College of Medical Genetics and Genomics/Association for Molecular Pathology)-based classification scheme that integrates mgATM data allowed us to classify 29 ATM variants as pathogenic/likely pathogenic and seven variants as likely benign. Interestingly, the likely pathogenic variant c.1898+2T>G generated 13% of the minigene FL-transcript due to the use of a noncanonical GG-5'-splice-site (0.014% of human donor sites). Circumstantial evidence in three ATM variants (leakiness uncovered by our mgATM analysis together with clinical data) provides some support for a dosage-sensitive expression model in which variants producing ≥30% of FL-transcripts would be predicted benign, while variants producing ≤13% of FL-transcripts might be pathogenic. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Elena Bueno‐Martínez
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC‐UVa)ValladolidSpain
| | - Lara Sanoguera‐Miralles
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC‐UVa)ValladolidSpain
| | - Alberto Valenzuela‐Palomo
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC‐UVa)ValladolidSpain
| | - Ada Esteban‐Sánchez
- Molecular Oncology Laboratory CIBERONC, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Víctor Lorca
- Molecular Oncology Laboratory CIBERONC, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Inés Llinares‐Burguet
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC‐UVa)ValladolidSpain
| | - Jamie Allen
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary CareUniversity of CambridgeCambridgeUK
| | - Alicia García‐Álvarez
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC‐UVa)ValladolidSpain
| | - Pedro Pérez‐Segura
- Molecular Oncology Laboratory CIBERONC, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Mercedes Durán
- Cancer Genetics, Instituto de Biología y Genética MolecularValladolidSpain
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary CareUniversity of CambridgeCambridgeUK
| | - Peter Devilee
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Maaike PG Vreeswijk
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Miguel de la Hoya
- Molecular Oncology Laboratory CIBERONC, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Eladio A Velasco‐Sampedro
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC‐UVa)ValladolidSpain
| |
Collapse
|
5
|
Dragašević-Mišković N, Stanković I, Milovanović A, Kostić VS. Autosomal recessive adult onset ataxia. J Neurol 2021; 269:504-533. [PMID: 34499204 DOI: 10.1007/s00415-021-10763-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 11/24/2022]
Abstract
Autosomal recessive ataxias (ARCA) represent a complex group of diseases ranging from primary ataxias to rare and complex metabolic disorders in which ataxia is a part of the clinical picture. Small number of ARCA manifest exclusively in adulthood, while majority of typical childhood onset ARCA may also start later with atypical clinical presentation. We have systematically searched the literature for ARCA with adult onset, both in the group of primary ataxias including those that are less frequently described in isolated or in a small number of families, and also in the group of complex and metabolic diseases in which ataxia is only part of the clinical picture. We propose an algorithm that could be used when encountering a patient with adult onset sporadic or recessive ataxia in whom the acquired causes are excluded. ARCA are frequently neglected in the differential diagnosis of adult-onset ataxias. Rising awareness of their clinical significance is important, not only because some of these disorders may be potentially treatable, but also for prognostic implications and inclusion of patients to future clinical trials with disease modifying agents.
Collapse
Affiliation(s)
- Nataša Dragašević-Mišković
- Neurology Clinic, Clinical Center of Serbia, School of Medicine, University of Belgrade, Dr Subotića 6, 11000, Belgrade, Serbia.
| | - Iva Stanković
- Neurology Clinic, Clinical Center of Serbia, School of Medicine, University of Belgrade, Dr Subotića 6, 11000, Belgrade, Serbia
| | - Andona Milovanović
- Neurology Clinic, Clinical Center of Serbia, School of Medicine, University of Belgrade, Dr Subotića 6, 11000, Belgrade, Serbia
| | - Vladimir S Kostić
- Neurology Clinic, Clinical Center of Serbia, School of Medicine, University of Belgrade, Dr Subotića 6, 11000, Belgrade, Serbia
| |
Collapse
|
6
|
Rodriguez RS, Cornejo-Olivas M, Bazalar-Montoya J, Sarapura-Castro E, Torres-Loarte M, Rivera-Valdivia A, Sullcahuaman-Allende Y. Novel Compound Heterozygous Mutation c.3955_3958dup and c.5825C>T in the ATM Gene: Clinical Evidence of Ataxia-Telangiectasia and Cancer in a Peruvian Family. Mol Syndromol 2021; 12:289-293. [PMID: 34602955 PMCID: PMC8436714 DOI: 10.1159/000515696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/05/2021] [Indexed: 11/19/2022] Open
Abstract
Pathogenic and likely pathogenic variants in the ATM gene are associated both with Ataxia-telangiectasia disease or ATM syndrome and an increased cancer risk for heterozygous carriers. We identified a novel compound heterozygous mutation c.3955_3958dup (p.Asp1320delinsValTer) and c.5825C>T (p.Ala1942Val) in the ATM gene in a Peruvian patient with progressive ataxia combined with other movement disorders, mild conjunctival telangiectasia and increased alpha-fetoprotein, without history of recurrent infection or immunodeficiency. We also determined the carrier status of the family members, and we were able to detect gastric and breast cancer at an early stage during the cancer risk assessment in the mother (c.3955_3958dup). Here, we describe clinical evidence for the novel compound heterozygous mutation and c.3955_3958dup not previously reported.
