1
|
Liu Y, Mo X, Feng Y, Willoughby RE, Weng X, Wang Y, Li X, Gao J, Tian J, Peng J. Metagenomic next-generation sequencing for the etiological diagnosis of rabies virus in cerebrospinal fluid. Front Med (Lausanne) 2023; 10:982290. [PMID: 36844226 PMCID: PMC9947348 DOI: 10.3389/fmed.2023.982290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 01/02/2023] [Indexed: 02/11/2023] Open
Abstract
Background Rabies is a highly fatal disease. Once symptoms develop, death usually occurs within days. Survivors were occasionally reported in the literatures. Ante-mortem diagnosis remains a challenge in most rabies endemic countries. A novel, accurate diagnostic assay is highly desirable. Methods We used metagenomic next-generation sequencing (mNGS) to examine the cerebrospinal fluid (CSF) samples of a 49-year-old patient with rabies and validated the results by TaqMan PCR and RT-PCR/Sanger sequencing. Results Metagenomic next-generation sequencing identified sequence reads uniquely aligned to the rabies virus (RABV). PCR confirmed the presence of the partial RABV N gene in the CSF. Phylogenetic analysis showed that the RABV grouped as an Asian clade, which is the most broadly distributed clade in China. Conclusion Metagenomic next-generation sequencing may be a useful screening tool for the etiological diagnosis of rabies, especially in the absence of timely rabies laboratory testing or in patients with no exposure history.
Collapse
Affiliation(s)
- Yong Liu
- Intensive Care Unit, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Xichao Mo
- Department of Infectious Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Ye Feng
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Rodney E. Willoughby
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, MI, United States
| | - Xing Weng
- Department of Infectious Disease, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Yuyang Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Xing Li
- Department of Infectious Disease, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Junling Gao
- Centre of Buddhists Studies, The University of Hong Kong, Hong Kong, Hong Kong SAR, China,Department of Medicine, LKS Medical Faculty, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jinfei Tian
- Intensive Care Unit, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Jie Peng
- Department of Infectious Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong, China,*Correspondence: Jie Peng,
| |
Collapse
|
2
|
Motta GH, Guimarães LP, Fernandes ER, Guedes F, de Sá LRM, Dos Ramos Silva S, Ribeiro OG, Katz ISS. Rabies virus isolated from insectivorous bats induces different inflammatory responses in experimental model. J Neuroimmunol 2022; 373:577974. [PMID: 36270078 DOI: 10.1016/j.jneuroim.2022.577974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/18/2022] [Accepted: 09/28/2022] [Indexed: 01/12/2023]
Abstract
Rabies virus (RABV) is a neurotropic virus that causes fatal neuroinflammation in mammals. The insectivorous bat RABV strains are less pathogenic for mice than strains associated with other reservoirs. We characterized the tissue inflammatory response in the CNS of RABV isolated from insectivorous bats. Eptesicus furinalis (EPBRV)-infected mice had a robust inflammatory response and a greater amount of IL-1β, IL-6 and TNF-α, while Myotis nigricans (MNBRV)-infected mice showed a higher expression of IL-17 and greater activation of IFN-β. New approaches to understand the inflammatory response to different mechanisms of action may provide insights for the development of novel therapies for rabies.
Collapse
Affiliation(s)
| | | | | | - Fernanda Guedes
- Pasteur Institute, Av. Paulista 393, São Paulo CEP 01311-000, Brazil
| | | | | | - Orlando Garcia Ribeiro
- Laboratory of Immunogenetics, Butantan Institute, Av. Vital Brasil 1500, São Paulo CEP 05503-900, Brazil
| | | |
Collapse
|
3
|
Pin L, Lutao X, Linjie L, Qunjie P, Weijun F, Wang D. A new choice for human rabies diagnosis: A case report of metagenomics next-generation sequencing in diagnosis of human rabies. J Infect Public Health 2022; 15:1276-1278. [PMID: 36272393 DOI: 10.1016/j.jiph.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 11/20/2022] Open
Abstract
PURPOSE We report a case of human rabies diagnosed by the metagenomics next-generation sequencing (mNGS). A 59-year-old man developed clinical rabies 20 days after he was bitten by dogs. Treatment included induction of coma initially; rabies vaccine was not administered. The patient was treated with propofol, midazolam, recombinant human interferon α2b, ribavirin, and amantadine. Penehyclidine was administrated to relieved the rabies induced pulmonary edema and the salivation. RESULTS The patient's situation got worse on the 26th day after admition, and died on the 29th day finally. CONCLUSION The mNGS might be a new choice for human rabies diagnosis,penehyclidine was effective in decreasing the rabies induced pulmonary edema and the salivation.
