1
|
Jiménez-Jiménez FJ, Alonso-Navarro H, Salgado-Cámara P, García-Martín E, Agúndez JAG. Oxidative Stress Markers in Multiple Sclerosis. Int J Mol Sci 2024; 25:6289. [PMID: 38927996 PMCID: PMC11203935 DOI: 10.3390/ijms25126289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/10/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
The pathogenesis of multiple sclerosis (MS) is not completely understood, but genetic factors, autoimmunity, inflammation, demyelination, and neurodegeneration seem to play a significant role. Data from analyses of central nervous system autopsy material from patients diagnosed with multiple sclerosis, as well as from studies in the main experimental model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), suggest the possibility of a role of oxidative stress as well. In this narrative review, we summarize the main data from studies reported on oxidative stress markers in patients diagnosed with MS and in experimental models of MS (mainly EAE), and case-control association studies on the possible association of candidate genes related to oxidative stress with risk for MS. Most studies have shown an increase in markers of oxidative stress, a decrease in antioxidant substances, or both, with cerebrospinal fluid and serum/plasma malonyl-dialdehyde being the most reliable markers. This topic requires further prospective, multicenter studies with a long-term follow-up period involving a large number of patients with MS and controls.
Collapse
Affiliation(s)
- Félix Javier Jiménez-Jiménez
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, E-28500 Madrid, Spain; (H.A.-N.); (P.S.-C.)
| | - Hortensia Alonso-Navarro
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, E-28500 Madrid, Spain; (H.A.-N.); (P.S.-C.)
| | - Paula Salgado-Cámara
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, E-28500 Madrid, Spain; (H.A.-N.); (P.S.-C.)
| | - Elena García-Martín
- University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, E-10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| | - José A. G. Agúndez
- University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, E-10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| |
Collapse
|
2
|
Tonev D, Momchilova A. Oxidative Stress and the Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) Pathway in Multiple Sclerosis: Focus on Certain Exogenous and Endogenous Nrf2 Activators and Therapeutic Plasma Exchange Modulation. Int J Mol Sci 2023; 24:17223. [PMID: 38139050 PMCID: PMC10743556 DOI: 10.3390/ijms242417223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/18/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
The pathogenesis of multiple sclerosis (MS) suggests that, in genetically susceptible subjects, T lymphocytes undergo activation in the peripheral compartment, pass through the BBB, and cause damage in the CNS. They produce pro-inflammatory cytokines; induce cytotoxic activities in microglia and astrocytes with the accumulation of reactive oxygen species, reactive nitrogen species, and other highly reactive radicals; activate B cells and macrophages and stimulate the complement system. Inflammation and neurodegeneration are involved from the very beginning of the disease. They can both be affected by oxidative stress (OS) with different emphases depending on the time course of MS. Thus, OS initiates and supports inflammatory processes in the active phase, while in the chronic phase it supports neurodegenerative processes. A still unresolved issue in overcoming OS-induced lesions in MS is the insufficient endogenous activation of the Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) pathway, which under normal conditions plays an essential role in mitochondria protection, OS, neuroinflammation, and degeneration. Thus, the search for approaches aiming to elevate endogenous Nrf2 activation is capable of protecting the brain against oxidative damage. However, exogenous Nrf2 activators themselves are not without drawbacks, necessitating the search for new non-pharmacological therapeutic approaches to modulate OS. The purpose of the present review is to provide some relevant preclinical and clinical examples, focusing on certain exogenous and endogenous Nrf2 activators and the modulation of therapeutic plasma exchange (TPE). The increased plasma levels of nerve growth factor (NGF) in response to TPE treatment of MS patients suggest their antioxidant potential for endogenous Nrf2 enhancement via NGF/TrkA/PI3K/Akt and NGF/p75NTR/ceramide-PKCζ/CK2 signaling pathways.
Collapse
Affiliation(s)
- Dimitar Tonev
- Department of Anesthesiology and Intensive Care, University Hospital “Tzaritza Yoanna—ISUL”, Medical University of Sofia, 1527 Sofia, Bulgaria
| | - Albena Momchilova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Science, 1113 Sofia, Bulgaria;
| |
Collapse
|
3
|
Bizoń A, Chojdak-Łukasiewicz J, Budrewicz S, Pokryszko-Dragan A, Piwowar A. Exploring the Relationship between Antioxidant Enzymes, Oxidative Stress Markers, and Clinical Profile in Relapsing-Remitting Multiple Sclerosis. Antioxidants (Basel) 2023; 12:1638. [PMID: 37627633 PMCID: PMC10451869 DOI: 10.3390/antiox12081638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
We aimed to investigate the extent of alterations in the pro/antioxidant balance in the blood of patients with relapsing-remitting multiple sclerosis (RRMS) in relation to drug-modified therapy, gender, disability score, and disease duration. 161 patients (67 men and 94 women, aged 24-69 years, median 43.0) and 29 healthy individuals (9 men and 20 women, aged 25-68 years, median 41.0) were included in the study. We measured the activity of superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) as well as the concentration of interleukin-6 (IL-6), lipid peroxidation parameters (LPO), total oxidant status (TOS), and total antioxidant capacity (TAS). The activity of SOD did not show any significant differences between patients with RRMS and the control group in our study. In contrast, significant decreased GPx activity and increased CAT activity was observed in the blood of patients with RRMS compared to the control group. Additionally, the activity of CAT was influenced by gender and the use of disease-modifying therapies. Disease-modifying therapies also affected the concentration of TOS, TAS, and LPO. Our studies indicated that enhancing GPx activity may be more beneficial to providing potential therapeutic strategies aimed at modulating antioxidant defenses to mitigate oxidative stress in this disease.
