1
|
Gupta A, Bice Z, Chen V, Chen Y, Veltri AJ, Lin CW, Ma X, Pan AY, Zennadi R, Palecek SP, Mohieldin AM, Nauli SM, Ramchandran R, Rarick KR. Severe traumatic brain injury temporally affects cerebral blood flow, endothelial cell phenotype, and cilia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.19.623875. [PMID: 39605741 PMCID: PMC11601676 DOI: 10.1101/2024.11.19.623875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Background Previous clinical work suggested that altered cerebral blood flow (CBF) in severe traumatic brain injury (sTBI) correlates with poor executive function and clinical outcome. However, the molecular consequences of altered CBF on endothelial cells (ECs) and their blood flow-sensor organelle called cilia are not known. Methods We performed laser speckle contrast imaging, single cell isolation, and single cell RNA sequencing (scRNAseq) after sTBI in a closed skull, linear impact mouse model. Validation of select ciliary target protein changes was performed using flow cytometry. Additionally, in vitro experiments modeled the post-injury hypoxic environment to evaluate the effect on cilia protein ARL13B in human brain microvascular ECs. Results We detected immediate reductions in CBF that were sustained for at least 100 minutes in both impacted and non-impacted sides of the brain. Our scRNAseq data detected heterogeneity in the brain cortex-derived EC cluster and demonstrated that two of five unique EC sub-clusters changed their relative proportions post-sTBI. Consistent with flow changes, we identified multiple genes associated with the fluid shear stress pathway that were significantly differentially expressed in brain ECs post-injury. Also, ECs displayed activation of ischemic pathway as early as day 1 post-injury, and enrichment of hypoxia pathway at day 7 and 28 post- injury. Arl13b ciliary gene expression was lost on day 1 in ECs cluster and remained lost for the entire course of the injury. We validated the loss of cilia protein ARL13B specifically from brain ECs as early as day 1 post-injury and detected the protein in the peripheral blood of the injured mice. We also determined that hypoxia could induce loss of ARL13B protein from cultured ECs. Conclusions In severe TBI, blood flow is disrupted in both impacted and non-impacted regions of the brain, creating a hypoxic environment that may influence ciliary gene and protein expression on ECs.
Collapse
|
2
|
Tahhan N, Balanca B, Fierstra J, Waelchli T, Picart T, Dumot C, Eker O, Marinesco S, Radovanovic I, Cotton F, Berhouma M. Intraoperative cerebral blood flow monitoring in neurosurgery: A review of contemporary technologies and emerging perspectives. Neurochirurgie 2021; 68:414-425. [PMID: 34895896 DOI: 10.1016/j.neuchi.2021.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/30/2021] [Accepted: 10/12/2021] [Indexed: 10/19/2022]
Abstract
Intraoperative monitoring of cerebral blood flow (CBF) has become an invaluable adjunct to vascular and oncological neurosurgery, reducing the risk of postoperative morbidity and mortality. Several technologies have been developed during the last two decades, including laser-based techniques, videomicroscopy, intraoperative MRI, indocyanine green angiography, and thermography. Although these technologies have been thoroughly studied and clinically applied outside the operative room, current practice lacks an optimal technology that perfectly fits the workflow within the neurosurgical operative room. The different available technologies have specific strengths but suffer several drawbacks, mainly including limited spatial and/or temporal resolution. An optimal CBF monitoring technology should meet particular criteria for intraoperative use: excellent spatial and temporal resolution, integration in the operative workflow, real-time quantitative monitoring, ease of use, and non-contact technique. We here review the main contemporary technologies for intraoperative CBF monitoring and their current and potential future applications in neurosurgery.