Collapse
Affiliation(s)
- Lan Pin
- Department of Emergency, Lishui Central Hospital (Lishui Hospital of ZheJiang University, Fifth Affiliated Hospital of Wenzhou Medical College), Lishui City, Zhejiang Province, China
| | - Xie Lutao
- Department of Emergency, Lishui Central Hospital (Lishui Hospital of ZheJiang University, Fifth Affiliated Hospital of Wenzhou Medical College), Lishui City, Zhejiang Province, China.
| | - Lai Linjie
- Department of Emergency, Lishui Central Hospital (Lishui Hospital of ZheJiang University, Fifth Affiliated Hospital of Wenzhou Medical College), Lishui City, Zhejiang Province, China
| | - Pan Qunjie
- Department of Emergency, Lishui Central Hospital (Lishui Hospital of ZheJiang University, Fifth Affiliated Hospital of Wenzhou Medical College), Lishui City, Zhejiang Province, China
| | - Fang Weijun
- Department of Emergency, Lishui Central Hospital (Lishui Hospital of ZheJiang University, Fifth Affiliated Hospital of Wenzhou Medical College), Lishui City, Zhejiang Province, China
| | - Du Wang
- Department of Emergency, Lishui Central Hospital (Lishui Hospital of ZheJiang University, Fifth Affiliated Hospital of Wenzhou Medical College), Lishui City, Zhejiang Province, China
| |
Collapse
|
4
|
Rabies: Presentation, case management and therapy. J Neurol Sci 2021; 424:117413. [PMID: 33812240 DOI: 10.1016/j.jns.2021.117413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/26/2021] [Accepted: 03/22/2021] [Indexed: 11/23/2022]
Abstract
Several Lyssaviruses are known to be a causative agent of rabies and rabies like syndrome. There are no proven effective treatment strategies for symptomatic rabies patient. Risk of infection from dog variant of rabies virus is highest with deep bite reaching muscular layer and much higher when compared to scratch. Failure of viral eradication at the central nervous system (CNS) is partly due to inadequate immune response. Favipiravir selectively inhibit viral RNA polymerase and has been shown to reduce rabies replication in neuronal cell and mouse model system. Endocannabinoid system has emerged as an important regulator for CNS integrity, cell fate and may serve as an important novel neuroprotective agent. Cannabinoid may be able to regulate the impaired homeostasis induced by rabies virus by promoting infected cell survival and promote complete autophagy in infected cell.
Collapse
|
5
|
Lama Z, Gaudin Y, Blondel D, Lagaudrière-Gesbert C. Kinase inhibitors tyrphostin 9 and rottlerin block early steps of rabies virus cycle. Antiviral Res 2019; 168:51-60. [PMID: 31071352 DOI: 10.1016/j.antiviral.2019.04.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/07/2019] [Accepted: 04/29/2019] [Indexed: 11/26/2022]
Abstract
Rabies virus (RABV) is a neurotropic virus that causes fatal encephalitis in humans and animals and still kills up to 59,000 people worldwide every year. To date, only preventive or post-exposure vaccination protects against the disease but therapeutics are missing. After screening a library of 80 kinases inhibitors, we identified two compounds as potent inhibitors of RABV infection: tyrphostin 9 and rottlerin. Mechanism of action studies show that both inhibitors interfere with an early step of viral cycle and can prevent viral replication. In presence of tyrphostin 9, the viral entry through endocytosis is disturbed leading to improper delivery of viral particles in cytoplasm, whereas rottlerin is inhibiting the transcription, most likely by decreasing intracellular ATP concentration, and therefore the replication of the viral genome.