Collapse
Affiliation(s)
- Anna Bizoń
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland;
| | - Justyna Chojdak-Łukasiewicz
- Department of Neurology, Faculty of Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wrocław, Poland; (J.C.-Ł.); (S.B.); (A.P.-D.)
| | - Sławomir Budrewicz
- Department of Neurology, Faculty of Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wrocław, Poland; (J.C.-Ł.); (S.B.); (A.P.-D.)
| | - Anna Pokryszko-Dragan
- Department of Neurology, Faculty of Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wrocław, Poland; (J.C.-Ł.); (S.B.); (A.P.-D.)
| | - Agnieszka Piwowar
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland;
| |
Collapse
|
4
|
Vezzoli A, Mrakic-Sposta S, Dellanoce C, Montorsi M, Vietti D, Ferrero ME. Chelation Therapy Associated with Antioxidant Supplementation Can Decrease Oxidative Stress and Inflammation in Multiple Sclerosis: Preliminary Results. Antioxidants (Basel) 2023; 12:1338. [PMID: 37507878 PMCID: PMC10376540 DOI: 10.3390/antiox12071338] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
An imbalance of oxy-inflammation status has been involved in axonal damage and demyelination in multiple sclerosis (MS). The aim of this study was to investigate the efficacy of an antioxidant treatment (calcium disodium ethylenediaminetetracetic acid-EDTA) chelation therapy associated with a micronutrient complex in MS patients. A total of 20 MS patients and 20 healthy subjects, enrolled as a control group (CTR), were recruited. We measured the plasma ROS production and total antioxidant capacity (TAC) by a direct assessment using Electron Paramagnetic Resonance; activities of the antioxidant system (thiols' redox status and enzymes); and the urinary presence of biomarkers of oxidative stress by immunoenzymatic assays. We also evaluated the levels of inflammation by plasmatic cytokines (TNFα, IL-1β, and IL-6) and assessed the sICAM levels, as well as the nitric oxide (NO) catabolism and transthyretin (TTR) concentration. Comparing CTR and MS, in the latter ROS production, oxidative damage, inflammatory biomarkers, and NO metabolite concentrations results were significantly higher, while TAC was significantly lower. Treatment in MS induced significant (p < 0.05) down-regulating of pro-inflammatory sICAM1, TNF-α, IL6, as well as biomarkers of lipid peroxidation and DNA damage production. The protective effect exhibited may occur by decreasing ROS production and increasing antioxidant capacity, turning into a more reduced thiols' status.
Collapse
Affiliation(s)
- Alessandra Vezzoli
- Institute of Clinical Physiology, National Research Council (IFC-CNR), Piazza Ospedale Maggiore 3, 20159 Milano, Italy
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology, National Research Council (IFC-CNR), Piazza Ospedale Maggiore 3, 20159 Milano, Italy
| | - Cinzia Dellanoce
- Institute of Clinical Physiology, National Research Council (IFC-CNR), Piazza Ospedale Maggiore 3, 20159 Milano, Italy
| | - Michela Montorsi
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Via di val Cannuta 247, 00166 Roma, Italy
| | - Daniele Vietti
- Driatec Srl, Via Leonardo da Vinci 21/E, 20060 Cassina de' Pecchi, Italy
| | - Maria Elena Ferrero
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milano, Italy
| |
Collapse
|
5
|
Tonev DG, Momchilova AB. Therapeutic Plasma Exchange in Certain Immune-Mediated Neurological Disorders: Focus on a Novel Nanomembrane-Based Technology. Biomedicines 2023; 11:328. [PMID: 36830870 PMCID: PMC9953422 DOI: 10.3390/biomedicines11020328] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023] Open
Abstract
Therapeutic plasma exchange (TPE) is an efficient extracorporeal blood purification technique to remove circulating autoantibodies and other pathogenic substances. Its mechanism of action in immune-mediated neurological disorders includes immediate intravascular reduction of autoantibody concentration, pulsed induction of antibody redistribution, and subsequent immunomodulatory changes. Conventional TPE with 1 to 1.5 total plasma volume (TPV) exchange is a well-established treatment in Guillain-Barre Syndrome, Chronic Inflammatory Demyelinating Polyradiculoneuropathy, Neuromyelitis Optica Spectrum Disorder, Myasthenia Gravis and Multiple Sclerosis. There is insufficient evidence for the efficacy of so-called low volume plasma exchange (LVPE) (<1 TPV exchange) implemented either by the conventional or by a novel nanomembrane-based TPE in these neurological conditions, including their impact on conductivity and neuroregenerative recovery. In this narrative review, we focus on the role of nanomembrane-based technology as an alternative LVPE treatment option in these neurological conditions. Nanomembrane-based technology is a promising type of TPE, which seems to share the basic advantages of the conventional one, but probably with fewer adverse effects. It could play a valuable role in patient management by ameliorating neurological symptoms, improving disability, and reducing oxidative stress in a cost-effective way. Further research is needed to identify which patients benefit most from this novel TPE technology.
Collapse
Affiliation(s)
- Dimitar G. Tonev
- Department of Anesthesiology and Intensive Care, Medical University of Sofia, University Hospital “Tzaritza Yoanna—ISUL”, 1527 Sofia, Bulgaria
| | - Albena B. Momchilova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Science, 1113 Sofia, Bulgaria
| |
Collapse
|
6
|
Barizzone N, Leone M, Pizzino A, Kockum I, Martinelli-Boneschi F, D’Alfonso S. A Scoping Review on Body Fluid Biomarkers for Prognosis and Disease Activity in Patients with Multiple Sclerosis. J Pers Med 2022; 12:1430. [PMID: 36143216 PMCID: PMC9501898 DOI: 10.3390/jpm12091430] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 11/30/2022] Open
Abstract
Multiple sclerosis (MS) is a complex demyelinating disease of the central nervous system, presenting with different clinical forms, including clinically isolated syndrome (CIS), which is a first clinical episode suggestive of demyelination. Several molecules have been proposed as prognostic biomarkers in MS. We aimed to perform a scoping review of the potential use of prognostic biomarkers in MS clinical practice. We searched MEDLINE up to 25 November 2021 for review articles assessing body fluid biomarkers for prognostic purposes, including any type of biomarkers, cell types and tissues. Original articles were obtained to confirm and detail the data reported by the review authors. We evaluated the reliability of the biomarkers based on the sample size used by various studies. Fifty-two review articles were included. We identified 110 molecules proposed as prognostic biomarkers. Only six studies had an adequate sample size to explore the risk of conversion from CIS to MS. These confirm the role of oligoclonal bands, immunoglobulin free light chain and chitinase CHI3L1 in CSF and of serum vitamin D in the prediction of conversion from CIS to clinically definite MS. Other prognostic markers are not yet explored in adequately powered samples. Serum and CSF levels of neurofilaments represent a promising biomarker.