Collapse
Affiliation(s)
- Richard S. Rodriguez
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, Lima, Peru
- Equipo funcional de Genética y Biología Molecular, Instituto Nacional de Enfermedades Neoplásicas, Lima, Peru
- Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru
- *Richard S. Rodriguez,
| | - Mario Cornejo-Olivas
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, Lima, Peru
- Center for Global Health, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jeny Bazalar-Montoya
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, Lima, Peru
| | | | - Mariela Torres-Loarte
- IGENOMICA, Instituto de Investigación Genómica, Lima, Peru
- School of Medicine, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Andrea Rivera-Valdivia
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, Lima, Peru
- Fogarty Interdisciplinary Cerebrovascular Diseases Training Program in South America, Lima, Peru
- Fogarty Northern Pacific Global Health Fellows Program, Seattle, Washington, USA
| | - Yasser Sullcahuaman-Allende
- Equipo funcional de Genética y Biología Molecular, Instituto Nacional de Enfermedades Neoplásicas, Lima, Peru
- Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru
- IGENOMICA, Instituto de Investigación Genómica, Lima, Peru
| |
Collapse
|
7
|
Bryant J, White L, Coen N, Shields L, McClean B, Meade AD, Lyng FM, Howe O. MicroRNA Analysis of ATM-Deficient Cells Indicate PTEN and CCDN1 as Potential Biomarkers of Radiation Response. Radiat Res 2020; 193:520-530. [PMID: 32216710 DOI: 10.1667/rr15462.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 03/06/2020] [Indexed: 11/03/2022]
Abstract
Genetic and epigenetic profile changes associated with individual radiation sensitivity are well documented and have led to enhanced understanding of the mechanisms of the radiation-induced DNA damage response. However, the search continues to identify reliable biomarkers of individual radiation sensitivity. Herein, we report on a multi-biomarker approach using traditional cytogenetic biomarkers, DNA damage biomarkers and transcriptional microRNA (miR) biomarkers coupled with their potential gene targets to identify radiosensitivity in ataxia-telangiectasia mutated (ATM)-deficient lymphoblastoid cell lines (LCL); ATM-proficient cell lines were used as controls. Cells were 0.05 and 0.5 Gy irradiated, using a linear accelerator, with sham-irradiated cells as controls. At 1 h postirradiation, cells were fixed for γ-H2AX analysis as a measurement of DNA damage, and cytogenetic analysis using the G2 chromosomal sensitivity assay, G-banding and FISH techniques. RNA was also isolated for genetic profiling by microRNA (miR) and RT-PCR analysis. A panel of 752 miR were analyzed, and potential target genes, phosphatase and tensin homolog (PTEN) and cyclin D1 (CCND1), were measured. The cytogenetic assays revealed that although the control cell line had functional cell cycle checkpoints, the radiosensitivity of the control and AT cell lines were similar. Analysis of DNA damage in all cell lines, including an additional control cell line, showed elevated γ-H2AX levels for only one AT cell line. Of the 752 miR analyzed, eight miR were upregulated, and six miR were downregulated in the AT cells compared to the control. Upregulated miR-152-3p, miR-24-5p and miR-92-15p and all downregulated miR were indicated as modulators of PTEN and CCDN1. Further measurement of both genes validated their potential role as radiation-response biomarkers. The multi-biomarker approach not only revealed potential candidates for radiation response, but provided additional mechanistic insights into the response in AT-deficient cells.