Collapse
Affiliation(s)
- Zoé Lama
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Yves Gaudin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Danielle Blondel
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Cécile Lagaudrière-Gesbert
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France.
| |
Collapse
|
6
|
Metlin АЕ, Botvinkin АD, Elakov АL, Gruzdev КN. [Сases of human convalescence from rabies and lifetime diagnostics of lyssavirus encephalitis.]. Vopr Virusol 2019; 64:42-48. [PMID: 30893529 DOI: 10.18821/0507-4088-2019-64-1-42-48] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 04/26/2018] [Indexed: 12/25/2022]
Abstract
Notwithstanding the availability of effective vaccines, 40 - 60 thousand rabies cases in humans are reported every year. Almost always the disease is fatal because therapeutic treatment of lyssavirus encephalitis has not been developed. Since 1970 the number of reports on rare cases of convalescence including those using experimental treatment protocols has been gradually increasing 20 cases of convalescence, "partial" convalescence or long-term survival of humans (1970-2015) were selected as they were complaint with laboratory criteria of active lyssavirus infection. Children and teenagers were predominant in the analyzed group (85%). The cases were irregularly spread between the continents: Asia - 6 cases, North America - 6 cases, Africa - 2 cases and Europe - 1 case. India and the USA were on the top of the list of countries by the number of described cases. More than 60% humans were infected from dogs, three cases got infection from bats and 2 cases were allegedly associated with an unknown lyssavirus and an unidentified infection source. 70% cases were vaccinated and 10% cases were treated with gamma globulin before the disease onset. Serological tests for detection of antibodies to lyssaviruses in cerebrospinal fluid of infected humans were typically used for diagnostic laboratory verification. Less than 30% IFA and PCR positives were obtained. Lyssaviruses were never detected. Only 4 convalescent patients were treated using experimental protocols. 80% cases demonstrated severe neurological consequences, four (may be more) patients died afterwards within the period from two months to four years. Different perspectives on prospects of Milwaukee protocol use and other therapeutic techniques are given.
Collapse
Affiliation(s)
- А Е Metlin
- Federal Center for Animal Health, Vladimir, 600901, Russian Federation
| | - А D Botvinkin
- Irkutstky State Medical University, Irkutsk, 600901, Russian Federation
| | - А L Elakov
- D.I. Ivanovsky Institute of Virology, «National Research Centre of Epidemiology and Microbiology named after honorary academician N.F. Gamaleya», Moscow, 123098, Russian Federation
| | - К N Gruzdev
- Federal Center for Animal Health, Vladimir, 600901, Russian Federation
| |
Collapse
|
7
|
Marosi A, Dufkova L, Forró B, Felde O, Erdélyi K, Širmarová J, Palus M, Hönig V, Salát J, Tikos R, Gyuranecz M, Růžek D, Martina B, Koraka P, Osterhaus ADME, Bakonyi T. Combination therapy of rabies-infected mice with inhibitors of pro-inflammatory host response, antiviral compounds and human rabies immunoglobulin. Vaccine 2018; 37:4724-4735. [PMID: 29805091 DOI: 10.1016/j.vaccine.2018.05.066] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/02/2018] [Accepted: 05/12/2018] [Indexed: 02/06/2023]
Abstract
Recent studies demonstrated that inhibitors of pro-inflammatory molecular cascades triggered by rabies infection in the central nervous system (CNS) can enhance survival in mouse model and that certain antiviral compounds interfere with rabies virus replication in vitro. In this study different combinations of therapeutics were tested to evaluate their effect on survival in rabies-infected mice, as well as on viral load in the CNS. C57Bl/6 mice were infected with Silver-haired bat rabies virus (SHBRV)-18 at virus dose approaching LD50 and LD100. In one experimental group daily treatments were initiated 4 h before-, in other groups 48 or 96 h after challenge. In the first experiment therapeutic combination contained inhibitors of tumour necrosis factor-α (infliximab), caspase-1 (Ac-YVAD-cmk), and a multikinase inhibitor (sorafenib). In the treated groups there was a notable but not significant increase of survival compared to the virus infected, non-treated mice. The addition of human rabies immunoglobulins (HRIG) to the combination in the second experiment almost completely prevented mortality in the pre-exposure treatment group along with a significant reduction of viral titres in the CNS. Post-exposure treatments also greatly improved survival rates. As part of the combination with immunomodulatory compounds, HRIG had a higher impact on survival than alone. In the third experiment the combination was further supplemented with type-I interferons, ribavirin and favipiravir (T-705). As a blood-brain barrier opener, mannitol was also administered. This treatment was unable to prevent lethal consequences of SHBRV-18 infection; furthermore, it caused toxicity in treated mice, presumably due to interaction among the components. In all experiments, viral loads in the CNS were similar in mice that succumbed to rabies regardless of treatment. According to the findings, inhibitors of detrimental host response to rabies combined with antibodies can be considered among the possible therapeutic and post-exposure options in human rabies cases.