Collapse
Affiliation(s)
- Nadia Barizzone
- Department of Health Sciences, UPO, University of Eastern Piedmont, 28100 Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), UPO, University of Eastern Piedmont, 28100 Novara, Italy
| | - Maurizio Leone
- Neurology Unit, Fondazione IRCCS Casa Sollievo Della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Alessandro Pizzino
- Department of Health Sciences, UPO, University of Eastern Piedmont, 28100 Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), UPO, University of Eastern Piedmont, 28100 Novara, Italy
| | - Ingrid Kockum
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institute, 17176 Stockholm, Sweden
| | - Filippo Martinelli-Boneschi
- IRCCS Fondazione Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit and Multiple Sclerosis Centre, Via Francesco Sforza 35, 20122 Milan, Italy
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Sandra D’Alfonso
- Department of Health Sciences, UPO, University of Eastern Piedmont, 28100 Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), UPO, University of Eastern Piedmont, 28100 Novara, Italy
| |
Collapse
|
7
|
Naseri A, Forghani N, Sadigh-Eteghad S, Shanehbandi D, Asadi M, Nasiri E, Talebi M. Circulatory antioxidant and oxidative stress markers are in correlation with demographics but not cognitive functions in multiple sclerosis patients. Mult Scler Relat Disord 2021; 57:103432. [PMID: 34922253 DOI: 10.1016/j.msard.2021.103432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/31/2021] [Accepted: 11/27/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is the most common non-traumatic cause of disability in younger adults. MS can be presented with a wide range of symptoms such as cognitive impairment (CI). Oxidative stress (OXS) is a major basis of the pathogenesis of MS. There is a positive correlation between OXS factors and the progression of the disease in MS patients. There are limited studies regarding the role of OXS in MS-related CI. In this study, as an exploratory analysis, we assess the role of endogenous antioxidants and OXS factors in cognitive function, the severity of disability due to MS, and demographic findings in a sample of MS patients. METHODS Adult (>18 years old) patients with a definite diagnosis of MS based on 2017 revised MacDonald criteria were included in this study. The neurophysiological assessment was conducted, using the validated Persian version of minimal assessment of cognitive function in multiple sclerosis (MACFIMS) battery, which is composed of seven different tests. Based on the structure of the battery, CI was defined as a failure in at least two different components of the MACFIMS battery. The patients were separated into two groups of CI and non-CI. Examined antioxidant factors included catalase Activity (CAT), Glutathione Peroxidase 1 (GPX1), Glutathione Peroxidase 2 (GPX2), Reduced Glutathione (GSH), Superoxide Dismutase (SOD), and serum total antioxidant capacity (TAC). Malondialdehyde (MDA) was also measured as an OXS marker. RESULTS 71 patients were involved in this study. The type of MS was relapsing-remitting MS (RRMS) in 80.28% of the participants. Disease duration (P<0.01), type of MS (p<0.01), and EDSS score (p<0.01) were different between CI and non-CI groups, but there were not any significant differences in CAT (p = 0.80), GPX1 (p = 0.71), GPX2 (p = 0.41), GSH (p = 0.96), TAC (p = 0.13), SOD (p = 0.37), and MDA (p = 0.82). A significant difference between RRMS and progressive MS (PMS) patients in the levels of GPX1 (p = 0.01), GPX2 (p = 0.01), and SOD (p = 0.01) was observed. Also, we found higher circulatory levels of CAT (p = 0.02) and TAC (p<0.01) in male MS patients. We found significant correlations between aging and CAT (R = 0.28; p = 0.01), GPX1 (R = 0.36; p<0.01), GPX2 (R = 0.34; p<0.01), and SOD (R = 0.40; p<0.01). EDSS, the duration of the disease, relapse rate, and the number of impaired cognitive tasks were not correlated with any of investigated OXS or antioxidant factors (p>0.05). In terms of a detailed investigation of associations between MACFIMS battery components and levels of OXS and antioxidant factors, there were no significant relations in this regard (p>0.05). Based on the logistic regression multivariate analysis, only disease duration (p = 0.03) and GPX1 (p = 0.01) were independently associated with CI in MS patients in our sample. CONCLUSION The circulatory levels of GPX1, GPX2, and SOD are significantly different between RRMS and PMS patients. Neither endogenous antioxidants nor MDA, as an OXS biomarker, are associated with the cognitive function or level of physical disability in MS patients. Limitations of this study suggest a need for future studies in a larger sample of MS patients.
Collapse
Affiliation(s)
- Amirreza Naseri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Nasrin Forghani
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Asadi
- Department of Basic Oncology, Health Institute of Ege University, Izmir, Turkey
| | - Ehsan Nasiri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahnaz Talebi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Decreased Cerebrospinal Fluid Antioxidative Capacity Is Related to Disease Severity and Progression in Early Multiple Sclerosis. Biomolecules 2021; 11:biom11091264. [PMID: 34572477 PMCID: PMC8472420 DOI: 10.3390/biom11091264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Oxidative stress-induced neuronal damage in multiple sclerosis (MS) results from an imbalance between toxic free radicals and counteracting antioxidants, i.e., antioxidative capacity (AOC). The relation of AOC to outcome measures in MS still remains inconclusive. We aimed to compare AOC in cerebrospinal fluid (CSF) and serum between early MS and controls and assess its correlation with clinical/radiological measures. Methods: We determined AOC (ability of CSF and serum of patients to inhibit 2,2′-azobis(2-amidinopropane) dihydrochloride-induced oxidation of dihydrorhodamine) in clinically isolated syndrome (CIS)/early relapsing-remitting MS (RRMS) (n = 55/11) and non-inflammatory neurological controls (n = 67). MS patients underwent clinical follow-up (median, 4.5; IQR, 5.2 years) and brain MRI at 3 T (baseline/follow-up n = 47/34; median time interval, 3.5; IQR, 2.1 years) to determine subclinical disease activity. Results: CSF AOC was differently regulated among CIS, RRMS and controls (p = 0.031) and lower in RRMS vs. CIS (p = 0.020). Lower CSF AOC correlated with physical disability (r = −0.365, p = 0.004) and risk for future relapses (exp(β) = 0.929, p = 0.033). No correlations with MRI metrics were found. Conclusion: Decreased CSF AOC was associated with increased disability and clinical disease activity in MS. While our finding cannot prove causation, they should prompt further investigations into the role of AOC in the evolution of MS.