Collapse
Affiliation(s)
- Jane Bryant
- Radiation and Environmental Science Centre (RESC), FOCAS Research Institute
| | - Lisa White
- Radiation and Environmental Science Centre (RESC), FOCAS Research Institute.,School of Biological and Health Sciences, Technological University Dublin, City Campus, Dublin 8, Ireland
| | - Natasha Coen
- Department of Clinical Genetics, Division of Cytogenetics, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland
| | - Laura Shields
- Medical Physics Department, St Luke's Radiation Oncology Centre, Rathgar, Dublin 6, Ireland
| | - Brendan McClean
- Medical Physics Department, St Luke's Radiation Oncology Centre, Rathgar, Dublin 6, Ireland
| | - Aidan D Meade
- Radiation and Environmental Science Centre (RESC), FOCAS Research Institute.,School of Physics & Clinical & Optometric Sciences, Technological University Dublin, City Campus, Dublin 8, Ireland
| | - Fiona M Lyng
- Radiation and Environmental Science Centre (RESC), FOCAS Research Institute.,School of Physics & Clinical & Optometric Sciences, Technological University Dublin, City Campus, Dublin 8, Ireland
| | - Orla Howe
- Radiation and Environmental Science Centre (RESC), FOCAS Research Institute.,School of Biological and Health Sciences, Technological University Dublin, City Campus, Dublin 8, Ireland
| |
Collapse
|
8
|
Heidari M, Soleyman-Nejad M, Taskhiri MH, Shahpouri J, Isazadeh A, Ahangari R, Mohamadi AR, Ebrahimi M, Karimi H, Bolhassani M, Karimi Z, Heidari M. Identification of Two Novel Mutations in the ATM Gene from Patients with Ataxia-Telangiectasia by Whole Exome Sequencing. Curr Genomics 2020; 20:531-534. [PMID: 32655291 PMCID: PMC7327971 DOI: 10.2174/1389202920666191107153734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/28/2019] [Accepted: 11/01/2019] [Indexed: 12/21/2022] Open
Abstract
Background
Ataxia telangiectasia (AT) is one of the most common autosomal recessive hereditary ataxia presenting in childhood. The responsible gene for AT designated ATM (AT, mutated) encodes a protein which is involved in cell cycle checkpoints and other responses to genotoxicity. We describe two novel disease-causing mutations in two unrelated Iranian families with Ataxia-telangiectasia. Methods
The probands including a 6-year-old female and an 18-year-old boy were diagnosed with Ataxia-telangiectasia among two different Iranian families. In this study, Whole-Exome Sequencing (WES) was employed for the detection of genetic changes in probands. The analysis of the co-segregation of the variants with the disease in families was conducted using PCR direct sequencing. Results
Two novel frameshift mutations, (c.4236_4236del p. Pro1412fs) and (c.8907T>G p. Tyr2969Ter) in the ataxia telangiectasia mutated ATM gene were detected using Whole-Exome Sequencing (WES) in the probands. These mutations were observed in two separate A-T families. Conclusion
Next-generation sequencing successfully identified the causative mutation in families with ataxia-telangiectasia. These novel mutations in the ATM gene reported in the present study could assist genetic counseling, Preimplantation Genetic Diagnosis (PGD) and prenatal diagnosis (PND) of AT.