Collapse
Affiliation(s)
- András Marosi
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Hungária krt. 23 - 25, 1143 Budapest, Hungary.
| | - Lucie Dufkova
- Department of Virology, Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic
| | - Barbara Forró
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, 1143 Budapest, Hungary
| | - Orsolya Felde
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, 1143 Budapest, Hungary
| | - Károly Erdélyi
- National Food Chain Safety Office, Veterinary Diagnostic Directorate, Tábornok u. 2, 1149 Budapest, Hungary
| | - Jana Širmarová
- Department of Virology, Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic
| | - Martin Palus
- Department of Virology, Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic
| | - Václav Hönig
- Department of Virology, Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic
| | - Jiří Salát
- Department of Virology, Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic
| | - Réka Tikos
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Hungária krt. 23 - 25, 1143 Budapest, Hungary
| | - Miklós Gyuranecz
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, 1143 Budapest, Hungary
| | - Daniel Růžek
- Department of Virology, Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005 Ceske Budejovice, Czech Republic
| | - Byron Martina
- Artemis One Health Research Foundation, Delft, The Netherlands
| | - Penelope Koraka
- Viroscience Lab, Erasmus Medical Centre, Wytemaweg 80 3015CN, Rotterdam, The Netherlands
| | - Albert D M E Osterhaus
- Artemis One Health Research Foundation, Delft, The Netherlands; Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Germany
| | - Tamás Bakonyi
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Hungária krt. 23 - 25, 1143 Budapest, Hungary; Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| |
Collapse
|
8
|
Warrell M, Warrell DA, Tarantola A. The Imperative of Palliation in the Management of Rabies Encephalomyelitis. Trop Med Infect Dis 2017; 2:E52. [PMID: 30270909 PMCID: PMC6082067 DOI: 10.3390/tropicalmed2040052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 09/18/2017] [Accepted: 09/28/2017] [Indexed: 12/25/2022] Open
Abstract
The aim of this review is to guide clinicians in the practical management of patients suffering from rabies encephalomyelitis. This condition is eminently preventable by modern post-exposure vaccination, but is virtually always fatal in unvaccinated people. In the absence of any proven effective antiviral or other treatment, palliative care is an imperative to minimise suffering. Suspicion of rabies encephalomyelitis depends on recognising the classic symptomatology and eliciting a history of exposure to a possibly rabid mammal. Potentially treatable differential diagnoses must be eliminated, notably other infective encephalopathies. Laboratory confirmation of suspected rabies is not usually possible in many endemic areas, but is essential for public health surveillance. In a disease as agonising and terrifying as rabies encephalomyelitis, alleviation of distressing symptoms is the primary concern and overriding responsibility of medical staff. Calm, quiet conditions should be created, allowing relatives to communicate with the dying patient in safety and privacy. Palliative management must address thirst and dehydration, fever, anxiety, fear, restlessness, agitation, seizures, hypersecretion, and pain. As the infection progresses, coma and respiratory, cardiovascular, neurological, endocrine, or gastrointestinal complications will eventually ensue. When the facilities exist, the possibility of intensive care may arise, but although some patients may survive, they will be left with severe neurological sequelae. Recovery from rabies is extremely rare, and heroic measures with intensive care should be considered only in patients who have been previously vaccinated, develop rabies antibody within the first week of illness, or were infected by an American bat rabies virus. However, in most cases, clinicians must have the courage to offer compassionate palliation whenever the diagnosis of rabies encephalomyelitis is inescapable.