Collapse
Affiliation(s)
- N Tahhan
- Department of Neurosurgical Oncology and Vascular Neurosurgery, Pierre Wertheimer Neurological and Neurosurgical Hospital, University of Lyon - Hospices Civils de Lyon, 59, boulevard Pinel, 69003 Lyon, France
| | - B Balanca
- Department of Neuro-Anesthesia and Neuro-Critical Care, Pierre Wertheimer Neurological and Neurosurgical Hospital, Hospices Civils de Lyon, Lyon, France; Lyon Neuroscience Research Center, TIGER team and AniRA-Beliv technological platform, Inserm U2018, CNRS UMR 5292, Lyon 1 University, Lyon, France
| | - J Fierstra
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - T Waelchli
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - T Picart
- Department of Neurosurgical Oncology and Vascular Neurosurgery, Pierre Wertheimer Neurological and Neurosurgical Hospital, University of Lyon - Hospices Civils de Lyon, 59, boulevard Pinel, 69003 Lyon, France
| | - C Dumot
- Department of Neurosurgical Oncology and Vascular Neurosurgery, Pierre Wertheimer Neurological and Neurosurgical Hospital, University of Lyon - Hospices Civils de Lyon, 59, boulevard Pinel, 69003 Lyon, France
| | - O Eker
- Department of Interventional Neuroradiology, Pierre Wertheimer Neurological and Neurosurgical Hospital, Hospices Civils de Lyon, Lyon, France
| | - S Marinesco
- Lyon Neuroscience Research Center, TIGER team and AniRA-Beliv technological platform, Inserm U2018, CNRS UMR 5292, Lyon 1 University, Lyon, France
| | - I Radovanovic
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - F Cotton
- Department of Imaging, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Lyon, France; Creatis Lab - CNRS UMR 5220 - INSERM U1206, Lyon 1 University, INSA Lyon, Lyon, France
| | - M Berhouma
- Department of Neurosurgical Oncology and Vascular Neurosurgery, Pierre Wertheimer Neurological and Neurosurgical Hospital, University of Lyon - Hospices Civils de Lyon, 59, boulevard Pinel, 69003 Lyon, France; Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, Canada; Creatis Lab - CNRS UMR 5220 - INSERM U1206, Lyon 1 University, INSA Lyon, Lyon, France.
| |
Collapse
|
3
|
Berhouma M, Picart T, Dumot C, Pelissou-Guyotat I, Meyronet D, Ducray F, Honnorat J, Eker O, Guyotat J, Lukaszewicz AC, Cotton F. Alterations of cerebral microcirculation in peritumoral edema: feasibility of in vivo sidestream dark-field imaging in intracranial meningiomas. Neurooncol Adv 2020; 2:vdaa108. [PMID: 33063011 PMCID: PMC7542984 DOI: 10.1093/noajnl/vdaa108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background Intracranial meningiomas display a variable amount of peritumoral brain edema (PTBE), which can significantly impact perioperative morbidity. The role of microcirculatory disturbances in the pathogenesis of PTBE is still debated. The aim of this study was to microscopically demonstrate and intraoperatively quantify, for the first time, the alterations to microcirculation in PTBE using sidestream dark-field (SDF) imaging. Methods Adult patients with WHO grade I meningiomas were recruited over a 9-month period and divided into 2 groups depending on the absence (NE group) or the presence (E group) of PTBE. In vivo intraoperative microcirculation imaging was performed in the peritumoral area before and after microsurgical resection. Results Six patients were included in the NE group and 6 in the E group. At the baseline in the NE group, there was a minor decrease in microcirculatory parameters compared to normal reference values, which was probably due to the mass effect. In contrast, microcirculatory parameters in the E group were significantly altered, affecting both vessel density and blood flow values, with a drop of approximately 50% of normal values. Surgical resection resulted in a quasi-normalization of microcirculation parameters in the NE group, whereas in the E group, even if all parameters statistically significantly improved, post-resection values remained considerably inferior to those of the normal reference pattern. Conclusion Our study confirmed significant alterations of microcirculatory parameters in PTBE in meningiomas. Further in vivo SDF imaging studies may explore the possible correlation between the severity of these microcirculatory alterations and the postoperative neurological outcome.