Collapse
Affiliation(s)
- Masoud Heidari
- 1Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran; 2Ariagene Medical
Genetics Laboratory, Qom, Iran; 3Pediatric Clinical Research of Development Center, Qom University of Medical Sciences, Qom, Iran; 4Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; 5Nekouei-Hedayati-Forghani Hospital, Department of Obstetrics and Gynecology, Qom University of Medical Sciences, Qom, Iran; 6Qom Social Welfare and Rehabilitation Center, Qom, Iran; 7Department of Medical Genetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Morteza Soleyman-Nejad
- 1Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran; 2Ariagene Medical
Genetics Laboratory, Qom, Iran; 3Pediatric Clinical Research of Development Center, Qom University of Medical Sciences, Qom, Iran; 4Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; 5Nekouei-Hedayati-Forghani Hospital, Department of Obstetrics and Gynecology, Qom University of Medical Sciences, Qom, Iran; 6Qom Social Welfare and Rehabilitation Center, Qom, Iran; 7Department of Medical Genetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad H Taskhiri
- 1Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran; 2Ariagene Medical
Genetics Laboratory, Qom, Iran; 3Pediatric Clinical Research of Development Center, Qom University of Medical Sciences, Qom, Iran; 4Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; 5Nekouei-Hedayati-Forghani Hospital, Department of Obstetrics and Gynecology, Qom University of Medical Sciences, Qom, Iran; 6Qom Social Welfare and Rehabilitation Center, Qom, Iran; 7Department of Medical Genetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Javad Shahpouri
- 1Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran; 2Ariagene Medical
Genetics Laboratory, Qom, Iran; 3Pediatric Clinical Research of Development Center, Qom University of Medical Sciences, Qom, Iran; 4Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; 5Nekouei-Hedayati-Forghani Hospital, Department of Obstetrics and Gynecology, Qom University of Medical Sciences, Qom, Iran; 6Qom Social Welfare and Rehabilitation Center, Qom, Iran; 7Department of Medical Genetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Alireza Isazadeh
- 1Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran; 2Ariagene Medical
Genetics Laboratory, Qom, Iran; 3Pediatric Clinical Research of Development Center, Qom University of Medical Sciences, Qom, Iran; 4Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; 5Nekouei-Hedayati-Forghani Hospital, Department of Obstetrics and Gynecology, Qom University of Medical Sciences, Qom, Iran; 6Qom Social Welfare and Rehabilitation Center, Qom, Iran; 7Department of Medical Genetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Roghayyeh Ahangari
- 1Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran; 2Ariagene Medical
Genetics Laboratory, Qom, Iran; 3Pediatric Clinical Research of Development Center, Qom University of Medical Sciences, Qom, Iran; 4Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; 5Nekouei-Hedayati-Forghani Hospital, Department of Obstetrics and Gynecology, Qom University of Medical Sciences, Qom, Iran; 6Qom Social Welfare and Rehabilitation Center, Qom, Iran; 7Department of Medical Genetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Ali R Mohamadi
- 1Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran; 2Ariagene Medical
Genetics Laboratory, Qom, Iran; 3Pediatric Clinical Research of Development Center, Qom University of Medical Sciences, Qom, Iran; 4Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; 5Nekouei-Hedayati-Forghani Hospital, Department of Obstetrics and Gynecology, Qom University of Medical Sciences, Qom, Iran; 6Qom Social Welfare and Rehabilitation Center, Qom, Iran; 7Department of Medical Genetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Masoumeh Ebrahimi
- 1Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran; 2Ariagene Medical
Genetics Laboratory, Qom, Iran; 3Pediatric Clinical Research of Development Center, Qom University of Medical Sciences, Qom, Iran; 4Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; 5Nekouei-Hedayati-Forghani Hospital, Department of Obstetrics and Gynecology, Qom University of Medical Sciences, Qom, Iran; 6Qom Social Welfare and Rehabilitation Center, Qom, Iran; 7Department of Medical Genetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hadi Karimi
- 1Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran; 2Ariagene Medical
Genetics Laboratory, Qom, Iran; 3Pediatric Clinical Research of Development Center, Qom University of Medical Sciences, Qom, Iran; 4Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; 5Nekouei-Hedayati-Forghani Hospital, Department of Obstetrics and Gynecology, Qom University of Medical Sciences, Qom, Iran; 6Qom Social Welfare and Rehabilitation Center, Qom, Iran; 7Department of Medical Genetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Manzar Bolhassani
- 1Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran; 2Ariagene Medical