Collapse
Affiliation(s)
- Mary Warrell
- Oxford Vaccine Group, University of Oxford, Centre for Clinical Vaccinology & Tropical Medicine, Churchill Hospital, Old Rd, Headington, Oxford, OX3 7LJ, UK.
| | - David A Warrell
- Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DW, UK.
| | - Arnaud Tarantola
- Institut Pasteur de Nouvelle-Calédonie, BP 61 ⁻ 98845 Nouméa cedex, New Caledonia.
| |
Collapse
|
9
|
|
10
|
Delayed progression of rabies transmitted by a vampire bat. Arch Virol 2016; 161:2561-6. [PMID: 27306647 DOI: 10.1007/s00705-016-2927-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/07/2016] [Indexed: 10/21/2022]
Abstract
Here, we compared the growth kinetics, cell-to-cell spread, and virus internalization kinetics in N2a cells of RABV variants isolated from vampire bats (V-3), domestic dogs (V-2) and marmosets (V-M) as well as the clinical symptoms and mortality caused by these variants. The replication rate of V-3 was significantly higher than those of V-2 and V-M. However, the uptake and spread of these RABV variants into N2a cells were inversely proportional. Nevertheless, V-3 had longer incubation and evolution periods. Our results provide evidence that the clinical manifestations of infection with bat RABV variant occur at a later time when compared to what was observed with canine and marmoset rabies virus variants.
Collapse
|
11
|
Affiliation(s)
- M. J. Warrell
- Oxford Vaccine Group; University of Oxford; Oxford UK
| |
Collapse
|
12
|
Taylor LH, Nel LH. Global epidemiology of canine rabies: past, present, and future prospects. VETERINARY MEDICINE (AUCKLAND, N.Z.) 2015; 6:361-371. [PMID: 30101121 PMCID: PMC6067664 DOI: 10.2147/vmrr.s51147] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The rabies virus, a public health scourge from ancient times, is currently responsible for an estimated 59,000 human deaths a year, almost all transmitted via dog bites. It causes considerable economic impacts on developing countries, primarily in Africa and Asia, which can least afford these losses. However, despite its almost 100% case fatality rate, canine rabies is a completely preventable disease, and historic examples of canine rabies elimination in the developed world attest to this. Over the last decade, programs based on eliminating the source of the disease from dogs have shown success in reducing the public health burden of canine rabies in developing countries, notably across Latin America, and this has contributed to the growing evidence base necessary to change attitudes toward the feasibility of global canine rabies elimination. More recently, assessments of the current economic burden of canine rabies and the potential cost savings achievable through mass dog vaccinations have been added to this evidence base. Tools and support are available from the international community to help countries move progressively toward canine rabies elimination, and there is optimism that global freedom from canine rabies can be achieved within the next few decades.
Collapse
Affiliation(s)
| | - Louis H Nel
- Global Alliance for Rabies Control, Manhattan, KS, USA,
- Department of Microbiology and Plant Pathology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
13
|
|
14
|
Abstract
The diagnosis of rabies encephalitis relies on awareness of the varied clinical features and eliciting a history of unusual contact with a mammal throughout the endemic area. The diagnosis is easily missed. Laboratory tests are not routine and only confirm clinical suspicion. Rabies infection carries a case fatality exceeding 99.9%. Palliation is appropriate, except for previously-vaccinated patients or those infected by American bats, for whom intensive care is probably indicated. However, as rabies vaccines are outstandingly effective, no one should die of dog-transmitted infection. Vaccines and rabies immunoglobulin are expensive and usually scarce in Asia and Africa. All travellers to dog rabies enzootic areas should be strongly encouraged to have pre-exposure immunisation before departure. There is no contraindication to vaccination but the cost can be prohibitive. Intradermal immunisation, using 0.1 ml and sharing vials of vaccine, is cheaper and is now permitted by UK regulations. Returning travellers may need post-exposure prophylaxis. Economical intradermal post-exposure vaccination is practicable and should be introduced into rural areas of Africa and Asia immediately. Eliminating rabies in dogs is now feasible and would dramatically reduce human mortality, if funds were made available. The high current economic burden of human prophylaxis would then be largely relieved.