Collapse
|
9
|
Rodrigues P, Bochi GV, Trevisan G. Advanced Oxidative Protein Products Role in Multiple Sclerosis: a Systematic Review and Meta-analysis. Mol Neurobiol 2021; 58:5724-5742. [PMID: 34392502 DOI: 10.1007/s12035-021-02493-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/11/2021] [Indexed: 01/11/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune-mediated disease that damages the central nervous system. MS pathophysiological features are not entirely understood, but the increase of reactive oxygen species (ROS) possibly causes myelin and oligodendrocyte degeneration. ROS-increased production generates new compounds through oxidative modifications, including advanced oxidative protein products (AOPPs). The AOPPs are oxidative stress biomarkers and inflammatory mediators commonly formed by hypochlorous acid oxidative action on albumin. Considering that AOPPs accumulation produces ROS and induces neuronal apoptosis, these may represent a new target for drug development to MS treatment and a possible biomarker to monitor the severity of the disease. Thus, this review aims to investigate if there is an alteration in the AOPPs levels in MS and its possible involvement in patient disability. The second objective is to analyze whether drugs or compounds used in MS treatment could modify the AOPPs levels. The protocol was registered in PROSPERO (CRD42020203268). The databases' search yielded 327 articles. We excluded 259 duplicated articles and evaluated 68 articles by the title and abstract. We full-text analyzed 17 articles and included 13 articles. The AOPPs levels were increased in not-treated MS patients. Furthermore, the increase in disability status was associated with AOPPs accumulation in not-treated MS patients. Additionally, the AOPPs levels were reduced in MS patients after treatment. Therefore, AOPPs seem to play a role in MS pathophysiology and may become a new target for drug development and help MS diagnosis or treatment follow-up.
Collapse
Affiliation(s)
- Patrícia Rodrigues
- Graduated Program in Pharmacology, Federal University of Santa Maria (UFSM), Avenida Roraima, 1000, Building 21, Room 5207, Santa Maria, RS, 97105-900, Brazil
| | - Guilherme Vargas Bochi
- Graduated Program in Pharmacology, Federal University of Santa Maria (UFSM), Avenida Roraima, 1000, Building 21, Room 5207, Santa Maria, RS, 97105-900, Brazil
| | - Gabriela Trevisan
- Graduated Program in Pharmacology, Federal University of Santa Maria (UFSM), Avenida Roraima, 1000, Building 21, Room 5207, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
10
|
Ghonimi NAM, Elsharkawi KA, Khyal DSM, Abdelghani AA. Serum malondialdehyde as a lipid peroxidation marker in multiple sclerosis patients and its relation to disease characteristics. Mult Scler Relat Disord 2021; 51:102941. [PMID: 33895606 DOI: 10.1016/j.msard.2021.102941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 01/18/2023]
Abstract
Introduction Oxidative stress has been suggested to play a key role in pathogenesis of multiple sclerosis (MS), but clinical data on oxidative stress markers in MS patients and their influence on clinical and radiologic characteristics of the disease are inconsistent. The aim of this study is to assess the serum levels of malondialdehyde (MDA) as a measure of lipid peroxidation in MS patients and its relation to disease characteristics. Methods This case control study included 120 patients with clinically definite relapsing remitting multiple sclerosis (RRMS) compared to 120 age and sex -matched healthy controls. MDA levels were measured using thiobarbituric acid reactive substances (TBARS) assay. Results MDA levels are significantly higher in patients with MS than those in control (P<0.001) especially during relapse, MDA levels are higher in patients taking no disease modifying therapy (DMT) than those taking interferon (IFN-β). MDA levels significantly correlate with expanded disability status scale (EDSS) (P<0.001). Conclusions The results of this study can provide evidence about the incrimination of oxidative stress in MS pathogenesis and disease disability and support the use of antioxidants as a new target of treatment that focuses on neutralizing free radicals and increases antioxidant capacity.
Collapse
Affiliation(s)
- Nesma A M Ghonimi
- Neurology Department, Faculty of Medicine, Zagazig University, Sharkia, Egypt.
| | - Khaled A Elsharkawi
- Neurology Department, Faculty of Medicine, Zagazig University, Sharkia, Egypt
| | - Doaa S M Khyal
- Neurology Department, Al Ahrar teaching hospital, Sharkia, Egypt
| | - Alaa A Abdelghani
- Neurology Department, Faculty of Medicine, Zagazig University, Sharkia, Egypt
| |
Collapse
|
11
|
Redox Imbalance in CD4+ T Cells of Relapsing-Remitting Multiple Sclerosis Patients. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8860813. [PMID: 33354282 PMCID: PMC7735833 DOI: 10.1155/2020/8860813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/01/2020] [Accepted: 11/15/2020] [Indexed: 11/17/2022]
Abstract
As a prevalent autoimmune disease of the central nervous system in young adults, multiple sclerosis (MS) is mediated by T cells, particularly CD4+ subsets. Given the evidence that the perturbation in reactive oxygen species (ROS) production has a pivotal role in the onset and progression of MS, its regulation through the antioxidant molecules is too important. Here, we investigated the level of the redox system components in lymphocytes and CD4+ T cells of MS patients. The study was performed on relapsing-remitting MS (RRMS) patients (n = 29) and age- and sex-matched healthy controls (n = 15). Peripheral blood mononuclear cells (PBMCs) were cultured and stimulated by anti-CD3/CD28. The level of ROS, anion superoxide (O2 -), and L-𝛾-glutamyl-Lcysteinylglycine (GSH) was measured by flow cytometry in lymphocytes/CD4+ T cells. The gene expression level of gp91phox, catalase, superoxide dismutase 1/2 (SOD), and nuclear factor-E2-related factor (Nrf2) was also measured by real-time PCR. We found that lymphocytes/CD4+ T cells of RRMS patients at the relapse phase significantly produced higher levels of ROS and O2 - compared to patients at the remission phase (P value < 0.001) and healthy controls (P value < 0.001 and P value < 0.05, respectively). Interestingly, the gene expression level of gp91phox, known as the catalytic subunit of the NADPH oxidase, significantly increased in MS patients at the relapse phase (P value < 0.05). Furthermore, the catalase expression augmented in patients at the acute phase (P value < 0.05), while an increased expression of SOD1 and Nrf2 was found in RRMS patients at relapse and remission phases (P value < 0.05). The increased production of ROS in CD4+ T cells of RRMS patients highlights the importance of amplifying antioxidant components as an efficient approach to ameliorate disease activity in MS patients.