Collapse
Affiliation(s)
- Moncef Berhouma
- Department of Neurosurgical Oncology and Vascular Neurosurgery, Pierre Wertheimer Neurological and Neurosurgical Hospital, Hospices Civils de Lyon, Lyon, France.,Creatis Lab, CNRS UMR 5220, INSERM U1206, Lyon 1 University, INSA Lyon, Lyon, France
| | - Thiebaud Picart
- Department of Neurosurgical Oncology and Vascular Neurosurgery, Pierre Wertheimer Neurological and Neurosurgical Hospital, Hospices Civils de Lyon, Lyon, France
| | - Chloe Dumot
- Department of Neurosurgical Oncology and Vascular Neurosurgery, Pierre Wertheimer Neurological and Neurosurgical Hospital, Hospices Civils de Lyon, Lyon, France
| | - Isabelle Pelissou-Guyotat
- Department of Neurosurgical Oncology and Vascular Neurosurgery, Pierre Wertheimer Neurological and Neurosurgical Hospital, Hospices Civils de Lyon, Lyon, France
| | - David Meyronet
- Department of Pathology, Pierre Wertheimer Neurological and Neurosurgical Hospital, Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Cancérologie de Lyon INSERM U1052 CNRS 5286, Lyon 1 University, Lyon, France
| | - François Ducray
- Department of Neurooncology, Pierre Wertheimer Neurological and Neurosurgical Hospital, Hospices Civils de Lyon, Lyon, France
| | - Jerome Honnorat
- Department of Neurooncology, Pierre Wertheimer Neurological and Neurosurgical Hospital, Hospices Civils de Lyon, Lyon, France
| | - Omer Eker
- Creatis Lab, CNRS UMR 5220, INSERM U1206, Lyon 1 University, INSA Lyon, Lyon, France.,Department of Neuroradiology, Pierre Wertheimer Neurological and Neurosurgical Hospital, Hospices Civils de Lyon, Lyon, France
| | - Jacques Guyotat
- Department of Neurosurgical Oncology and Vascular Neurosurgery, Pierre Wertheimer Neurological and Neurosurgical Hospital, Hospices Civils de Lyon, Lyon, France
| | - Anne-Claire Lukaszewicz
- Department of Neuroanesthesia and Neurocritical Care, Pierre Wertheimer Neurological and Neurosurgical Hospital, Hospices Civils de Lyon, Lyon, France
| | - François Cotton
- Creatis Lab, CNRS UMR 5220, INSERM U1206, Lyon 1 University, INSA Lyon, Lyon, France.,Department of Neuroimaging, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| |
Collapse
|
4
|
The Effect of Fluid Loading and Hypertonic Saline Solution on Cortical Cerebral Microcirculation and Glycocalyx Integrity. J Neurosurg Anesthesiol 2020; 31:434-443. [PMID: 30015696 DOI: 10.1097/ana.0000000000000528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Fluid loading and hyperosmolar solutions can modify the cortical brain microcirculation and the endothelial glycocalyx (EG). This study compared the short-term effects of liberal fluid loading with a restrictive fluid intake followed by osmotherapy with hypertonic saline (HTS) on cerebral cortical microcirculation and EG integrity in a rabbit craniotomy model. METHODS The experimental rabbits were allocated randomly to receive either <2 mL/kg/h (group R, n=14) or 30 mL/kg/h (group L, n=14) of balanced isotonic fluids for 1 hour. Then, the animals were randomized to receive 5 mL/kg intravenous infusion of either 3.2% saline (group HTS, n=14) or 0.9% saline (group normal saline, n=13) in a 20-minute infusion. Microcirculation in the cerebral cortex based on sidestream dark-field imaging, a morphologic index of glycocalyx damage to sublingual and cortical brain microcirculation (the perfused boundary region), and serum syndecan-1 levels were evaluated. RESULTS Lower cortical brain perfused small vessel density (P=0.0178), perfused vessel density (P=0.0286), and total vessel density (P=0.0447) were observed in group L, compared with group R. No differences were observed between the HTS and normal saline groups after osmotherapy. Cerebral perfused boundary region values (P=0.0692) and hematocrit-corrected serum syndecan-1 levels (P=0.0324) tended to be higher in group L than in group R animals. CONCLUSIONS Liberal fluid loading was associated with altered cortical cerebral microcirculation and EG integrity parameters. The 3.2% saline treatment did not affect cortical cerebral microcirculation or EG integrity markers.