Collapse
Affiliation(s)
| | - David A Warrell
- Royal College of Physicians, London, UK, and emeritus professor of tropical medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
15
|
Abstract
Rabies is one of the most deadly infectious diseases, with a case-fatality rate approaching 100%. The disease is established on all continents apart from Antarctica; most cases are reported in Africa and Asia, with thousands of deaths recorded annually. However, the estimated annual figure of almost 60,000 human rabies fatalities is probably an underestimate. Almost all cases of human rabies result from bites from infected dogs. Therefore, the most cost-effective approach to elimination of the global burden of human rabies is to control canine rabies rather than expansion of the availability of human prophylaxis. Mass vaccination campaigns with parenteral vaccines, and advances in oral vaccines for wildlife, have allowed the elimination of rabies in terrestrial carnivores in several countries worldwide. The subsequent reduction in cases of human rabies in such regions advocates the multidisciplinary One Health approach to rabies control through the mass vaccination of dogs and control of canine populations.
Collapse
Affiliation(s)
- Anthony R Fooks
- Animal Health and Veterinary Laboratories Agency (AHVLA, Weybridge), New Haw, Addlestone, UK; WHO Communicable Disease Surveillance and Response Collaborating Centre for the Characterisation of Rabies and Rabies-related Viruses, Addlestone, Weybridge, UK; Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK; National Consortium for Zoonosis Research, University of Liverpool, Leahurst, Neston, UK.
| | - Ashley C Banyard
- Animal Health and Veterinary Laboratories Agency (AHVLA, Weybridge), New Haw, Addlestone, UK; WHO Communicable Disease Surveillance and Response Collaborating Centre for the Characterisation of Rabies and Rabies-related Viruses, Addlestone, Weybridge, UK
| | - Daniel L Horton
- Animal Health and Veterinary Laboratories Agency (AHVLA, Weybridge), New Haw, Addlestone, UK; WHO Communicable Disease Surveillance and Response Collaborating Centre for the Characterisation of Rabies and Rabies-related Viruses, Addlestone, Weybridge, UK
| | - Nicholas Johnson
- Animal Health and Veterinary Laboratories Agency (AHVLA, Weybridge), New Haw, Addlestone, UK; WHO Communicable Disease Surveillance and Response Collaborating Centre for the Characterisation of Rabies and Rabies-related Viruses, Addlestone, Weybridge, UK
| | - Lorraine M McElhinney
- Animal Health and Veterinary Laboratories Agency (AHVLA, Weybridge), New Haw, Addlestone, UK; WHO Communicable Disease Surveillance and Response Collaborating Centre for the Characterisation of Rabies and Rabies-related Viruses, Addlestone, Weybridge, UK; National Consortium for Zoonosis Research, University of Liverpool, Leahurst, Neston, UK
| | - Alan C Jackson
- Departments of Internal Medicine (Neurology) and of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
16
|
Appolinario CM, Jackson AC. Antiviral therapy for human rabies. Antivir Ther 2014; 20:1-10. [PMID: 25156675 DOI: 10.3851/imp2851] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2014] [Indexed: 10/24/2022]
Abstract
Human rabies is virtually always fatal despite numerous attempts at aggressive therapy. Most survivors received one or more doses of rabies vaccine prior to the onset of the disease. The Milwaukee Protocol has proved to be ineffective for rabies and should no longer be used. New approaches are needed and an improved understanding of basic mechanisms responsible for the clinical disease in rabies may prove to be useful for the development of novel therapeutic approaches. Antiviral therapy is thought to be an important component of combination therapy for the management of human rabies, and immunotherapy and neuroprotective therapy should also be strongly considered. There are many important issues for consideration regarding drug delivery to the central nervous system in rabies, which are in part related to the presence of the blood-brain barrier and also the blood-spinal cord barrier. Ribavirin and interferon-α have proved to be disappointing agents for the therapy of rabies. There is insufficient evidence to support the continued use of ketamine or amantadine for the therapy of rabies. Minocycline or corticosteroids should not be used because of concerns about aggravating the disease. A variety of new antiviral agents are under development and evaluation, including favipiravir, RNA interference (for example, small interfering [si]RNAs) and novel targeted approaches, including interference with viral capsid assembly and viral egress.
Collapse
Affiliation(s)
- Camila M Appolinario
- Department of Veterinary Hygiene and Public Health, School of Veterinary Medicine and Animal Science, São Paulo State University, Botucatu, São Paulo, Brazil
| | | |
Collapse
|