1
|
Alvarez Jerez P, Alcantud JL, de Los Reyes-Ramírez L, Moore A, Ruz C, Vives Montero F, Rodriguez-Losada N, Saini P, Gan-Or Z, Alvarado CX, Makarious MB, Billingsley KJ, Blauwendraat C, Noyce AJ, Singleton AB, Duran R, Bandres-Ciga S. Exploring the genetic and genomic connection underlying neurodegeneration with brain iron accumulation and the risk for Parkinson's disease. NPJ Parkinsons Dis 2023; 9:54. [PMID: 37024536 PMCID: PMC10079978 DOI: 10.1038/s41531-023-00496-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/16/2023] [Indexed: 04/08/2023] Open
Abstract
Neurodegeneration with brain iron accumulation (NBIA) represents a group of neurodegenerative disorders characterized by abnormal iron accumulation in the brain. In Parkinson's Disease (PD), iron accumulation is a cardinal feature of degenerating regions in the brain and seems to be a key player in mechanisms that precipitate cell death. The aim of this study was to explore the genetic and genomic connection between NBIA and PD. We screened for known and rare pathogenic mutations in autosomal dominant and recessive genes linked to NBIA in a total of 4481 PD cases and 10,253 controls from the Accelerating Medicines Partnership Parkinsons' Disease Program and the UKBiobank. We examined whether a genetic burden of NBIA variants contributes to PD risk through single-gene, gene-set, and single-variant association analyses. In addition, we assessed publicly available expression quantitative trait loci (eQTL) data through Summary-based Mendelian Randomization and conducted transcriptomic analyses in blood of 1886 PD cases and 1285 controls. Out of 29 previously reported NBIA screened coding variants, four were associated with PD risk at a nominal p value < 0.05. No enrichment of heterozygous variants in NBIA-related genes risk was identified in PD cases versus controls. Burden analyses did not reveal a cumulative effect of rare NBIA genetic variation on PD risk. Transcriptomic analyses suggested that DCAF17 is differentially expressed in blood from PD cases and controls. Due to low mutation occurrence in the datasets and lack of replication, our analyses suggest that NBIA and PD may be separate molecular entities.
Collapse
Affiliation(s)
- Pilar Alvarez Jerez
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Jose Luis Alcantud
- Institute of Neurosciences "Federico Olóriz", Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Lucia de Los Reyes-Ramírez
- Laboratory of Neuropharmacology. Dept. Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Anni Moore
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Clara Ruz
- Institute of Neurosciences "Federico Olóriz", Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Francisco Vives Montero
- Institute of Neurosciences "Federico Olóriz", Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Noela Rodriguez-Losada
- Department Human Physiology, Faculty of Medicine, Biomedicine Research Institute of Malaga (IBIMA C07), University of Malaga, Malaga, Spain
| | - Prabhjyot Saini
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Ziv Gan-Or
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Chelsea X Alvarado
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, Washington, DC, USA
| | - Mary B Makarious
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Kimberley J Billingsley
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Cornelis Blauwendraat
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Alastair J Noyce
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Preventive Neurology Unit, Centre for Prevention, Detection and Diagnosis, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Andrew B Singleton
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Raquel Duran
- Institute of Neurosciences "Federico Olóriz", Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Sara Bandres-Ciga
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Rattay TW, Lindig T, Baets J, Smets K, Deconinck T, Söhn AS, Hörtnagel K, Eckstein KN, Wiethoff S, Reichbauer J, Döbler-Neumann M, Krägeloh-Mann I, Auer-Grumbach M, Plecko B, Münchau A, Wilken B, Janauschek M, Giese AK, De Bleecker JL, Ortibus E, Debyser M, Lopez de Munain A, Pujol A, Bassi MT, D'Angelo MG, De Jonghe P, Züchner S, Bauer P, Schöls L, Schüle R. FAHN/SPG35: a narrow phenotypic spectrum across disease classifications. Brain 2020; 142:1561-1572. [PMID: 31135052 DOI: 10.1093/brain/awz102] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/15/2019] [Accepted: 02/16/2019] [Indexed: 12/14/2022] Open
Abstract
The endoplasmic reticulum enzyme fatty acid 2-hydroxylase (FA2H) plays a major role in the formation of 2-hydroxy glycosphingolipids, main components of myelin. FA2H deficiency in mice leads to severe central demyelination and axon loss. In humans it has been associated with phenotypes from the neurodegeneration with brain iron accumulation (fatty acid hydroxylase-associated neurodegeneration, FAHN), hereditary spastic paraplegia (HSP type SPG35) and leukodystrophy (leukodystrophy with spasticity and dystonia) spectrum. We performed an in-depth clinical and retrospective neurophysiological and imaging study in a cohort of 19 cases with biallelic FA2H mutations. FAHN/SPG35 manifests with early childhood onset predominantly lower limb spastic tetraparesis and truncal instability, dysarthria, dysphagia, cerebellar ataxia, and cognitive deficits, often accompanied by exotropia and movement disorders. The disease is rapidly progressive with loss of ambulation after a median of 7 years after disease onset and demonstrates little interindividual variability. The hair of FAHN/SPG35 patients shows a bristle-like appearance; scanning electron microscopy of patient hair shafts reveals deformities (longitudinal grooves) as well as plaque-like adhesions to the hair, likely caused by an abnormal sebum composition also described in a mouse model of FA2H deficiency. Characteristic imaging features of FAHN/SPG35 can be summarized by the 'WHAT' acronym: white matter changes, hypointensity of the globus pallidus, ponto-cerebellar atrophy, and thin corpus callosum. At least three of four imaging features are present in 85% of FA2H mutation carriers. Here, we report the first systematic, large cohort study in FAHN/SPG35 and determine the phenotypic spectrum, define the disease course and identify clinical and imaging biomarkers.