Collapse
|
5
|
Haeren R, Rijkers K, Schijns O, Dings J, Hoogland G, van Zandvoort M, Vink H, van Overbeeke J. In vivo assessment of the human cerebral microcirculation and its glycocalyx: A technical report. J Neurosci Methods 2018; 303:114-125. [DOI: 10.1016/j.jneumeth.2018.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 03/12/2018] [Accepted: 03/21/2018] [Indexed: 10/17/2022]
|
6
|
Jullienne A, Salehi A, Affeldt B, Baghchechi M, Haddad E, Avitua A, Walsworth M, Enjalric I, Hamer M, Bhakta S, Tang J, Zhang JH, Pearce WJ, Obenaus A. Male and Female Mice Exhibit Divergent Responses of the Cortical Vasculature to Traumatic Brain Injury. J Neurotrauma 2018; 35:1646-1658. [PMID: 29648973 DOI: 10.1089/neu.2017.5547] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We previously reported that traumatic brain injuries (TBI) alter the cerebrovasculature near the injury site in rats, followed by revascularization over a 2-week period. Here, we tested our hypothesis that male and female adult mice have differential cerebrovascular responses following a moderate controlled cortical impact (CCI). Using in vivo magnetic resonance imaging (MRI), a new technique called vessel painting, and immunohistochemistry, we found no differences between males and females in lesion volume, neurodegeneration, blood-brain barrier (BBB) alteration, and microglia activation. However, females exhibited more astrocytic hypertrophy and heme-oxygenase-1 (HO-1) induction at 1 day post-injury (dpi), whereas males presented with increased endothelial activation and expression of β-catenin, shown to be involved in angiogenesis. At 7 dpi, we observed an increase in the number of vessels and an enhancement in vessel complexity in the injured cortex of males compared with females. Cerebrovasculature recovers differently after CCI, suggesting biological sex should be considered when designing new therapeutic agents.
Collapse
Affiliation(s)
- Amandine Jullienne
- 1 Department of Basic Sciences, University of California Irvine , Irvine, California
| | - Arjang Salehi
- 1 Department of Basic Sciences, University of California Irvine , Irvine, California
| | - Bethann Affeldt
- 1 Department of Basic Sciences, University of California Irvine , Irvine, California
| | - Mohsen Baghchechi
- 1 Department of Basic Sciences, University of California Irvine , Irvine, California
| | - Elizabeth Haddad
- 1 Department of Basic Sciences, University of California Irvine , Irvine, California
| | - Angela Avitua
- 1 Department of Basic Sciences, University of California Irvine , Irvine, California
| | - Mark Walsworth
- 1 Department of Basic Sciences, University of California Irvine , Irvine, California
| | - Isabelle Enjalric
- 1 Department of Basic Sciences, University of California Irvine , Irvine, California
| | - Mary Hamer
- 1 Department of Basic Sciences, University of California Irvine , Irvine, California
| | - Sonali Bhakta
- 1 Department of Basic Sciences, University of California Irvine , Irvine, California
| | - Jiping Tang
- 2 Department of Physiology and Pharmacology, University of California Irvine , Irvine, California
| | - John H Zhang
- 2 Department of Physiology and Pharmacology, University of California Irvine , Irvine, California.,3 Department of Anesthesiology, University of California Irvine , Irvine, California.,4 Department of Neurosurgery, University of California Irvine , Irvine, California
| | - William J Pearce
- 2 Department of Physiology and Pharmacology, University of California Irvine , Irvine, California.,5 Center for Perinatal Biology, Loma Linda University , Loma Linda, California
| | - André Obenaus
- 1 Department of Basic Sciences, University of California Irvine , Irvine, California.,6 Department of Pediatrics, University of California Irvine , Irvine, California
| |
Collapse
|
7
|
Abstract
The microvasculature plays a central role in the pathophysiology of hemorrhagic shock and is also involved in arguably all therapeutic attempts to reverse or minimize the adverse consequences of shock. Microvascular studies specific to hemorrhagic shock were reviewed and broadly grouped depending on whether data were obtained on animal or human subjects. Dedicated sections were assigned to microcirculatory changes in specific organs, and major categories of pathophysiological alterations and mechanisms such as oxygen distribution, ischemia, inflammation, glycocalyx changes, vasomotion, endothelial dysfunction, and coagulopathy as well as biomarkers and some therapeutic strategies. Innovative experimental methods were also reviewed for quantitative microcirculatory assessment as it pertains to changes during hemorrhagic shock. The text and figures include representative quantitative microvascular data obtained in various organs and tissues such as skin, muscle, lung, liver, brain, heart, kidney, pancreas, intestines, and mesentery from various species including mice, rats, hamsters, sheep, swine, bats, and humans. Based on reviewed findings, a new integrative conceptual model is presented that includes about 100 systemic and local factors linked to microvessels in hemorrhagic shock. The combination of systemic measures with the understanding of these processes at the microvascular level is fundamental to further develop targeted and personalized interventions that will reduce tissue injury, organ dysfunction, and ultimately mortality due to hemorrhagic shock. Published 2018. Compr Physiol 8:61-101, 2018.
