1
|
Phenotypic and molecular diversities of spinocerebellar ataxia type 2 in Japan. J Neurol 2021; 268:2933-2942. [PMID: 33625581 DOI: 10.1007/s00415-021-10467-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/27/2021] [Accepted: 02/11/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND We intended to clarify the phenotypic and molecular diversities of spinocerebellar ataxia type 2 (SCA2) in Japan. METHODS DNA was extracted from the peripheral blood of 436 patients, including 126 patients with chronic neuropathy, 108 with amyotrophic lateral sclerosis, and 202 with cerebellar ataxia. We then PCR-amplified and sequenced the ATXN2 gene. The biopsied sural nerves of mutation-positive patients were subjected to light-microscopic and electron-microscopic analyses. Transfection analyses were performed using a Schwann cell line, IMS32. RESULTS We found PCR-amplified products potentially corresponding to expanded CAG repeats in four patients. Two patients in the chronic neuropathy group had a full repeat expansion or an intermediate expansion (39 or 32 repeats), without limb ataxia. The sural nerve biopsy findings of the two patients included axonal neuropathy and mixed neuropathy (axonal changes with demyelination). Schwann cells harbored either cytoplasmic or nuclear inclusions on electron microscopic examination. Both patients recently exhibited pyramidal signs. In the third patient in the cerebellar ataxia group, we identified a novel 21-base duplication mutation near 22 CAG repeats (c.432_452dup). The transfection study revealed that the 21-base-duplication mutant Ataxin-2 proteins aggregated in IMS32 and rendered cells susceptible to oxidative stress, similar to a CAG-expanded mutant. The fourth patient, with 41 repeats, had ataxia and spasticity. The two patients with cerebellar ataxia also had peripheral neuropathy. CONCLUSIONS Patients with expanded CAG repeats can exhibit a neuropathy-dominant phenotype not described previously. The novel 21-base-duplication mutant seems to share the aggregation properties of polyglutamine-expanded mutants.
Collapse
|
2
|
Abstract
Spinocerebellar ataxia type 8 (SCA8) is a rare autosomal dominant neurodegenerative disease caused by expanded CTA/CTG repeats in the ATXN8OS gene. Many patients had pure cerebellar ataxia, while some had parkinsonism, both without causal explanation. We analyzed the ATXN8OS gene in 150 Japanese patients with ataxia and 76 patients with Parkinson's disease or related disorders. We systematically reassessed 123 patients with SCA8, both our patients and those reported in other studies. Two patients with progressive supranuclear palsy (PSP) had mutations in the ATXN8OS gene. Systematic analyses revealed that patients with parkinsonism had significantly shorter CTA/CTG repeat expansions and older age at onset than those with predominant ataxia. We show the imaging results of patients with and without parkinsonism. We also found a significant inverse relationship between repeat sizes and age at onset in all patients, which has not been detected previously. Our results may be useful to genetic counseling, improve understanding of the pathomechanism, and extend the clinical phenotype of SCA8.
Collapse
|
3
|
Zheng J, Croteau DL, Bohr VA, Akbari M. Diminished OPA1 expression and impaired mitochondrial morphology and homeostasis in Aprataxin-deficient cells. Nucleic Acids Res 2019; 47:4086-4110. [PMID: 30986824 PMCID: PMC6486572 DOI: 10.1093/nar/gkz083] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 01/25/2019] [Accepted: 01/31/2019] [Indexed: 01/16/2023] Open
Abstract
Ataxia with oculomotor apraxia type 1 (AOA1) is an early onset progressive spinocerebellar ataxia caused by mutation in aprataxin (APTX). APTX removes 5'-AMP groups from DNA, a product of abortive ligation during DNA repair and replication. APTX deficiency has been suggested to compromise mitochondrial function; however, a detailed characterization of mitochondrial homeostasis in APTX-deficient cells is not available. Here, we show that cells lacking APTX undergo mitochondrial stress and display significant changes in the expression of the mitochondrial inner membrane fusion protein optic atrophy type 1, and components of the oxidative phosphorylation complexes. At the cellular level, APTX deficiency impairs mitochondrial morphology and network formation, and autophagic removal of damaged mitochondria by mitophagy. Thus, our results show that aberrant mitochondrial function is a key component of AOA1 pathology. This work corroborates the emerging evidence that impaired mitochondrial function is a characteristic of an increasing number of genetically diverse neurodegenerative disorders.