Collapse
Affiliation(s)
- Tim W Rattay
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, and Center for Neurology, University of Tübingen, Tübingen, Germany.,German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Tobias Lindig
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Tübingen, Germany
| | - Jonathan Baets
- Neurogenetics Group, University of Antwerp, Antwerp, Belgium.,Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Katrien Smets
- Neurogenetics Group, University of Antwerp, Antwerp, Belgium.,Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Tine Deconinck
- Neurogenetics Group, University of Antwerp, Antwerp, Belgium.,Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Anne S Söhn
- Department of Medical Genetics, Institute of Human Genetics, University of Tübingen, Tübingen, Germany
| | | | - Kathrin N Eckstein
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, and Center for Neurology, University of Tübingen, Tübingen, Germany.,German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany.,Department of Psychiatry, University of Tübingen, Tübingen, Germany
| | - Sarah Wiethoff
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, and Center for Neurology, University of Tübingen, Tübingen, Germany.,German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Jennifer Reichbauer
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, and Center for Neurology, University of Tübingen, Tübingen, Germany
| | - Marion Döbler-Neumann
- Department of Pediatric Neurology, University Children's Hospital, Tübingen, Germany
| | | | - Michaela Auer-Grumbach
- Department of Orthopaedics and Trauma-Surgery, Medical University Vienna, Vienna, Austria
| | - Barbara Plecko
- Division of Child Neurology, University Childrens Hospital Zurich, Zurich, Switzerland
| | - Alexander Münchau
- Department of Pediatric and Adult Movement Disorders and Neuropsychiatry, Institute of Neurogenetics, University of Lübeck, Germany
| | - Bernd Wilken
- Department of Neuropediatrics, Klinikum Kassel, Germany
| | - Marc Janauschek
- Department for Social Pediatrics, Kinderhospital Osnabrück, Germany
| | - Anne-Katrin Giese
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Els Ortibus
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Martine Debyser
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Adolfo Lopez de Munain
- CIBERNED, Center for Networked Biomedical Research into Neurodegenerative Diseases, Madrid, Spain.,Neuroscience Area, Institute Biodonostia, and Department of Neurosciences, University of Basque Country EHU-UPV, San Sebastián, Spain
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Institut d'Investigació Biomedica de Bellvitge IDIBELL, Hospital Duran i Reynals, Barcelona, 08908, Spain.,Centre for Biomedical Research on Rare Diseases (CIBERER), Institute Carlos III, Madrid, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Maria Teresa Bassi
- Scientific Institute IRCCS E. Medea, Laboratory of Molecular Biology, 23842 Bosisio Parini, Lecco, Italy
| | - Maria Grazia D'Angelo
- Scientific Institute IRCCS E. Medea, Neuromuscular Unit, 23842 Bosisio Parini , Lecco, Italy
| | - Peter De Jonghe
- Neurogenetics Group, University of Antwerp, Antwerp, Belgium.,Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Stephan Züchner
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, FL33136 Miami, USA.,Dr. John T. Macdonald Foundation, Department of Human Genetics, FL33136 Miami, USA
| | - Peter Bauer
- Department of Medical Genetics, Institute of Human Genetics, University of Tübingen, Tübingen, Germany.,CENTOGENE AG, Rostock, Germany
| | - Ludger Schöls
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, and Center for Neurology, University of Tübingen, Tübingen, Germany.,German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Rebecca Schüle
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, and Center for Neurology, University of Tübingen, Tübingen, Germany.,German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
| |
Collapse
|