Collapse
|
12
|
Tanaka M, Vécsei L. Monitoring the Redox Status in Multiple Sclerosis. Biomedicines 2020; 8:E406. [PMID: 33053739 PMCID: PMC7599550 DOI: 10.3390/biomedicines8100406] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
Worldwide, over 2.2 million people suffer from multiple sclerosis (MS), a multifactorial demyelinating disease of the central nervous system. MS is characterized by a wide range of motor, autonomic, and psychobehavioral symptoms, including depression, anxiety, and dementia. The blood, cerebrospinal fluid, and postmortem brain samples of MS patients provide evidence on the disturbance of reduction-oxidation (redox) homeostasis, such as the alterations of oxidative and antioxidative enzyme activities and the presence of degradation products. This review article discusses the components of redox homeostasis, including reactive chemical species, oxidative enzymes, antioxidative enzymes, and degradation products. The reactive chemical species cover frequently discussed reactive oxygen/nitrogen species, infrequently featured reactive chemicals such as sulfur, carbonyl, halogen, selenium, and nucleophilic species that potentially act as reductive, as well as pro-oxidative stressors. The antioxidative enzyme systems cover the nuclear factor erythroid-2-related factor 2 (NRF2)-Kelch-like ECH-associated protein 1 (KEAP1) signaling pathway. The NRF2 and other transcriptional factors potentially become a biomarker sensitive to the initial phase of oxidative stress. Altered components of the redox homeostasis in MS were discussed in search of a diagnostic, prognostic, predictive, and/or therapeutic biomarker. Finally, monitoring the battery of reactive chemical species, oxidative enzymes, antioxidative enzymes, and degradation products helps to evaluate the redox status of MS patients to expedite the building of personalized treatment plans for the sake of a better quality of life.
Collapse
Affiliation(s)
- Masaru Tanaka
- MTA-SZTE, Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary;
- Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - László Vécsei
- MTA-SZTE, Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary;
- Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| |
Collapse
|
13
|
Maher AM, Saleh SR, Elguindy NM, Hashem HM, Yacout GA. Exogenous melatonin restrains neuroinflammation in high fat diet induced diabetic rats through attenuating indoleamine 2,3-dioxygenase 1 expression. Life Sci 2020; 247:117427. [PMID: 32067945 DOI: 10.1016/j.lfs.2020.117427] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/24/2020] [Accepted: 02/09/2020] [Indexed: 12/15/2022]
|
14
|
Ahumada-Pascual P, Gañán DG, Montero YEB, Velasco A. Fatty Acids and Antioxidants in Multiple Sclerosis: Therapeutic Role of GEMSP. Curr Pharm Des 2020; 25:376-380. [PMID: 30864502 DOI: 10.2174/1381612825666190312105755] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 03/06/2019] [Indexed: 01/01/2023]
Abstract
Multiple sclerosis is a high-frequency neurological disorder in young adults. Although there are some genetic and environmental factors that have been related to the onset of the disease, these are still not completely understood and nowadays multiple sclerosis can neither be prevented, nor its symptom effectively treated due to disease heterogeneity. For this reason, the search of prognostic factors and new therapeutic compounds for MS has long aroused among clinicians and researchers. Among these therapeutic compounds, GEMSP, which consists of a mixture of functional constituents as fatty acids, antioxidants, free radical scavengers and amino acids linked individually to poly-L-Lysine (PL), is emerging as a promising drug for MS treatment. Pre-clinical studies using GEMSP have demonstrated that this drug strongly inhibits brain leukocyte infiltration and completely abolishes experimental autoimmune encephalomyelitis. In addition, in an open clinical trial in humans treated with GEMSP, in 72% of the cases, a positive evolution of the state of the MS patients treated with GMSP was observed. In this review a biochemical characterization of main constituents of GEMSP, which include fatty acids as oleic acid, linoleic acid or azelaic acid and the antioxidants alpha-tocopherol or ascorbic acid, will be provided in order to understand their proved therapeutic effects in MS.