Collapse
Affiliation(s)
- Jin Zheng
- Center for Healthy Aging, SUND, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | - Vilhelm A Bohr
- Center for Healthy Aging, SUND, University of Copenhagen, 2200 Copenhagen N, Denmark
- Laboratory of Molecular Gerontology, National Institute on Aging, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | - Mansour Akbari
- Center for Healthy Aging, SUND, University of Copenhagen, 2200 Copenhagen N, Denmark
| |
Collapse
|
4
|
Hirano M, Samukawa M, Isono C, Saigoh K, Nakamura Y, Kusunoki S. Noncoding repeat expansions for ALS in Japan are associated with the ATXN8OS gene. NEUROLOGY-GENETICS 2018; 4:e252. [PMID: 30109267 PMCID: PMC6089696 DOI: 10.1212/nxg.0000000000000252] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/07/2018] [Indexed: 12/13/2022]
Abstract
Objective To assess the contribution of noncoding repeat expansions in Japanese patients with amyotrophic lateral sclerosis (ALS). Methods Sporadic ALS in Western countries is frequently associated with noncoding repeat expansions in the C9ORF72 gene. Spinocerebellar ataxia type 8 (SCA8) is another noncoding repeat disease caused by expanded CTA/CTG repeats in the ATXN8OS gene. Although the involvement of upper and lower motor neurons in SCA8 has been reported, a positive association between SCA8 and ALS remains unestablished. Spinocerebellar ataxia type 36 is a recently identified disease caused by noncoding repeat expansions in the NOP56 gene and is characterized by motor neuron involvement. We collected blood samples from 102 Japanese patients with sporadic ALS and analyzed the ATXN8OS gene by the PCR–Sanger sequencing method and the C9ORF72 and NOP56 genes by repeat-primed PCR assay. Results Three patients with ALS (3%) had mutations in the ATXN8OS gene, whereas no patient had a mutation in the C9ORF72 or NOP56 gene. The mutation-positive patients were clinically characterized by neck weakness or bulbar-predominant symptoms. None of our patients had apparent cerebellar atrophy on MRI, but 2 had nonsymptomatic abnormalities in the white matter or putamen. Conclusions Our finding reveals the importance of noncoding repeat expansions in Japanese patients with ALS and extends the clinical phenotype of SCA8. Three percent seems small but is still relatively large for Japan, considering that the most commonly mutated genes, including the SOD1 and SQSTM1 genes, only account for 2%–3% of sporadic patients each.
Collapse
Affiliation(s)
- Makito Hirano
- Department of Neurology (M.H., M.S., K.S., and S.K.), Kindai University Faculty of Medicine, Osakasayama, Japan; and Department of Neurology (M.H., C.I., and Y.N.), Kindai University Sakai Hospital, Japan
| | - Makoto Samukawa
- Department of Neurology (M.H., M.S., K.S., and S.K.), Kindai University Faculty of Medicine, Osakasayama, Japan; and Department of Neurology (M.H., C.I., and Y.N.), Kindai University Sakai Hospital, Japan
| | - Chiharu Isono
- Department of Neurology (M.H., M.S., K.S., and S.K.), Kindai University Faculty of Medicine, Osakasayama, Japan; and Department of Neurology (M.H., C.I., and Y.N.), Kindai University Sakai Hospital, Japan
| | - Kazumasa Saigoh
- Department of Neurology (M.H., M.S., K.S., and S.K.), Kindai University Faculty of Medicine, Osakasayama, Japan; and Department of Neurology (M.H., C.I., and Y.N.), Kindai University Sakai Hospital, Japan
| | - Yusaku Nakamura
- Department of Neurology (M.H., M.S., K.S., and S.K.), Kindai University Faculty of Medicine, Osakasayama, Japan; and Department of Neurology (M.H., C.I., and Y.N.), Kindai University Sakai Hospital, Japan
| | - Susumu Kusunoki
- Department of Neurology (M.H., M.S., K.S., and S.K.), Kindai University Faculty of Medicine, Osakasayama, Japan; and Department of Neurology (M.H., C.I., and Y.N.), Kindai University Sakai Hospital, Japan
| |
Collapse
|