Genetics Laboratory, Qom, Iran; 3Pediatric Clinical Research of Development Center, Qom University of Medical Sciences, Qom, Iran; 4Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; 5Nekouei-Hedayati-Forghani Hospital, Department of Obstetrics and Gynecology, Qom University of Medical Sciences, Qom, Iran; 6Qom Social Welfare and Rehabilitation Center, Qom, Iran; 7Department of Medical Genetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Zahra Karimi
- 1Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran; 2Ariagene Medical
Genetics Laboratory, Qom, Iran; 3Pediatric Clinical Research of Development Center, Qom University of Medical Sciences, Qom, Iran; 4Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; 5Nekouei-Hedayati-Forghani Hospital, Department of Obstetrics and Gynecology, Qom University of Medical Sciences, Qom, Iran; 6Qom Social Welfare and Rehabilitation Center, Qom, Iran; 7Department of Medical Genetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mansour Heidari
- 1Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran; 2Ariagene Medical
Genetics Laboratory, Qom, Iran; 3Pediatric Clinical Research of Development Center, Qom University of Medical Sciences, Qom, Iran; 4Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; 5Nekouei-Hedayati-Forghani Hospital, Department of Obstetrics and Gynecology, Qom University of Medical Sciences, Qom, Iran; 6Qom Social Welfare and Rehabilitation Center, Qom, Iran; 7Department of Medical Genetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
9
|
van Os NJH, Hensiek A, van Gaalen J, Taylor AMR, van Deuren M, Weemaes CMR, Willemsen MAAP, van de Warrenburg BPC. Trajectories of motor abnormalities in milder phenotypes of ataxia telangiectasia. Neurology 2019; 92:e19-e29. [PMID: 30504431 DOI: 10.1212/wnl.0000000000006700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/29/2018] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To describe and classify the neurologic trajectories in patients with mild neurologic forms of ataxia telangiectasia (A-T) from the Dutch A-T cohort, combined with patients reported in the literature. METHODS Clinical, genetic, and laboratory data of 14 patients with mild neurologic phenotypes of A-T from the Dutch cohort were analyzed and combined with corresponding data from the literature. A mild neurologic phenotype was defined by a later onset, nonataxia presenting or dominant feature, or slower progression compared to the classic A-T phenotype. Neurologic trajectories were classified based on age at onset, presenting feature, and follow-up data. RESULTS One hundred five patients were included in the study. Neurologic trajectories were categorized into 6 groups: patients with childhood-onset extrapyramidal (EP) features with cerebellar symptoms developing later (group 1; 18 patients), childhood-onset cerebellar symptoms, with EP features developing later (group 2; 35 patients), childhood- to adolescence-onset dystonia, without cerebellar symptoms (group 3; 23 patients), childhood- to adolescence-onset isolated cerebellar symptoms (group 4; 22 patients), childhood- to adult-onset prominent muscle weakness (group 5; 2 patients), and patients with adult-onset EP features, with anterior horn cell disease arising subsequently (group 6; 5 patients). CONCLUSIONS This systematic study of the different motor abnormalities and their course over time in patients with mild phenotypes of A-T, enabled us to recognize 6 essentially different phenotypic patterns. Awareness of these different trajectories of motor abnormalities in milder forms of A-T will contribute to a reduction of diagnostic delay in this severe multisystem disorder.
Collapse
Affiliation(s)
- Nienke J H van Os
- From the Department of Neurology-Pediatric Neurology (N.J.H.v.O., M.A.A.P.W.) and Department of Neurology (N.J.H.v.O., J.v.G., B.P.C.v.d.W.), Donders Institute for Brain, Cognition and Behaviour, Donders Center for Medical Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Neurology (A.H.), Addenbrookes Hospital, Cambridge; Institute of Cancer & Genomic Sciences (A.M.R.T.), University of Birmingham, UK; Department of Internal Medicine (M.v.D.), Radboud University Medical Center, Nijmegen; Department of Pediatric Infectious Diseases and Immunology (C.M.R.W.), Amalia Children's Hospital and Radboud Institute for Molecular Life Sciences, and Department of Pediatrics, Radboudumc Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Anke Hensiek
- From the Department of Neurology-Pediatric Neurology (N.J.H.v.O., M.A.A.P.W.) and Department of Neurology (N.J.H.v.O., J.v.G., B.P.C.v.d.W.), Donders Institute for Brain, Cognition and Behaviour, Donders Center for Medical Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Neurology (A.H.), Addenbrookes Hospital, Cambridge; Institute of Cancer & Genomic Sciences (A.M.R.T.), University of Birmingham, UK; Department of Internal Medicine (M.v.D.), Radboud University Medical Center, Nijmegen; Department of Pediatric Infectious Diseases and Immunology (C.M.R.W.), Amalia Children's Hospital and Radboud Institute for Molecular Life Sciences, and Department of Pediatrics, Radboudumc Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Judith van Gaalen