Collapse
Affiliation(s)
- Pablo Ahumada-Pascual
- Departamento de Bioquimica y Biologia Molecular. Instituto de Neurociencias de Castilla y Leon (INCYL). Universidad de Salamanca. Instituto de Investigacion Biomedica de Salamanca (IBSAL), Spain
| | | | - Yasmina E B Montero
- Servicio de Neurologia del Complejo Asistencial Universitario de Salamanca (CAUSA). Instituto de Investigacion Biomedica de Salamanca (IBSAL), Spain
| | - Ana Velasco
- Departamento de Bioquimica y Biologia Molecular. Instituto de Neurociencias de Castilla y Leon (INCYL). Universidad de Salamanca. Instituto de Investigacion Biomedica de Salamanca (IBSAL), Spain
| |
Collapse
|
15
|
Antioxidant and Anti-inflammatory Diagnostic Biomarkers in Multiple Sclerosis: A Machine Learning Study. Mol Neurobiol 2020; 57:2167-2178. [PMID: 31970657 DOI: 10.1007/s12035-019-01856-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/12/2019] [Indexed: 12/11/2022]
Abstract
An imbalance of inflammatory/anti-inflammatory and oxidant/antioxidant molecules has been implicated in the demyelination and axonal damage in multiple sclerosis (MS). The current study aimed to evaluate the plasma levels of tumor necrosis factor (TNF)-α, soluble TNF receptor (sTNFR)1, sTNFR2, adiponectin, hydroperoxides, advanced oxidation protein products (AOPP), nitric oxide metabolites, total plasma antioxidant capacity using the total radical-trapping antioxidant parameter (TRAP), sulfhydryl (SH) groups, as well as serum levels of zinc in 174 MS patients and 182 controls. The results show that MS is characterized by lowered levels of zinc, adiponectin, TRAP, and SH groups and increased levels of AOPP. MS was best predicted by a combination of lowered levels of zinc, adiponectin, TRAP, and SH groups yielding an area under the receiver operating characteristic (AUC/ROC) curve of 0.986 (±0.005). The combination of these four antioxidants with sTNFR2 showed an AUC/ROC of 0.997 and TRAP, adiponectin, and zinc are the most important biomarkers for MS diagnosis followed at a distance by sTNFR2. Support vector machine with tenfold validation performed on the four antioxidants showed a training accuracy of 92.9% and a validation accuracy of 90.6%. The results indicate that lowered levels of those four antioxidants are associated with MS and that these antioxidants are more important biomarkers of MS than TNF-α signaling and nitro-oxidative biomarkers. Adiponectin, TRAP, SH groups, zinc, and sTNFR2 play a role in the pathophysiology of MS, and a combination of these biomarkers is useful for predicting MS with high sensitivity, specificity, and accuracy. Drugs that increase the antioxidant capacity may offer novel therapeutic opportunities for MS.
Collapse
|
16
|
Kern S, Geiger M, Paucke M, Kästner A, Akgün K, Ziemssen T. Clinical relevance of circadian melatonin release in relapsing-remitting multiple sclerosis. J Mol Med (Berl) 2019; 97:1547-1555. [PMID: 31471628 DOI: 10.1007/s00109-019-01821-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/10/2019] [Accepted: 07/17/2019] [Indexed: 11/27/2022]
Abstract
A growing body of evidence indicates the role of melatonin (MT) in the pathogenesis of multiple sclerosis (MS): It modulates immune function, alleviates oxidative stress and it is linked to seasonality of MS relapse. This report addresses the potential clinical relevance of circadian MT rhythms in relapsing-remitting MS (RRMS) patients. The study sample comprised of fifty-five RRMS patients and fifty age- and sex-matched healthy control (HC) subjects. Circadian salivary MT was measured non-invasively at 12 time points over day in participants' home environment. 6-Hydroxy-melatoninsulfate (MT sulfate) concentration in night-time urine was assessed as an estimate for nocturnal MT. Ratings for neurological disability, health-related quality of life (HrQoL), fatigue, depressive symptoms and sleep patterns were additionally obtained. There was no evidence for an overall disturbed MT rhythm in RRMS patients. However, lower MT levels within the first hour after awakening were associated with longer disease duration. MT levels only correlated moderately with neurological disability. Sleep disruptions were more common in patients than in controls and were associated with lower nocturnal MT sulfate levels. MT also correlated moderately with fatigue and HrQoL. We did not find evidence for a generally disturbed circadian MT rhythm in RRMS patients but longer disease duration was associated with significantly lower MT levels. Moreover, MT correlated with a series of clinical features. The exact nature of this relationship remains unclear and future studies are needed in order to determine whether MT could serve as a potential therapeutic target in MS. KEY MESSAGES: Melatonin acts as a free radical scavenger and modulates immune function. In multiple sclerosis, low melatonin levels were associated with acute exacerbations. Melatonin levels are not generally disturbed in multiple sclerosis patients. But lower levels are associated with disease duration and clinical aspects. Salivary melatonin after awakening might serve as a good measure of melatonin.
Collapse
Affiliation(s)
- Simone Kern
- Zentrum für Klinische Neurowissenschaften, Klinik und Poliklinik für Neurologie, CGC Universitätsklinikum Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
- Department of Neurology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany.
| | - Michael Geiger
- Zentrum für Klinische Neurowissenschaften, Klinik und Poliklinik für Neurologie, CGC Universitätsklinikum Dresden, Fetscherstr. 74, 01307, Dresden, Germany
- Department of Neurology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Madlen Paucke
- Zentrum für Klinische Neurowissenschaften, Klinik und Poliklinik für Neurologie, CGC Universitätsklinikum Dresden, Fetscherstr. 74, 01307, Dresden, Germany
- Department of Neurology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Alina Kästner
- Zentrum für Klinische Neurowissenschaften, Klinik und Poliklinik für Neurologie, CGC Universitätsklinikum Dresden, Fetscherstr. 74, 01307, Dresden, Germany
- Department of Neurology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Katja Akgün
- Zentrum für Klinische Neurowissenschaften, Klinik und Poliklinik für Neurologie, CGC Universitätsklinikum Dresden, Fetscherstr. 74, 01307, Dresden, Germany
- Department of Neurology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Tjalf Ziemssen
- Zentrum für Klinische Neurowissenschaften, Klinik und Poliklinik für Neurologie, CGC Universitätsklinikum Dresden, Fetscherstr. 74, 01307, Dresden, Germany
- Department of Neurology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
17
|