Collapse
Affiliation(s)
- Ivo Torres Filho
- US Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas, USA
| |
Collapse
|
8
|
Tremoleda JL, Alvarez K, Aden A, Donnan R, Michael-Titus AT, Tomlins PH. Heart-rate sensitive optical coherence angiography for measuring vascular changes due to posttraumatic brain injury in mice. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-6. [PMID: 29210221 DOI: 10.1117/1.jbo.22.12.121710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/09/2017] [Indexed: 06/07/2023]
Abstract
Traumatic brain injury (TBI) results in direct vascular disruption, triggering edema, and reduction in cerebral blood flow. Therefore, understanding the pathophysiology of brain microcirculation following TBI is important for the development of effective therapies. Optical coherence angiography (OCA) is a promising tool for evaluating TBI in rodent models. We develop an approach to OCA that uses the heart-rate frequency to discriminate between static tissue and vasculature. This method operates on intensity data and is therefore not phase sensitive. Furthermore, it does not require spatial overlap of voxels and thus can be applied to pre-existing datasets for which oversampling may not have been explicitly considered. Heart-rate sensitive OCA was developed for dynamic assessment of mouse microvasculature post-TBI. Results show changes occurring at 5-min intervals within the first 50 min of injury.
Collapse
Affiliation(s)
- Jordi L Tremoleda
- Queen Mary University of London, Blizard Institute, Barts and the London School of Medicine and Dent, United Kingdom
| | - Karl Alvarez
- Queen Mary University of London, School of Electrical Engineering and Computer Science, London, United Kingdom
| | - Abdirahman Aden
- Queen Mary University of London, Institute of Dentistry, Barts and the London School of Medicine and, United Kingdom
| | - Robert Donnan
- Queen Mary University of London, School of Electrical Engineering and Computer Science, London, United Kingdom
| | - Adina T Michael-Titus
- Queen Mary University of London, Blizard Institute, Barts and the London School of Medicine and Dent, United Kingdom
| | - Peter H Tomlins
- Queen Mary University of London, Institute of Dentistry, Barts and the London School of Medicine and, United Kingdom
| |
Collapse
|
9
|
Obenaus A, Ng M, Orantes AM, Kinney-Lang E, Rashid F, Hamer M, DeFazio RA, Tang J, Zhang JH, Pearce WJ. Traumatic brain injury results in acute rarefication of the vascular network. Sci Rep 2017; 7:239. [PMID: 28331228 PMCID: PMC5427893 DOI: 10.1038/s41598-017-00161-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 02/13/2017] [Indexed: 01/04/2023] Open
Abstract
The role of the cerebrovascular network and its acute response to TBI is poorly defined and emerging evidence suggests that cerebrovascular reactivity is altered. We explored how cortical vessels are physically altered following TBI using a newly developed technique, vessel painting. We tested our hypothesis that a focal moderate TBI results in global decrements to structural aspects of the vasculature. Rats (naïve, sham-operated, TBI) underwent a moderate controlled cortical impact. Animals underwent vessel painting perfusion to label the entire cortex at 1 day post TBI followed by whole brain axial and coronal images using a wide-field fluorescence microscope. Cortical vessel network characteristics were analyzed for classical angiographic features (junctions, lengths) wherein we observed significant global (both hemispheres) reductions in vessel junctions and vessel lengths of 33% and 22%, respectively. Biological complexity can be quantified using fractal geometric features where we observed that fractal measures were also reduced significantly by 33%, 16% and 13% for kurtosis, peak value frequency and skewness, respectively. Acutely after TBI there is a reduction in vascular network and vascular complexity that are exacerbated at the lesion site and provide structural evidence for the bilateral hemodynamic alterations that have been reported in patients after TBI.