- From the Department of Neurology-Pediatric Neurology (N.J.H.v.O., M.A.A.P.W.) and Department of Neurology (N.J.H.v.O., J.v.G., B.P.C.v.d.W.), Donders Institute for Brain, Cognition and Behaviour, Donders Center for Medical Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Neurology (A.H.), Addenbrookes Hospital, Cambridge; Institute of Cancer & Genomic Sciences (A.M.R.T.), University of Birmingham, UK; Department of Internal Medicine (M.v.D.), Radboud University Medical Center, Nijmegen; Department of Pediatric Infectious Diseases and Immunology (C.M.R.W.), Amalia Children's Hospital and Radboud Institute for Molecular Life Sciences, and Department of Pediatrics, Radboudumc Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Alexander M R Taylor
- From the Department of Neurology-Pediatric Neurology (N.J.H.v.O., M.A.A.P.W.) and Department of Neurology (N.J.H.v.O., J.v.G., B.P.C.v.d.W.), Donders Institute for Brain, Cognition and Behaviour, Donders Center for Medical Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Neurology (A.H.), Addenbrookes Hospital, Cambridge; Institute of Cancer & Genomic Sciences (A.M.R.T.), University of Birmingham, UK; Department of Internal Medicine (M.v.D.), Radboud University Medical Center, Nijmegen; Department of Pediatric Infectious Diseases and Immunology (C.M.R.W.), Amalia Children's Hospital and Radboud Institute for Molecular Life Sciences, and Department of Pediatrics, Radboudumc Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marcel van Deuren
- From the Department of Neurology-Pediatric Neurology (N.J.H.v.O., M.A.A.P.W.) and Department of Neurology (N.J.H.v.O., J.v.G., B.P.C.v.d.W.), Donders Institute for Brain, Cognition and Behaviour, Donders Center for Medical Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Neurology (A.H.), Addenbrookes Hospital, Cambridge; Institute of Cancer & Genomic Sciences (A.M.R.T.), University of Birmingham, UK; Department of Internal Medicine (M.v.D.), Radboud University Medical Center, Nijmegen; Department of Pediatric Infectious Diseases and Immunology (C.M.R.W.), Amalia Children's Hospital and Radboud Institute for Molecular Life Sciences, and Department of Pediatrics, Radboudumc Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Corry M R Weemaes
- From the Department of Neurology-Pediatric Neurology (N.J.H.v.O., M.A.A.P.W.) and Department of Neurology (N.J.H.v.O., J.v.G., B.P.C.v.d.W.), Donders Institute for Brain, Cognition and Behaviour, Donders Center for Medical Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Neurology (A.H.), Addenbrookes Hospital, Cambridge; Institute of Cancer & Genomic Sciences (A.M.R.T.), University of Birmingham, UK; Department of Internal Medicine (M.v.D.), Radboud University Medical Center, Nijmegen; Department of Pediatric Infectious Diseases and Immunology (C.M.R.W.), Amalia Children's Hospital and Radboud Institute for Molecular Life Sciences, and Department of Pediatrics, Radboudumc Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Michèl A A P Willemsen
- From the Department of Neurology-Pediatric Neurology (N.J.H.v.O., M.A.A.P.W.) and Department of Neurology (N.J.H.v.O., J.v.G., B.P.C.v.d.W.), Donders Institute for Brain, Cognition and Behaviour, Donders Center for Medical Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Neurology (A.H.), Addenbrookes Hospital, Cambridge; Institute of Cancer & Genomic Sciences (A.M.R.T.), University of Birmingham, UK; Department of Internal Medicine (M.v.D.), Radboud University Medical Center, Nijmegen; Department of Pediatric Infectious Diseases and Immunology (C.M.R.W.), Amalia Children's Hospital and Radboud Institute for Molecular Life Sciences, and Department of Pediatrics, Radboudumc Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bart P C van de Warrenburg
- From the Department of Neurology-Pediatric Neurology (N.J.H.v.O., M.A.A.P.W.) and Department of Neurology (N.J.H.v.O., J.v.G., B.P.C.v.d.W.), Donders Institute for Brain, Cognition and Behaviour, Donders Center for Medical Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Neurology (A.H.), Addenbrookes Hospital, Cambridge; Institute of Cancer & Genomic Sciences (A.M.R.T.), University of Birmingham, UK; Department of Internal Medicine (M.v.D.), Radboud University Medical Center, Nijmegen; Department of Pediatric Infectious Diseases and Immunology (C.M.R.W.), Amalia Children's Hospital and Radboud Institute for Molecular Life Sciences, and Department of Pediatrics, Radboudumc Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
10
|
Tariq H, Imran R, Naz S. A Novel Homozygous Variant of SETX Causes Ataxia with Oculomotor Apraxia Type 2. J Clin Neurol 2018; 14:498-504. [PMID: 30198223 PMCID: PMC6172491 DOI: 10.3988/jcn.2018.14.4.498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 01/21/2023] Open
Abstract