Adamczyk B, Koziarska D, Kasperczyk S, Adamczyk-Sowa M. Are antioxidant parameters in serum altered in patients with relapsing-remitting multiple sclerosis treated with II-line immunomodulatory therapy? Free Radic Res 2018; 52:1083-1093. [DOI: 10.1080/10715762.2018.1535176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Bożena Adamczyk
- Department of Neurology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Dorota Koziarska
- Department of Neurology, Pomeranian Medical University, Szczecin, Poland
| | - Sławomir Kasperczyk
- Department of Biochemistry, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Monika Adamczyk-Sowa
- Department of Neurology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
18
|
Wu H, Xi H, Lai F, Ma J, Chen W, Liu H. Cellular antioxidant activity and Caco-2 cell uptake characteristics of flavone extracts fromLabisia pumila. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13968] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Hui Wu
- College of Food Science and Engineering; South China University of Technology; Guangzhou Guangdong 510640 China
| | - Hongru Xi
- College of Food Science and Engineering; South China University of Technology; Guangzhou Guangdong 510640 China
| | - Furao Lai
- College of Food Science and Engineering; South China University of Technology; Guangzhou Guangdong 510640 China
| | - Juanjuan Ma
- College of Food Science and Engineering; South China University of Technology; Guangzhou Guangdong 510640 China
| | - Wenbo Chen
- College of Food Science and Engineering; South China University of Technology; Guangzhou Guangdong 510640 China
| | - Huifan Liu
- College of Food Science and Engineering; South China University of Technology; Guangzhou Guangdong 510640 China
| |
Collapse
|
19
|
Quercetin treatment regulates the Na +,K +-ATPase activity, peripheral cholinergic enzymes, and oxidative stress in a rat model of demyelination. Nutr Res 2018; 55:45-56. [PMID: 29914627 DOI: 10.1016/j.nutres.2018.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 03/30/2018] [Accepted: 04/08/2018] [Indexed: 01/13/2023]
Abstract
Quercetin is reported to exert a plethora of health benefits through many different mechanisms of action. This versatility and presence in the human diet has attracted the attention of the scientific community, resulting in a huge output of in vitro and in vivo (preclinical) studies. Therefore, we hypothesized that quercetin can protect Na+,K+-ATPase activity in the central nervous system, reestablish the peripheral cholinesterases activities, and reduce oxidative stress during demyelination events in rats. In line with this expectation, our study aims to find out how quercetin acts on the Na+,K+-ATPase activity in the central nervous system, peripheral cholinesterases, and stress oxidative markers in an experimental model of demyelinating disease. Wistar rats were divided into 4 groups: vehicle, quercetin, ethidium bromide (EB), and EB plus quercetin groups. The animals were treated once a day with vehicle (ethanol 20%) or quercetin 50 mg/kg for 7 (demyelination phase, by gavage) or 21 days (remyelination phase) after EB (0.1%, 10 μL) injection (intrapontine).The encephalon was removed, and the pons, hypothalamus, cerebral cortex, hippocampus, striatum, and cerebellum were dissected to verify the Na+,K+-ATPase activity. Our results showed that quercetin protected against reduction in Na+,K+-ATPase in the pons and cerebellum in the demyelination phase, and it increased the activity of this enzyme in the remyelination phase. During the demyelination, quercetin promoted the increase in acetylcholinesterase activity in whole blood and lymphocytes induced by EB, and it reduced the increase in acetylcholinesterase activity in lymphocytes in the remyelination phase. On day 7, EB increased the superoxide dismutase and decreased catalase activities, as well as increased the thiobarbituric acid-reactive substance levels. Taken together, these results indicated that quercetin regulates the Na+,K+-ATPase activity, affects the alterations of redox state, and participates in the reestablishment of peripheral cholinergic activity during demyelinating and remyelination events.
Collapse
|
20
|
New Insights into the Role of Oxidative Stress Mechanisms in the Pathophysiology and Treatment of Multiple Sclerosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1973834. [PMID: 27829982 PMCID: PMC5088319 DOI: 10.1155/2016/1973834] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/05/2016] [Accepted: 09/19/2016] [Indexed: 12/11/2022]
Abstract
Multiple sclerosis (MS) is a multifactorial disease of the central nervous system (CNS) characterized by an inflammatory process and demyelination. The etiology of the disease is still not fully understood. Therefore, finding new etiological factors is of such crucial importance. It is suspected that the development of MS may be affected by oxidative stress (OS). In the acute phase OS initiates inflammatory processes and in the chronic phase it sustains neurodegeneration. Redox processes in MS are associated with mitochondrial dysfunction, dysregulation of axonal bioenergetics, iron accumulation in the brain, impaired oxidant/antioxidant balance, and OS memory. The present paper is a review of the current literature about the role of OS in MS and it focuses on all major aspects. The article explains the mechanisms of OS, reports unique biomarkers with regard to their clinical significance, and presents a poorly understood relationship between OS and neurodegeneration. It also provides novel methods of treatment, including the use of antioxidants and the role of antioxidants in neuroprotection. Furthermore, adding new drugs in the treatment of relapse may be useful. The article considers the significance of OS in the current treatment of MS patients.
Collapse
|
21
|
Ibitoye R, Kemp K, Rice C, Hares K, Scolding N, Wilkins A. Oxidative stress-related biomarkers in multiple sclerosis: a review. Biomark Med 2016; 10:889-902. [PMID: 27416337 DOI: 10.2217/bmm-2016-0097] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To provide an up-to-date review of oxidative stress biomarkers in multiple sclerosis and thus identify candidate molecules with greatest promise as biomarkers of diagnosis, disease activity or prognosis. METHOD A semi-systematic literature search using PubMed and other databases. RESULTS Nitric oxide metabolites, superoxide dismutase, catalase, glutathione reductase, inducible nitric oxide synthase, protein carbonyl, 3-nitrotyrosine, isoprostanes, malondialdehyde and products of DNA oxidation have been identified across multiple studies as having promise as diagnostic, therapeutic or prognostic markers in MS. CONCLUSION Heterogeneity of study design, particularly patient selection, limits comparability across studies. Further cohort studies are needed, and we would recommend promising markers be incorporated into future clinical trials to prospectively validate their potential.