Collapse
Affiliation(s)
- Andre Obenaus
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.
| | - Michelle Ng
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Amanda M Orantes
- Molecular and Integrative Physiology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Eli Kinney-Lang
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Faisal Rashid
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Mary Hamer
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | | | - Jiping Tang
- Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - John H Zhang
- Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.,Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.,Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - William J Pearce
- Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.,Center for Perinatal Biology, Loma Linda University, Loma Linda, CA, 92350, USA
| |
Collapse
|
10
|
Haeren RHL, Vink H, Staals J, van Zandvoort MAMJ, Dings J, van Overbeeke JJ, Hoogland G, Rijkers K, Schijns OEMG. Protocol for intraoperative assessment of the human cerebrovascular glycocalyx. BMJ Open 2017; 7:e013954. [PMID: 28057660 PMCID: PMC5223665 DOI: 10.1136/bmjopen-2016-013954] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Adequate functioning of the blood-brain barrier (BBB) is important for brain homoeostasis and normal neuronal function. Disruption of the BBB has been described in several neurological diseases. Recent reports suggest that an increased permeability of the BBB also contributes to increased seizure susceptibility in patients with epilepsy. The endothelial glycocalyx is coating the luminal side of the endothelium and can be considered as the first barrier of the BBB. We hypothesise that an altered glycocalyx thickness plays a role in the aetiology of temporal lobe epilepsy (TLE), the most common type of epilepsy. Here, we propose a protocol that allows intraoperative assessment of the cerebrovascular glycocalyx thickness in patients with TLE and assess whether its thickness is decreased in patients with TLE when compared with controls. METHODS AND ANALYSIS This protocol is designed as a prospective observational case-control study in patients who undergo resective brain surgery as treatment for TLE. Control subjects are patients without a history of epileptic seizures, who undergo a craniotomy or burr hole surgery for other indications. Intraoperative glycocalyx thickness measurements of sublingual, cortical and hippocampal microcirculation are performed by video microscopy using sidestream dark-field imaging. Demographic details, seizure characteristics, epilepsy risk factors, intraoperative haemodynamic parameters and histopathological evaluation are additionally recorded. ETHICS AND DISSEMINATION This protocol has been ethically approved by the local medical ethical committee (ID: NL51594.068.14) and complies with the Declaration of Helsinki and principles of Good Clinical Practice. Informed consent is obtained before study enrolment and only coded data will be stored in a secured database, enabling an audit trail. Results will be submitted to international peer-reviewed journals and presented at international conferences. TRIAL REGISTRATION NUMBER NTR5568.
Collapse
Affiliation(s)
- R H L Haeren
- Department of Neurosurgery, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - H Vink
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - J Staals
- Department of Neurology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - M A M J van Zandvoort
- Department of Genetics & Cell Biology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
- Institute for Molecular Cardiovascular Research, IMCAR, Universitätsklinikum, Aachen University, Aachen, Germany
| | - J Dings
- Department of Neurosurgery, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
- Academic Center for Epileptology, Maastricht University Medical Center and Kempenhaeghe, Maastricht/Heeze, The Netherlands
| | - J J van Overbeeke
- Department of Neurosurgery, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
- Academic Center for Epileptology, Maastricht University Medical Center and Kempenhaeghe, Maastricht/Heeze, The Netherlands
| | - G Hoogland
- Department of Neurosurgery, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
- Academic Center for Epileptology, Maastricht University Medical Center and Kempenhaeghe, Maastricht/Heeze, The Netherlands
| | - K Rijkers
- Department of Neurosurgery, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Neurosurgery, Zuyderland Medical Center, Heerlen, The Netherlands
| | - O E M G Schijns
- Department of Neurosurgery, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
- Academic Center for Epileptology, Maastricht University Medical Center and Kempenhaeghe, Maastricht/Heeze, The Netherlands
| |
Collapse
|
11
|
Ocak I, Kara A, Ince C. Monitoring microcirculation. Best Pract Res Clin Anaesthesiol 2016; 30:407-418. [DOI: 10.1016/j.bpa.2016.10.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 10/27/2016] [Indexed: 12/20/2022]
|