Background and Purpose Autosomal recessive cerebellar ataxias constitute a highly heterogeneous group of neurodegenerative disorders. This study was carried out to determine the clinical and genetic causes of ataxia in two families from Pakistan. Methods Detailed clinical investigations were carried out on probands in two consanguineous families. Magnetic resonance imaging was performed. Exome sequencing data were examined for likely pathogenic variants. Candidate variants were checked for cosegregation with the phenotype using Sanger sequencing. Public databases including ExAC, GnomAD, dbSNP, and the 1,000 Genome Project as well as ethnically matched controls were checked to determine the frequencies of the alleles. Conservation of missense variants was ensured by aligning orthologous protein sequences from diverse vertebrate species. Results Reverse phenotyping identified spinocerebellar ataxia, autosomal recessive 1 [OMIM 606002, also referred to as ataxia oculomotor apraxia type 2 (AOA2)] and ataxia telangiectasia (OMIM 208900) in the two families. A novel homozygous missense mutation c.202 C>T (p.Arg68Cys) was identified within senataxin, SETX in the DNA of both patients in one of the families with AOA2. The patients in the second family were homozygous for a known variant in ataxia-telangiectasia mutated (ATM) gene: c.7327 C>T (p.Arg2443Ter). Both variants were absent from 100 ethnically matched control chromosomes and were either absent or present at very low frequencies in the public databases. Conclusions This report extends the allelic heterogeneity of SETX mutations causing AOA2 and also presents an asymptomatic patient with a pathogenic ATM variant.
Collapse
Affiliation(s)
- Huma Tariq
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Rashid Imran
- Punjab Institute of Neurosciences, Lahore General Hospital, Lahore, Pakistan
| | - Sadaf Naz
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
11
|
Kuznetsova MV, Trofimov DY, Shubina ES, Kochetkova TO, Karetnikova NA, Barkov IY, Bakharev VA, Gusev OA, Sukhikh GT. Two Novel Mutations Associated With Ataxia-Telangiectasia Identified Using an Ion AmpliSeq Inherited Disease Panel. Front Neurol 2017; 8:570. [PMID: 29163336 PMCID: PMC5670107 DOI: 10.3389/fneur.2017.00570] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 10/11/2017] [Indexed: 11/16/2022] Open
Abstract
Ataxia-telangiectasia (A-T), or Louis-Bar syndrome, is a rare neurodegenerative disorder associated with immunodeficiency. For families with at least one affected child, timely A-T genotyping during any subsequent pregnancy allows the parents to make an informed decision about whether to continue to term when the fetus is affected. Mutations in the ATM gene, which is 150 kb long, give rise to A-T; more than 600 pathogenic variants in ATM have been characterized since 1990 and new mutations continue to be discovered annually. Therefore, limiting genetic screening to previously known SNPs by PCR or hybridization with microarrays may not identify the specific pathogenic genotype in ATM for a given A-T family. However, recent developments in next-generation sequencing technology offer prompt high-throughput full-length sequencing of genomic fragments of interest. This allows the identification of the whole spectrum of mutations in a gene, including any novel ones. We report two A-T families with affected children and current pregnancies. Both families are consanguineous and originate from Caucasian regions of Russia and Azerbaijan. Before our study, no ATM mutations had been identified in the older children of these families. We used ion semiconductor sequencing and an Ion AmpliSeq™ Inherited Disease Panel to perform complete ATM gene sequencing in a single member of each family. Then we compared the experimentally determined genotype with the affected/normal phenotype distribution in the whole family to provide unambiguous evidence of pathogenic mutations responsible for A-T. A single novel SNP was allocated to each family. In the first case, we found a mononucleotide deletion, and in the second, a mononucleotide insertion. Both mutations lead to truncation of the ATM protein product. Identification of the pathogenic mutation in each family was performed in a timely fashion, allowing the fetuses to be tested and diagnosed. The parents chose to continue with both pregnancies as both fetuses had a healthy genotype and thus were not at risk of A-T.
Collapse
Affiliation(s)
- Maria V Kuznetsova
- Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - Dmitry Yu Trofimov
- Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | | | | | | | - Ilya Yu Barkov
- Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | | | - Oleg A Gusev
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,RIKEN Innovation Center, RIKEN, Yokohama, Japan.,Preventive Medicine and Diagnosis Innovation Program, Center for Life Science Technologies, Yokohama, Japan
| | - Gennady T Sukhikh
- Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| |
Collapse
|