Collapse
Affiliation(s)
- Richard Ibitoye
- Institute of Clinical Neurosciences, University of Bristol/Level 1, Learning & Research, Southmead Hospital, Southmead Road, Bristol, BS10 5NB, UK
| | - Kevin Kemp
- Institute of Clinical Neurosciences, University of Bristol/Level 1, Learning & Research, Southmead Hospital, Southmead Road, Bristol, BS10 5NB, UK
| | - Claire Rice
- Institute of Clinical Neurosciences, University of Bristol/Level 1, Learning & Research, Southmead Hospital, Southmead Road, Bristol, BS10 5NB, UK
| | - Kelly Hares
- Institute of Clinical Neurosciences, University of Bristol/Level 1, Learning & Research, Southmead Hospital, Southmead Road, Bristol, BS10 5NB, UK
| | - Neil Scolding
- Institute of Clinical Neurosciences, University of Bristol/Level 1, Learning & Research, Southmead Hospital, Southmead Road, Bristol, BS10 5NB, UK
| | - Alastair Wilkins
- Institute of Clinical Neurosciences, University of Bristol/Level 1, Learning & Research, Southmead Hospital, Southmead Road, Bristol, BS10 5NB, UK
| |
Collapse
|
22
|
Groen K, Maltby VE, Sanders KA, Scott RJ, Tajouri L, Lechner-Scott J. Erythrocytes in multiple sclerosis - forgotten contributors to the pathophysiology? Mult Scler J Exp Transl Clin 2016; 2:2055217316649981. [PMID: 28607726 PMCID: PMC5433403 DOI: 10.1177/2055217316649981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease characterised by lymphocytic
infiltration of the central nervous system and subsequent destruction of myelin and axons.
On the background of a genetic predisposition to autoimmunity, environmental triggers are
assumed to initiate the disease. The majority of MS research has focused on the
pathological involvement of lymphocytes and other immune cells, yet a paucity of attention
has been given to erythrocytes, which may play an important role in MS pathology. The
following review briefly summarises how erythrocytes may contribute to MS pathology
through impaired antioxidant capacity and altered haemorheological features. The effect of
disease-modifying therapies on erythrocytes is also reviewed. It may be important to
further investigate erythrocytes in MS, as this could broaden the understanding of the
pathological mechanisms of the disease, as well as potentially lead to the discovery of
novel and innovative targets for future therapies.
Collapse
Affiliation(s)
- Kira Groen
- Faculty of Health Sciences and Medicine, Bond University, Australia
| | - Vicki E Maltby
- Information Based Medicine, Hunter Medical Research Institute, Australia
| | | | - Rodney J Scott
- Information Based Medicine, Hunter Medical Research Institute, Australia
| | - Lotti Tajouri
- Faculty of Health Sciences and Medicine, Bond University, Australia
| | | |
Collapse
|
23
|
Djordjevic G, Ljubisavljevic S. Gender differences in the plasma lipid profile and cellular lipid peroxidation intensity in diabetic patients with distal symmetrical polyneuropathy. NEUROCHEM J+ 2016. [DOI: 10.1134/s1819712416010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Evaluation of Delta-Aminolevulinic Dehydratase Activity, Oxidative Stress Biomarkers, and Vitamin D Levels in Patients with Multiple Sclerosis. Neurotox Res 2015; 29:230-42. [DOI: 10.1007/s12640-015-9584-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 11/19/2015] [Accepted: 11/30/2015] [Indexed: 10/22/2022]
|
25
|
Kallaur AP, Lopes J, Oliveira SR, Simão ANC, Reiche EMV, de Almeida ERD, Morimoto HK, de Pereira WLCJ, Alfieri DF, Borelli SD, Kaimen-Maciel DR, Maes M. Immune-Inflammatory and Oxidative and Nitrosative Stress Biomarkers of Depression Symptoms in Subjects with Multiple Sclerosis: Increased Peripheral Inflammation but Less Acute Neuroinflammation. Mol Neurobiol 2015; 53:5191-202. [DOI: 10.1007/s12035-015-9443-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/11/2015] [Indexed: 01/02/2023]
|
26
|
Morris G, Berk M, Walder K, Maes M. Central pathways causing fatigue in neuro-inflammatory and autoimmune illnesses. BMC Med 2015; 13:28. [PMID: 25856766 PMCID: PMC4320458 DOI: 10.1186/s12916-014-0259-2] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 12/17/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The genesis of severe fatigue and disability in people following acute pathogen invasion involves the activation of Toll-like receptors followed by the upregulation of proinflammatory cytokines and the activation of microglia and astrocytes. Many patients suffering from neuroinflammatory and autoimmune diseases, such as multiple sclerosis, Parkinson's disease and systemic lupus erythematosus, also commonly suffer from severe disabling fatigue. Such patients also present with chronic peripheral immune activation and systemic inflammation in the guise of elevated proinflammtory cytokines, oxidative stress and activated Toll-like receptors. This is also true of many patients presenting with severe, apparently idiopathic, fatigue accompanied by profound levels of physical and cognitive disability often afforded the non-specific diagnosis of chronic fatigue syndrome. DISCUSSION Multiple lines of evidence demonstrate a positive association between the degree of peripheral immune activation, inflammation and oxidative stress, gray matter atrophy, glucose hypometabolism and cerebral hypoperfusion in illness, such as multiple sclerosis, Parkinson's disease and chronic fatigue syndrome. Most, if not all, of these abnormalities can be explained by a reduction in the numbers and function of astrocytes secondary to peripheral immune activation and inflammation. This is also true of the widespread mitochondrial dysfunction seen in otherwise normal tissue in neuroinflammatory, neurodegenerative and autoimmune diseases and in many patients with disabling, apparently idiopathic, fatigue. Given the strong association between peripheral immune activation and neuroinflammation with the genesis of fatigue the latter group of patients should be examined using FLAIR magnetic resonance imaging (MRI) and tested for the presence of peripheral immune activation. SUMMARY It is concluded that peripheral inflammation and immune activation, together with the subsequent activation of glial cells and mitochondrial damage, likely account for the severe levels of intractable fatigue and disability seen in many patients with neuroimmune and autoimmune diseases.This would also appear to be the case for many patients afforded a diagnosis of Chronic Fatigue Syndrome.
Collapse
Affiliation(s)
- Gerwyn Morris
- Tir Na Nog, Bryn Road seaside 87, Llanelli, SA152LW Wales UK
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Australia
- Department of Psychiatry and The Florey Institute of Neuroscience and Mental Health, Orygen, The National Centre of Excellence in Youth Mental Health, The University of Melbourne, Parkville, Australia
| | - Ken Walder
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Australia
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Australia
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|